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Abstract— In this paper, we study the problem of cooperative
localization and target tracking (CLATT), i.e., a team of
mobile robots use their onboard sensors’ measurements to
cooperatively track multiple moving targets, and propose a
novel unscented incremental smoothing and mapping (U-iSAM)
approach. The proposed method attains reduced linearization
errors by using the unscented transformation and correct
observability properties by imposing observability constraints
on the unscented transformation when computing measurement
Jacobians. In particular, we, for the first time ever, analyze the
observability properties of the batch maximum a posteriori
(MAP)-based CLATT system, and show that in the case of
no prior, the Hessian (information) matrix has a nullspace of
dimension three. However, this may not be the case when the
Jacobians (and thus the Hessian) are computed numerically
through the unscented transformation. To ensure that the U-
iSAM possesses correct observability (i.e., the nullspaceof its
Hessian is of dimension three), we project the measurement
Jacobians computed by the standard unscented transformation
onto the observable subspace. The proposed algorithm is
validated through extensive Monte-Carlo simulations.

I. I NTRODUCTION

When a team of mobile robots working in dynamic en-
vironments, it is necessary for the robots to simultaneously
determine their poses (positions and orientations) and the
kinematic states of moving objects (targets), such as positions
and velocities. This is due to the fact that jointly estimating
the robots and targets results in better accuracy for the robots’
position estimates, as compared to localizing the robots by
ignoring the targets [1]. This is the problem of cooperative
localization and target tracking (CLATT), a typical nonlinear
estimation problem arising in many practical applications
such as surveillance [2]. In this paper, we study in-depth
this CLATT problem and introduce a novel consistent incre-
mental estimation algorithm.

Although many different algorithms are available for
solving the CLATT problem, among them the extended
Kalman filter (EKF) remains a popular choice primarily due
to its relatively low processing requirements and its ease
of implementation [1]. However, its performance depends
on the magnitude of the linearization errors. In order to
reduce the linearization errors, the unscented transformation
(statistical linearization) used by the unscented Kalman filter
(UKF) [3] is appealing, which deterministically samples the
nonlinear model around the current state estimate and em-
ploys linear regression to improve the accuracy of the linear

This work was partially supported by ONR grants N00014-12-1-0093,
N00014-10-1-0936, N00014-11-1-0688, and N00014-12-10020. The authors
are with the Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email:
{gqhuang|robtruax|kaess|jleonard}@mit.edu

approximation [4]. Nevertheless, any (explicit or implicit)
linearization-based filtering approach, marginalizes allbut
the current state and hence is unable to correct linearization
errors involving previous states.

For this reason, smoothing approaches, either in batch
or incremental fashion, have become prevailing in robotics
(see [5]–[10] and references therein). In particular, a batch
maximum a posteriori (MAP) estimator [11] computes the
estimates for the states at all time steps using all available
measurements. This allows continuous relinearization around
all the states, which can greatly reduce the linearization
errors. However, since the size of the state vector in the
batch-MAP estimator increases continuously over time, the
processing and memory requirements become too high for
real-time operation in large-scale problems (e.g., when a
team of robots work for an extended period of time). To re-
duce the computational complexity of the batch approach, the
incremental smoothing and mapping (iSAM) algorithm [7]
reduces computation by employing factorization-updating
methods which allow reusing the information-matrix factor-
ization available from previous time steps. Computationally
demanding procedures, such as relinearization and batch
factorization, are only performed intermittently. While the
iSAM was shown to perform well in robotic mapping appli-
cations [7], it still suffers from large linearization errors in
dynamic environments, which degrade its performance, for
example, in the CLATT problem under consideration.

In order to mitigate the negative impact due to linearization
errors, in this paper we introduce an unscented-iSAM (U-
iSAM) algorithm for the CLATT problem. In particular, the
proposed U-iSAM computes the Jacobians, and thus the
Hessian, by applying the unscented transformation, which
has shown to greatly reduce linearization errors [3]. How-
ever, by performing observability analysis, we find that the
Hessian (information) matrix computed numerically through
the unscented transformation may have a nullspace that
has different dimensions from that of the optimal (up to
linearization errors) batch-MAP estimator. This implies that
spurious (nonexistent) information is gained from the mea-
surements, which can lead to estimation inconsistency (i.e.,
biased estimates, and error covariance different from the true
covariance [12]) (see [6]). To ensure correct observability
properties of the proposed U-iSAM, we project the most
accurate measurement Jacobians computed by the unscented
transformation onto the observable subspace, while comput-
ing the propagation Jacobians in a standard way without
projection. We validate the proposed U-iSAM in extensive
Monte-Carlo simulations and show that it significantly out-
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performs the standard iSAM algorithm. It should be pointed
out that apart from the CLATT problem considered in this
paper, the proposed U-iSAM can be applicable for a large
class of nonlinear estimation problems in robotics.

The remainder of the paper is organized as follows: In the
next section, after mathematically formulating the CLATT
problem, we explain the batch-MAP and the iSAM algo-
rithms used to solve this problem. In Section III we perform
the observability analysis for the batch-MAP-based CLATT
system and analytically show the nullspace of the Hessian
matrix. In Section IV we presents the proposed U-iSAM
algorithm which introduces a key projection operation when
computing the measurement Jacobians, and its performance
is validated through Monte-Carlo simulations in Section V.
Finally, Section VI outlines the main conclusions of this
work, as well as possible future research directions.

II. PROBLEM STATEMENT

Consider a typical CLATT scenario of a team of robots
moving in a plane and tracking multiple targets. Each of
the tracking robots is equipped with both proprioceptive
(e.g., an odometer) and exteroceptive (e.g., a laser scanner)
sensors. In contrast, the targets do not have such onboard
sensors, however, their motion is assumed to be a known
stochastic model. The tracking robots measure distance and
bearing measurements to the targets as well as the other
robots in the team. Note that in this scenario we do not
assume communication between robots, which, however, is
not a necessary assumption and can be easily integrated to
provide more measurement information. Using the available
proprioceptive and exteroceptive measurements, we aim to
estimate the state trajectory of both the robots and the targets.

The state vector of CLATT at time-step k contains all the
robots’ poses including positions and orientations, and the
targets’ kinematic states such as position and velocity, i.e.,

x(k) =
[
xT
R1

(k) . . . xT
RN

(k) xT
T1
(k) . . . xT

TM
(k)

]T (1)

wherexT
Ri

:= [pT
Ri

φRi
]T = [xRi

yRi
φRi

], i = 1, . . . , N ,
denotes theith robot’s pose (position and orientation); and

xT
Ti

:=

[
xTi

yTi
︸ ︷︷ ︸

pT
Ti

ẋTi
ẏTi

ẍTi
ÿTi

· · ·
︸ ︷︷ ︸

dT
Ti

]

, i = 1, . . . ,M , is

theith target’s kinematic states, including the target position,
pTi

, and the higher-order time derivatives of the target
position,dTi

. Hence, the state trajectory is given by stacking
all the states from time-step 0 tok, i.e.,

x(0 :k) =
[
xT (0) xT (1) · · · xT (k)

]T
(2)

A. Robot motion model

Each tracking robot is equipped with an odometer, whose
measurement serves as the control input to propagate the
robot pose based on the following motion model:

pRi
(k + 1) = pRi

(k) +C(φRi
(k)) RkpRi,k+1

(3)

φRi
(k + 1) = φRi

(k) + RkφRi,k+1
(4)

whereC(·) denotes the2 × 2 rotation matrix, andui(k) =
RkxRi,k+1

= [RkpT
Ri,k+1

RkφRi,k+1
]T is the true odometry

(control input), i.e., the robot’s motion between time-stepsk

andk+1, expressed with respect to the robot’s frame at time-
step k, {Rk}. The corresponding odometry measurement,
umi

(k), is commonly assumed to be corrupted by zero-
mean white Gaussian noise,wi(k) = ui(k) − umi

(k),
with covarianceQRi

(k). Clearly the above motion model is
nonlinear and can be written in the following generic form:

xRi
(k + 1) = f (xRi

(k),umi
(k) +wi(k)) (5)

Linearization of the above function at the current state
estimates yields the following Jacobians with respect to the
entire state trajectory and noise, respectively:1

FRi
(k) =

[
0 · · · −ΦRi

(k) I3 · · · 0
]

(6)

ΦRi
(k) =

[
I2 Γ (p̂Ri

(k + 1|k + 1)− p̂Ri
(k|k))

01×2 1

]

(7)

GRi
(k) =

[

C(φ̂Ri
(k|k)) 02×1

01×2 1

]

(8)

whereΓ :=

[
0 −1
1 0

]

.

Note that this model (3) and (4) isgeneral and en-
compasses all the motion models used in practice such as
unicycle and Ackerman models. In particular, if the unicycle
model is used, and we employ the approximation that the
velocity and heading are constant during each propagation
interval, we obtainRkxRi,k+1

= [vi(k)δt 0 ωi(k)δt]
T ,

whereui(k) = [vi(k) ωi(k)]
T are the linear and rotational

velocity, respectively, andδt is the sampling period. Substi-
tution in (3)-(4) yields the familiar propagation equations:

pRi
(k + 1) = pRi

(k) +

[
vi(k)δt cos(φRi

(k))
vi(k)δt sin(φRi

(k))

]

(9)

φRi
(k + 1) = φRi

(k) + ωi(k)δt (10)

B. Target motion model

We consider the case where each of the targets moves
randomly but assume that the stochastic model describing the
motion of the target (e.g., constant acceleration or constant
velocity) is known. In particular, the discrete-time state
propagation equation is given by the following linear form:

xTi
(k + 1) = ΦTi

(k)xTi
(k) +GTi

(k)wTi
(k) (11)

wherewTi
is zero-mean white Gaussian noise with covari-

anceQTi
. The state transition matrix,ΦTi

, and the process
noise Jacobian,GTi

, that appear in the preceding expression
depend on the motion model used [12]. We will make no
further assumptions on these matrices other than that their
values are known. Similarly, the “Jacobian” matrix of (11)
with respect to the state trajectory is given by:

FTi
(k) =

[
0 · · · −ΦTi

(k) Idim(xTi
) · · · 0

]
(12)

C. Measurement model

We consider the case where the tracking robots measure
distance and bearing to the targetsand the other robots
in the team. The corresponding measurement equations are
described in the following:

1Throughout this paper, the parenthesis(ℓ|j) refers to the estimate of a
quantity at time-stepℓ, after all measurements up to time-stepj have been
processed.̂x denotes the estimate of a random variablex, while x̃ = x−x̂ is
the error in this estimate. Finally,0m×n and1m×n denotem×n matrices
of zeros and ones, respectively, andIn is then× n identity matrix.
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1) Robot-to-robot measurements: At time-stepk robot i
measures distance and bearing to robotj, which is given by:

zRiRj
(k) = vij+

[ √
(xRj

(k)− xRi
(k))2 + (yRj

(k)− yRi
(k))2

atan2
(
(yRj

(k)− yRi
(k)), (xRj

(k)− xRi
(k))

)
− φRi

(k)

]

=: h
(
xRi

(k),xRj
(k)

)
+ vij (13)

wherevij is zero-mean Gaussian measurement noise with
covarianceRRij

. Linearization of (13) with respect to the
state trajectory yields the following Jacobian matrix:

HRij
(k) =

[
0 · · · HRi

(k) · · · HRj
(k) · · · 0

]
(14)

where HRi
(k) =






p̂T
Ri

(k|k)−p̂T
Rj

(k|k)

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||
0

(p̂T
Ri

(k|k)−p̂T
Rj

(k|k))ΓT

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||2
−1




 (15)

HRj
(k) =






p̂T
Rj

(k|k)−p̂T
Ri

(k|k)

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||
0

(p̂T
Rj

(k|k)−p̂T
Ri

(k|k))ΓT

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||2
0




 (16)

2) Robot-to-target measurements: Similarly, the robot-to-
target distance and bearing measurement at time-stepk is:

zRiTj
(k) = nij(k)+

[ √
(xTj

(k)− xRi
(k))2 + (yTj

(k)− yRi
(k))2

atan2
(
(yTj

(k)− yRi
(k)), (xTj

(k)− xRi
(k))

)
− φRi

(k)

]

=: h
(
xRi

(k),xTj
(k)

)
+ nij (17)

wherenij is zero-mean white Gaussian measurement noise
with covarianceRTij

. Analogously, the measurement Jaco-
bian of (17),HTij

, can be obtained by replacinĝpRj
in (14)

by p̂Tj
, and has the following sparse structure:

HTij
(k) =

[
0 · · · HRi

(k) · · · HTj
(k) · · · 0

]
(18)

D. Batch-MAP estimation

In particular, we aim to estimate the entire state trajectory
using all available information, which includes: (i) the prior
information about the initial state, described by a Gaussian
pdf with mean̂x(0|0) and covarianceP(0|0), (ii) the motion
information [see (3), (4), and (11)], and (iii) the sensor
measurements [see (13) and (17)]. To this end, the batch-
MAP estimator is often employed to determine the entire
trajectory estimatêx(0 : k|k) that maximizes the following
posterior pdf:

p (x(0 : k)|z(0 : k)) ∝ p (x(0)) × (19)
k−1∏

κ=0





N∏

i=1

p(xRi
(κ+ 1)|xRi

(κ))

M∏

j=1

p(xTj
(κ+ 1)|xTj

(κ))



 ×

k∏

κ=0




∏

{i,j}∈SR

p(zRiRj
(κ)|xRi

(κ),xRj
(κ)) ×

∏

{i,j}∈ST

p(zRiTj
(κ)|xRi

(κ),xTj
(κ))





wherez(0 : k) denotes all the sensor measurements available
in the time interval[0, k], SR := {i, j|i = 1, . . . , N ; j =
1, . . . , N}, andST := {i, j|i = 1, . . . , N ; j = 1, . . . ,M}. In

the above expression (19), we have used the fact that state
and measurement noise is independent and both the robot and
target motion is a Markov process [see (5) and (11)]. Using
the assumption of Gaussian noise, maximization of (19) is
equivalent to minimizing the following cost function:

c (x(0 : k)) :=
1

2
||x0 − x̂0|0||

2
P0|0

+ (20)

1

2

k−1∑

κ=0

N∑

i=1

||xRi
(κ+ 1)− f(xRi

(κ),umi
(κ))||2

Q̄Ri
(κ) +

1

2

k−1∑

κ=0

M∑

j=1

||xTj
(κ+ 1)−ΦTj

xTj
(κ)||2

Q̄Tj
(κ) +

1

2

k∑

κ=0

∑

{i,j}∈SR

||zRiRj
(κ)− h(xRi

(κ),xRj
(κ))||2RRij

(κ) +

1

2

k∑

κ=0

∑

{i,j}∈ST

||zRiTj
(κ)− h(xRi

(κ),xTj
(κ))||2RTij

(κ)

where Q̄Ri
:= GRi

QRi
GT

Ri
[see (5), (7), and (8)], and

Q̄Tj
:= GTj

QTj
GT

Tj
[see (11)]. In the above expressions,

we have also employed the notation,||a||2Σ := aTΣ−1a,
i.e., the squared Mahalanobis distance of residuala with
covarianceΣ.

This is a nonlinear least-squares problem [see (5), (13),
and (17)]. A standard iterative Newton-Raphson approach
is often used for its optimization, although it is only able to
converge to one local minimum within the basin of attraction
of the initial estimate. Specifically, at theℓ-th iteration, a
correction,δx(ℓ)(0 : k), to the current estimate,̂x(ℓ)(0 : k|k),
is computed by minimizing the second-order Taylor-series
approximation of (20):2

c (x̂(0 : k|k) + δx(0 : k)) ≃ (21)

c(x̂(0 : k|k)) + bbδx(0 : k) +
1

2
δxT (0 : k)Abδx(0 : k)

In the above equation, the Jacobian matrix ofc(·) with
respect tox(0 : k), b

(ℓ)
b , is computed and factorized as

follows:

bb = P−1
0|0 (x̂(0|k)−x̂(0|0)) +

k−1∑

κ=0

N∑

i=1

FT
Ri
(κ)Q̄−1

Ri
(κ) (x̂Ri

(κ+ 1|k)−f(x̂Ri
(κ|k),umi

(κ))) +

k−1∑

κ=0

M∑

i=1

FT
Ti
(κ)Q̄−1

Ti
(κ) (x̂Ti

(κ+ 1|k)−ΦTi
(κ)x̂Ti

(κ|k))+

k∑

κ=0

∑

{i,j}∈SR

H
(ℓ)T

Rij
(κ)R−1

Rij

(
zRiRj

(κ)−h(x̂Ri
(κ|k), x̂Rj

(κ|k))
)
+

k∑

κ=0

∑

{i,j}∈ST

H
(ℓ)T

Tij
(κ)R−1

Tij

(
zRiTj

(κ)−h(x̂Ri
(κ|k), x̂Tj

(κ|k))
)

=: JT r (22)

2Note that hereafter we occasionally drop the time and iteration indices
in order to make the presentation concise; these can be easily inferred from
the context.
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where

J :=




























P
− 1

2

0|0

...

Q̄
− 1

2

Ri
(κ)FRi

(κ)
...

Q̄
− 1

2

Ti
(κ)FTi

(κ)
...

R
− 1

2

Rij
(κ)HRij

(κ)
...

R
− 1

2

Tij
(κ)HTij

(κ)
...




























= Λ
























I
...

FRi
(κ)
...

FTi
(κ)
...

HRij
(κ)

...
HTij

(κ)
...
























(23)

r :=




























P
− 1

2

0|0 (x̂(0|k)− x̂(0|0))
...

Q̄
− 1

2

Ri
(κ) (x̂Ri

(κ+ 1|k)− f(x̂Ri
(κ|k),umi

(κ)))
...

Q̄
− 1

2

Ti
(κ) (x̂Ti

(κ+ 1|k)−ΦTi
(κ)x̂Ti

(κ|k))
...

R
− 1

2

Rij
(κ)

(
zRiRj

(κ)− h(x̂Ri
(κ|k), x̂Rj

(κ|k))
)

...

R
− 1

2

Tij
(κ)

(
zRiTj

(κ)− h(x̂Ri
(κ|k), x̂Tj

(κ|k))
)

...




























(24)

In the above expression (23),

Λ := Diag
(

P
− 1

2

0|0 , · · · , Q̄
− 1

2

Ri
(κ), · · · , Q̄

− 1
2

Ti
(κ), · · · ,R

− 1
2

Rij
(κ), · · · ,R

− 1
2

Tij
(κ), · · ·

)

for all κ, i, andj. On the other hand, during the commonly-
used Gauss-Newton iterations, the Hessian matrix,Ab, is
approximated by:

Ab = P−1
0|0 +

k−1∑

κ=0

N∑

i=1

FT
Ri
(κ)Q̄−1

Ri
(κ)FRi

(κ) +

k−1∑

κ=0

M∑

i=1

FT
Ti
(κ)Q̄−1

Ti
(κ)FTi

(κ)+

k∑

κ=0

∑

{i,j}∈SR

HT
Rij
(κ)R−1

Rij
(κ)HRij

(κ) +

k∑

κ=0

∑

{i,j}∈ST

HT
Tij
(κ)R−1

Tij
(κ)HTij

(κ)

=: JTJ (25)

This is a good approximation for small-residual prob-
lems [13]. Due to the sparse structure of the matrices,FRi

,
FTi

, HRij
, andHTij

[see (6), (12), (14), and (18)], the matrix
Ab is also sparse, which can be exploited to speed-up the
solution of the linearized system.

In particular, based on (22) and (25), it is not difficult to
show that minimization of (21) is equivalent to:

min
δx(0:k)

c(x̂(0 : k|k) + δx(0 : k)) ⇔

min
δx(0:k)

||Jδx(0 : k)− r||2 (26)

We employ QR factorization to solve (26), i.e.,

min
δx(0:k)

||Jδx(0 : k)− r||2 =
∣
∣
∣

∣
∣
∣Q

[
R

0

]

δx(0 : k)− r

∣
∣
∣

∣
∣
∣

2

=
∣
∣
∣

∣
∣
∣

[
R

0

]

δx(0 : k)−QT r

∣
∣
∣

∣
∣
∣

2

=:
∣
∣
∣

∣
∣
∣

[
R

0

]

δx(0 : k)−

[
d

e

] ∣
∣
∣

∣
∣
∣

2

⇔ min
δx(0:k)

||Rδx(0 : k)− d||2 (27)

where we have used the reduced QR ofJ [14], i.e.,

J = Q

[
R

0

]

=
[
Q1 Q2

]
[
R

0

]

= Q1R (28)

Onceδx(ℓ)(0 :k) is found, the new estimate is updated as:

x̂(ℓ+1)(0 : k|k) = x̂(ℓ)(0 : k|k) + δx(ℓ)(0 : k) (29)

Given an initial estimatêx(0)(0 : k|k) that resides within
the attraction basin of the global optimum, this iterative al-
gorithm computes the global minimum (i.e., MAP estimate)
for the entire state trajectory.

E. iSAM estimation

As the robots continue moving and tracking, new mea-
surements3, zRiTj

(k + 1) (or zRiRj
(k + 1)), sequentially

become available. In principle, we need to recompute the full
JacobianJ and solve the batch MAP problem from scratch.
However, this is an expensive operator, even by exploiting
the sparsity of the Hessian matrix [5], [8], [15]. To save
computations, we focus on the iSAM algorithm [7], which
reuses the previously-computed Jacobian andincrementally
updates the QR factorization directly.

In particular, we augmentJ (without recomputing it) with
the new measurement JacobianHTij

[see (28)]:

Ja :=

[

J

R
− 1

2

Tij
HTij

]

=

[
Q1 0

0 I

][

R

R
− 1

2

Tij
HTij

]

(30)

We now aim to decomposeJa into triangular form (i.e.,
square-root information matrix). SinceJ was already fac-
torized into the triangularR, we only need to zero out
the new block row, i.e., the new measurement Jacobian
HTij

, in order to obtain the updated square-root information
matrix Ra. This can be achieved efficiently, for example,
by using Givens QR [14]. Similarly, the corresponding
new vector,da, can be obtained by applying the same
Givens rotations to the augmented residual vector,da :=[

d

R
− 1

2

Tij

(
zRiTj

− h(x̂Ri
, x̂Tj

)
)

]

.

It is important to note that, although relinearization is
not needed at each time step when a new measurement
becomes available, in order to reduce the linearization er-
rors, we relinearize the system at the latest, and thus the
best, state estimates periodically [7] or as needed when the
linearization point significantly deviates from the current
state estimate [9]. In addition, we can combine variable
reordering [7] with this batch factorization to reduce fill-
in of the resulting triangular system [see (27)], which can
further speed up the subsequent incremental estimation.

3Note that the robot and target motion [see (5) and (11)] can beconsidered
as a different type of measurements and hence can be treated analogously.
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III. O BSERVABILITY ANALYSIS

In this section, we examine the parameter observability
properties [12] of the batch-MAP-based CLATT system,
which, for the time being, is considered as a parameter
(instead of state) estimation problem. The study of parameter
observability examines whether the information provided by
the available measurements is sufficient for estimating the
parameters without ambiguity. When parameter observability
holds, the Fisher information (Hessian) matrix is invertible.
Since the information matrix describes the information avail-
able in the measurements, by studying itsnullspace we can
gain insights about the directions in the parameter (state)
space along which information should be acquired.

In particular, the observability properties of the CLATT
system are based on the following lemma:

Lemma 3.1: The Hessian matrix of the batch-MAP-based
CLATT [see (25)] in the case of no prior at time-stepk, has
a nullspace of dimensionthree and is given by:4

Nb(k) = span
col.































...
...

I2 Γp̂Ri
(0|k)

0 1
...

...
I2 Γp̂Ri

(k|k)
0 1
...

...
I2 Γp̂Ti

(0|k)

0 (Idim(dTi
)/2 ⊗ Γ)d̂Ti

(0|k)
...

...
I2 Γp̂Ti

(k|k)

0 (Idim(dTi
)/2 ⊗ Γ)d̂Ti

(k|k)
...

...































(31)

where⊗ denotes the Kronecker product.
Proof: We assume a variable ordering of first all the

robot poses, then all the target states. This assumption is
employed only to simplify the notation, and does not affect
the results of the analysis, since the ordering of the variables
does not change the rank of the Hessian matrix. Based on the
structure of the Jacobians,FRi

(6), HRij
(14), HTij

(18),
it is easy to verify thatFRi

Nb = 0, HRij
Nb = 0, and

HTij
Nb = 0; while in provingFTi

Nb = 0 [see (12)], we

use the fact thatΦTi
and

(

Idim(xTi
)/2 ⊗ Γ

)

are commutative
(e.g., this can be seen from the constant-velocity motion
model (35) which is the most commonly used in practice).
These equalities immediately result in [see (23) and (25)]:
JNb = 0 ⇒ 0 = JTJNb = AbNb.

This result indicates that any small changes of the state
along the directions spanned by the columns ofNb(k) cannot
be discerned based on the available measurements. Similar
to [6], the first two columns ofNb(k) describe global
translations of the state, while the third one describes global

4Since we are interested in the information contained in the available
measurements, we consider the case without prior (i.e.,P0|0 → ∞). In
this case, the first block row of the matrixJ (23) corresponding to the prior
becomes zeros and can be ignored without changing the rank ofthe matrix.

rotations and high-order kinematic states (e.g., velocity). We
thus see that, without the use of prior information, the global
pose and high-order kinematic states cannot be determined.
On the other hand, when prior information is included (i.e.,
P(0|0) < ∞), the Hessian becomes full-rank [see (23)
and (25)], and thus it is possible to uniquely determine
estimates for all the state variables. These results agree with
our intuition, that based on relative measurements alone, the
state trajectory cannot be determined with respect to the
global frame of reference. Therefore, when designing a new
iSAM algorithm, we expect the estimator to have the similar
observability properties as the batch-MAP estimator.

IV. U NSCENTED ISAM

The unscented transformation is often used to reduce lin-
earization errors for many nonlinear estimation problems [3].
Hence, we expect the similar gain when using it in the
iSAM to compute the Jacobians, and thus the Hessian. On
the other hand, we also expect that the resulting Hessian
has similar observability properties as that of the batch-
MAP estimator, i.e., the nullspace has dimension three (see
Section III). However, this generally is not the case. When
numerically computing the dimension of the nullspace of
the Hessian, we find that it is three only for first few time
steps, and decreases quickly as more measurements become
available. This indicates that thenaive U-iSAM acquires
nonexistent information from the available measurements,
in the directions of the state space where no information is
actually available, such as the global position and orientation,
which degrades the performance.

To address the aforementioned issue, we explicitly en-
force the desired observability properties on the unscented
transformation. To this end, we first design a nullspace
for the Hessian matrix of the U-iSAM,N(k), that has
correct dimension three. Although ideally we would like to
have such a nullspace to be the one for the batch-MAP
estimator (31), this is not possible in the iSAM since it
uses thesmoothed state estimates (i.e.,̂x(ℓ|k) whereℓ < k,
that is, using the information from future measurements).
Instead, we choose the nullspace in the same form as that
of the batch-MAP estimator (31) but computed using the
propagated state estimates for all the times (i.e.,x̂(ℓ+1|ℓ)).

Once the desired nullspace,N(k), is determined, we are
now to find the appropriate Jacobians. In particular, we
compute the propagation Jacobians through the standard
unscented transformation. By construction, these propagation
Jacobians for both robots and targets, denoted byΦ(k),
will automatically satisfy the observability constraint,i.e.,
Φ(k)N(k) = 0. In contrast, the measurement Jacobians
(including the robot-to-robot measurement Jacobian and the
robot-to-target measurement Jacobian), denoted byH(k), is
designed to be the one closest to the true Jacobian while
satisfying the observability constraint, i.e.,

min
H(k)

||Ho −H(k)||2F (32)

subject to H(k)N(k) = 0 (33)
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where||·||F denotes the Frobenius norm, andHo is the ideal
measurement Jacobian evaluated at the true states. In prac-
tice, since the true states are unavailable, we instead compute
it using the standard unscented transformation. It is important
to point out that in order to save computations we should
exploit the structure of the measurement Jacobians (14)
and (18) and only consider the nonzero components of these
Jacobians in formulating the problem (32)-(33). To this end,
only the corresponding entries of the nullspaceN(k) are
used accordingly. The optimal,closed-form solution to the
problem (32)-(33) is based on the following lemma:

Lemma 4.1: The optimal solution to the minimization
problem (32) and (33) is given by:

H(k) = Ho

(
Idim(x) −N(NTN)−1NT

)
(34)

Proof: See Appendix I.
It is interesting to note that, sinceN in (34) is

the unobservable subspace (nullspace) at time-stepk,
(
Idim(x) −N(NTN)−1NT

)
is the subspace orthogonal to

N, i.e., the observable subspace at time-stepk. Hence, as
seen from (34), the measurement Jacobian,H(k), is the
projection of the most accurate measurement Jacobian onto
the observable subspace so that no spurious information is
acquired from the measurements.

V. SIMULATION RESULTS

A series of Monte-Carlo comparison studies were con-
ducted under various conditions using different types of
measurements in order to validate the proposed U-iSAM
algorithm. In the simulation tests, we consider the CLATT
scenario in which three robots randomly move in an area of
size 60 m× 60 m and track two targets. Fig. 1(a) shows an
example of trajectories of the robots and the targets, which
is obtained from one realization of the Monte-Carlo trials.

For the results presented in this section, three identical
robots with a simple differential drive model start from the
same place and move on a planar surface, at a constant linear
velocity of v = 0.5 m/sec, while the rotational velocity is
drawn from the uniform distribution over[−0.5, 0.5] rad/sec.
The standard deviation of the velocity measurement noise is
equal toσv = 2%v, while the rotational velocity measure-
ments are corrupted by noise with standard deviationσω = 1
deg/sec. On the other hand, we adopt a zero-acceleration
target motion model [12]:

ẋTi
(t) = FTi

xTi
(t) +GTi

wTi
(t) (35)

where

FTi
=







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






,GTi

=







0 0
0 0
1 0
0 1






,xTi

(t) =







xTi
(t)

yTi
(t)

ẋTi
(t)

ẏTi
(t)







andwTi
(t) =

[
wx(t) wy(t)

]T
is zero-mean, white Gaus-

sian noise with covarianceE
[
wTi

(t)wTi
(τ)T

]
= qI2δ(t −

τ), q = 0.01, andδ(t− τ) is the Dirac delta function. In our
implementation, we discretize the continuous-time system
model (35) with time step∆t = 1 sec. The initial true state
of the target isxTi

(0) = (−1)i
[
10 −10 −0.1 0.1

]T
,

TABLE I

ROBOT AND TARGET STATE ESTIMATION ERRORS

iSAM [7] U-iSAM MAP

Robot Position RMSE (m)

Robot 1: 2.1218 1.7019 1.4820

Robot 2: 2.0390 1.7583 1.4757

Robot 3: 1.4663 1.0338 0.8127

Robot Heading RMSE (rad)

Robot 1: 0.1282 0.0892 0.0602

Robot 2: 0.1315 0.1055 0.0737

Robot 3: 0.1339 0.0907 0.0603

Target Position RMSE (m)

Target 1: 2.8814 1.9731 0.8204

Target 2: 6.7421 3.8297 0.8245

Target Velocity RMSE (m/sec)

Target 1: 0.2172 0.1357 0.0314

Target 2: 0.2922 0.1751 0.0293

i = 1, 2, while the initial estimate of the target state is set to
x̂Ti

(0|0) ∼ N (xTi
(0),PTi

(0|0)), with the initial covariance
PTi

(0|0) = Diag(I2, 0.01I2).
While any type of measurements (e.g., range-and-bearing,

bearing-only, and range-only measurements) is applicable
for the proposed algorithm, we here consider the case with
significant nonlinearity, where each robot records distance
measurements to all other robots and targets. Note that
for simplicity we assume that each robot can observe all
others at every time step. However, this is not a necessary
assumption, as the analysis can easily be extended to the
case where multiple propagation steps occur between updates
(e.g., limited sensing range, or different sampling frequencies
between proprioceptive and exteroceptive sensors). In this
test, data association is also assumed to be known in order
to focus on comparing the estimation performance. The
standard deviation of the distance measurement noise is equal
to 3% of the actual distance.

100 Monte-Carlo simulations were performed, and three
estimators were compared: (i) the batch MAP, which is the
best that can be achieved in practice and serves as the
benchmark, (ii) the iSAM [7], and (iii) the proposed U-
iSAM. Note that both iSAMs relinearize and do a batch
update every 20 time steps. The comparison results are
shown in Fig. 1 and Table I. As expected, the batch MAP
achieves the best accuracy in terms of root mean squared
errors (RMSE). Most importantly, it becomes clear that the
proposed U-iSAM performs better than the standard iSAM.
This is attributed to the fact that the U-iSAM employs the
unscented transformation (statistical linearization) toimprove
the accuracy of linearization approximation, while ensuring
the correct observability properties so that no spurious in-
formation is gained from the available measurements (see
Section IV).
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Fig. 1. Monte-Carlo results for a CLATT scenario where threerobots move randomly inside a 60 m× 60 m arena and track two targets whose motion
follows a zero-acceleration model. Starting positions of the robots are marked by© and those of the targets by�. We show the estimation results only
for one robot and one target, while the results for the other robots and target are similar to the ones presented here.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have focused on the CLATT problem
which is of practical significance when a team of robots
operate in dynamic environments. In particular, we have
analytically shown that the nullspace of the Hessian (in-
formation) matrix of the batch-MAP-based CLATT in the
case of no prior, has dimension three. To ensure that the
proposed U-iSAM, which employs the unscented transforma-
tion to compute the Jacobians and thus the Hessian, has the
nullspace of the Hessian of correct dimensions, we project
the most accurate measurement Jacobians computed by the
standard unscented transformation onto the desired observ-
able subspace. The proposed approach has been extensively
tested in Monte-Carlo simulations and shown to perform
significantly better than the standard iSAM. In the future,
we plan to extend the analysis and algorithm to 3D.

APPENDIX I
PROOF OFLEMMA 4.1

The constraint (33) states that the rows ofH lie in the left
nullspace of the matrixN. Therefore, ifL is a matrix whose
rows span this nullspace, thenH can be written as:

H = ΘL (36)

whereΘ is the unknown matrix we seek to find. We note that
there are several possible ways of computing an appropriate
matrixL, whose rows lie in the nullspace ofN. For instance,
such a matrix is given, in closed form, by the expression:

L =
[
Im 0m×(n−m)

] (
In −N(NTN)−1NT

)
=: ΨΠ (37)

wheren is the dimension of the state andm is the dimension
of the measurement. It is not difficult to see thatΠ :=
In−N(NTN)−1NT is an orthogonal projection matrix (i.e.,
Π2 = Π andΠT = Π) and hence has the eigenvalues of
either 1 or 0, whose reduced SVD is given byΠ = UUT .
Using this result,LT immediately can be written asLT =
UUTΨT . By substituting this identity into the cost function,
we have:

min ||Ho −H||2F = ||UTΨTΘT −UTHo
T ||2F

⇒ Θ = HoU (ΨU)
−1 (38)

Therefore, substitution of the above equation in (36)
yields (34). This completes the proof.
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