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Abstract— In this paper, we study the problem of cooperative approximation [4]. Nevertheless, any (explicit or impjci
localization and target tracking (CLATT), i.e., a team of |inearization-based filtering approach, marginalizes tait

mobile robots use their onboard sensors’ measurements 10 {he oyrrent state and hence is unable to correct lineasizati
cooperatively track multiple moving targets, and propose a . . .
errors involving previous states.

novel unscented incremental smoothing and mapping (U-iISAM X i . .
approach. The proposed method attains reduced linearizasin For this reason, smoothing approaches, either in batch
errors by using the unscented transformation and correct  or incremental fashion, have become prevailing in robotics
observability properties by imposing observability constaints  (see [5]-[10] and references therein). In particular, albat
on the unscented transformation when computing measuremen \~vimim a posteriori (MAP) estimator [11] computes the
Jacobians. In particular, we, for the first time ever, analyz the . ; . .
observability properties of the batch maximum a posteriori estimates for the Sftates at all t'_me Steps.us'“g al_l availabl
(MAP)-based CLATT system, and show that in the case of Measurements. This allows continuous relinearizationrato
no prior, the Hessian (information) matrix has a nullspace ¢ all the states, which can greatly reduce the linearization
dimension three. However, this may not be the case when the errors. However, since the size of the state vector in the
Jacobians (and thus the Hessian) are computed numerically paich-MAP estimator increases continuously over time, the

through the unscented transformation. To ensure that the U- . d - ts b t0o hiah f
iSAM possesses correct observability (i.e., the nullspacef its processing and memory requirements become too high for

Hessian is of dimension three), we project the measurement r€al-time operation in large-scale problems (e.g., when a
Jacobians computed by the standard unscented transformatn ~ team of robots work for an extended period of time). To re-
onto the observable subspace. The proposed algorithm is duce the computational complexity of the batch approaeh, th
validated through extensive Monte-Carlo simulations. incremental smoothing and mapping (iSAM) algorithm [7]
. INTRODUCTION reduces computation by employing factorization-updating

When a team of mobile robots working in dynamic en_.rnethods which allow reusing the information-matrix faetor

vironments, it is necessary for the robots to simuItane;ous|Zatlon available from previous time steps. Computatibnal

determine their poses (positions and orientations) and t gma_ndlr_lg procedures, such as _relmegnzaﬂon and batch
kinematic states of moving objects (targets), such asipasit _actonzatlon, are only performed_ |nterm|_ttently. Whllbet .
and velocities. This is due to the fact that jointly estimgti 'SA.M was show_n to perform well in rqbot|c_ mapping a_ppll-
the robots and targets results in better accuracy for thetsbb cauon; [71, 't. still suffers frpm large I|ngar|zat|on ersoin
position estimates, as compared to localizing the robots ?ynamm e_nwronments, which degrade its performance, for
ignoring the targets [1]. This is the problem of cooperativ xample, in the CLATT problem under consideration.

localization and target tracking (CLATT), a typical norear In order to mitigate the negative impact due to linearizatio

o e : ... __errors, in this paper we introduce an unscented-iSAM (U-
estimation problem arising in many practical appllcatlong . :
such as surveillance [2]. In this paper, we study in-deptF?AM) algorithm for the CLATT problem. In particular, the

this CLATT problem and introduce a novel consistent increE)rOposed U-ISAM computes the Jacobians, and thus the

mental estimation algorithm. Eessu’;}m, byt appIyTIg thg unslc_:ente_d ttr_ansformauc:)sn, LVhICh
Although many different algorithms are available for as shown tfo greatly reduce linearization errors [3]. How-

solving the CLATT problem, among them the extende ver,_by pefrformlpg obsetr\_/abmty arlalélss, we f":ld :Ea; the
Kalman filter (EKF) remains a popular choice primarily due essian (information) ma rix computed numerically tnfoug
tge unscented transformation may have a nullspace that

to its relatively low processing requirements and its ea diff ¢ di . f that of th timal ¢
of implementation [1]. However, its performance depend as direrent dimensions irom that ot the op |_ma_(up 0
Inearization errors) batch-MAP estimator. This impliésit

on the magnitude of the linearization errors. In order t . . . T .
reduce the linearization errors, the unscented transfisma >PY"oUS (nonexistent) information is gained from the mea-
' surements, which can lead to estimation inconsistency (i.e

(statistical linearization) used by the unscented Kalmiger fi biased estimat q . difs i f e t
(UKF) [3] is appealing, which deterministically sample th lased estimates, and error covariance drirerent fromriee t
nonlinear model around the current state estimate and eff2 &' 'ance [12]) (see [6]). To ensure correct observahilit

ploys linear regression to improve the accuracy of the fineRoPertes of the proposed U_"SAM' we project the most
accurate measurement Jacobians computed by the unscented
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{gghuang]r obt r uax|kaess|j | eonard}@i t . edu Monte-Carlo simulations and show that it significantly out-



performs the standard iISAM algorithm. It should be pointedndk+1, expressed with respect to the robot's frame at time-
out that apart from the CLATT problem considered in thistep &, {Ry}. The corresponding odometry measurement,
paper, the proposed U-iISAM can be applicable for a large,,,(k), is commonly assumed to be corrupted by zero-
class of nonlinear estimation problems in robotics. mean white Gaussian noisey;(k) = u;(k) — up, (k),
The remainder of the paper is organized as follows: In theith covarianceQpg, (k). Clearly the above motion model is

next section, after mathematically formulating the CLATTnonlinear and can be written in the following generic form:
problem, we explain the batch-MAP and the iSAM algo- xpg, (k+1) = f (xpg, (k), um, (k) + w;(k)) )

rithms used to solve this problem. In Section Il we perfor

o . inearization of the above function at the current state
the observability analysis for the batch-MAP-based CLAT Lo gtimates yields the following Jacobians with respect & th

syste_zm and anglytlcally show the nullspace of the H_eSS| tire state trajectory and noise, respectively:
matrix. In Section IV we presents the proposed U-iSAM
algorithm which introduces a key projection operation when Fri(k) = [0 o —®g(F) Ty - 0} (6)
computing the measurement Jacobians, and its performancqu»(k) _ { I, T (pg,(k+1k+1)—pr,(klk)) @)
is validated through Monte-Carlo simulations in Section V. ' 012 1

Finally, Section VI oqtlines the main conqlusi(_)ns of this G (k) = C(J’Ri(k“f)) 051

work, as well as possible future research directions. Ri\lv) = 012 1

0 -1
[l. PROBLEM STATEMENT whereT :—

Consider a typical CLATT scenario of a team of robots \ote that 1thisomodel (3) and (4) igeneral and en-

moving in a plane and tracking multiple targets. Each ofgmpasses all the motion models used in practice such as
the tracking robots is equipped with both proprioceptivghicycle and Ackerman models. In particular, if the unieycl
(e.g., an odometer) and exteroceptive (€.9., a laser sanNg,qe| is used, and we employ the approximation that the

sensors. In contrast, t_he target; do not have such onbo ocity and heading are constant during each propagation
sensors, however, their motion is assumed to be a kno"ﬁ‘&erval we obtainfrxp = [w(k)6t 0 w(k)st]T
1 ik+1 2 K2 1

stochastic model. The tracking robots measure distance a\%ereu-(k) = [vi(k) w;(k)]T are the linear and rotational

bearing measurements to the targets as well as the otfigcity, respectively, andt is the sampling period. Substi-

robots in the tea_m. _Note that in this scena_\rio we do n%tion in (3)-(4) yields the familiar propagation equation
assume communication between robots, which, however, is vs(k)St cos(ém, (k)

not a necessary assumption and can be easily integrated to pg,(k+ 1) = pr, (k) + vi(k)5t sin(ém, (k) 9)
provide more measurement information. Using the available ! !
proprioceptive and exteroceptive measurements, we aim to ¢r,(k +1) = ¢r, (k) + wi(k)ot (10)
estimate the state trajectory of both the robots and thetsrg B. Target motion model

The state vector of CLATT at time-step k contains all the \yu consider the case where each of the targets moves
robots’,p(_)ses including positions and orientations, ar@l tfyanqomiy but assume that the stochastic model describing th
targets’ kinematic states such as position and velocgy, i. otion of the target (e.g., constant acceleration or consta

x(k) =[x}, (k) ... xf (k) xp (k) ... x:?M(k:)}T (1) velocity) is known. In particular, the discrete-time state

(8)

Wherexgi — [pgi or)T = [xr, yr, ¢r)i=1,...,N, propagation equation is given by the following linear form:
denotes theth robot’s pose (position and orientation); and ~ x7,(k + 1) = ®1,(k)xr, (k) + G1, (k)wr, (k) (1)

r |y Troyn Troynoccc) 1 Mo wherewr, is zero-mean white Gaussian noise with covari-
Xr, = pé ar =L ML IS anceQr,. The state transition matrix@,, and the process

theith target's kinematic states, including the target positio Noise JacobiarG,, that appear in the preceding expression
pr,, and the higher-order time derivatives of the targefepend on the motion model used [12]. We will make no
position,dr,. Hence, the state trajectory is given by stackingurther assumptions on these matrices other than that their

all the states from time-step 0 fg i.e., values are known. Similarly, the “Jacobian” matrix of (11)
with respect to the state trajectory is given by:
x(0:k) = [xT(0) xT(1) --- kaT 2
( ) [ ( ) ( ) ( )} (2 ]:Ti(k) — [0 —@Ti(k) Idim(le.) 0] (12)

A. Robot motion model C. Measurement model

Each tracking robot is equipped With an odometer, whose We consider the case where the tracking robots measure
measurement serves as the cpntrol |r_1put to propagate t(lj"’igtance and bearing to the targeisd the other robots
robot pose based on the following motion model: in the team. The corresponding measurement equations are

pr,(k+1) =pg, (k) + C(¢r, (k) ®pr,,., (3) described in the following:

R
PR, (k + 1) = OR; (k) + k¢Ri,k+l (4) IThroughout this paper, the parentheéi$j) refers to the estimate of a
WhereC(-) denotes the x 2 rotation matrix, and;i(k) _ quantity at time-steg, after gll measurements up to time_z-stjahave bqen
Re  RenT Ry T is th d processedz denotes the estimate of a random variablevhile = z—z is
XRi 41 — [ pRi,,C+1 ¢Ri,k+1] IS the true odometry the error in this estimate. Finall@,,, x, and1,, x,, denotem x n matrices
(control input), i.e., the robot’s motion between timepsté  of zeros and ones, respectively, ahdis then x n identity matrix.



1) Robot-to-robot measurements: At time-stepk roboti the above expression (19), we have used the fact that state
measures distance and bearing to rohathich is given by: and measurement noise is independent and both the robot and
E) = v target motion is a Markov process [see (5) and (11)]. Using
ZRiRj( ) - VZ]+ . . . . . . .
— 5 - Bk the assumption of Gaussian noise, maximization of (19) is
V(g (k) —r,(k)? + (yr,; (F) = yr( } equivalent to minimizing the following cost function:
atan2 ((yr, (k) — yr. (%)), (zr, (k) — 2R, (k))) — o, (k)

1 "
= h (XR(IC) XR(k)) + Vij (13) C(X(O : k)) = §||X0 — XO‘OHQPO\O + (20)
Wherev” is zero-mean Gaussian measurement noise with k-1 ~

covarianceR ;. Linearization of (13) with respect to the ~ ZZ lIxg, (k 4+ 1) — f(xr, (K), um, (“))HQQR.(»:) +

state trajectory yields the following Jacobian matrix: k=0 i=1 ‘
k 1 M

Hp, (k) =1[0 - HR(k) -+ Hg,(k) -+ 0] (14) ZZHXT (k+1)

i, (k[k) =BT (K|K) T

= @11, (0, )+

K= 0] 1
||pR CRENEDI
where Hpg, (k) = | .r T (15)
z (0%, 4110, (KT 1 Z 5 2
6%, (IR B, FIOIP =, () = Bx (%), %8, (5Dl R, ) F
j i - K= 0{1 J}ESR

Bk, (klk)—pF, (k)
6%, (I~ (IR

2
o oot Goyer | @8 3 Z > llzrer, () = B, (5), x2, (), o)
6%, (FIR)—B%, (KR ey
2) Robot-to-target measurements. Similarly, the robot-to- Where Qr, = G{} Qr, G, [see (5), (7), and (8)], and
target distance and bearing measurement at time#sisp Qr, = G1,Qr, G, [see (11)] In the above expressmns
) — o (K we have also employed the notatidia||% = a’ = 1a,
zr1; (k) = ni; (k) + e., the squared Mahalanobis distance of residuatith
V@1, (k) — 2, (K)? + (yr, (k) — yr, (k) } covariancex.
atan2 ((yr, (k) — yr, (k)), (z1, (k) — 2R, (k))) — ¢, (k) This is anonlinear least-squares problem [see (5), (13),
=:h (xg, (k),xz,(k)) + ny; a7) _and @an]. A star_ldard _ite_rati\_/e Newton-Rep_hson approach
wheren;; is zero-mean white Gaussian measurement noi&d Often used for its optimization, although it is only abde t
with covélrianceRT Analogously, the measurement Jacoconverge to one local minimum within the basin of attraction
bian of (17),Hr.. can be obtamed, by replaciffig; in (14) of the initial estimate. Specifically, at theth iteration, a
by pr., and has the following sparse structure: correctionx( (0 : k), to the current estimat&®) (0 : k[k),
’ is computed by minimizing the second-order Taylor-series
Mr,(k)=[0 -~ Hg(k) -~ Hg(k) -~ 0] (18) approximation of (20%:

D. Batch-MAP estimation c(%(0 : k|k) + 0x(0 : k) ~ (21)

Hpg, (k) =

In particular, we aim to estimate the entire state trajgctor 1.,
using all available information, which includes: (i) theiqur ~ ¢(X(0 : k[k)) +bpox(0 : k) + 6% (0 : k) Apdx(0 : k)
information about the initial state, described by a Gamssia\n the above equation, the Jacobian matrix «6f) with

pdf with meanx(0/0) and covarianc®(0|0), (ii) the motion ) o - :

information [see (3), (4), and (11)], and (iii) the sensor][eﬁloect tox(0 : k), b, is computed and factorized as
measurements [see (13) and (17)]. To this end, the batch- WS-
MAP estimator is often employed to determine the entire,, = o|o( %(0[k)—%(0[0)) +

trajectory estimatek(0 : k|k) that maximizes the following ,_; »

posterior pdf: SN FR(8) (Rp, (& + 1|k) = £ (&R, (K]k), upm, (K))) +
p(x(0:k)|z(0:k)) x p(x(0)) X (19) : (1)le

[T o, (5 + Dlxr, () T ] oz (5 + Dlxr, () =0 i=1

i=1 j=1

Ii:f |:N M ] . SOS Fh) Rz, (5 + 1[k) = @, (1) %2, (5]k)) +

b Z 3 HY (WRE. (2r,8, (5)~h(&n, (k1K) %r, (5]}))) +
11 [ II p(za.s, (5)xg,(5), x5, (k) x = O{zg}esR
s S S MO U0OR: (2, ()~ b, (<18). e, (418))
H szT |XR( )XT7(R))] i‘O{lJ}GST
(ij}esr = J"r (22)

wherez(0 : k) denotes all the sensor measurements availabl
( ) ezNote that hereafter we occasionally drop the time and i@raindices

in the time interval[0, k], Sk == {i,jli = 1,...,N:j = i1 order to make the presentation concise; these can bg éafsitred from
N} andSy :={i,jli=1,...,N;j=1,...,M}. In  the context.



where We employ QR factorization to solve (26), i.e.,

i -3 ] . 1Y a2 R A 2
Pag L min - [|30x(0: k)~ r]]? = HQ[ }5){(0 k) —r
o : T oy 4P
Qi (9)Fr () i) = || [5] a0 are|[ = || [§] xo:0- [] |
. i . -~ 2
L : & 6)13(%3@) [|ROx(0: k) — d| (27)
5| @ (’f.)sz(“) A FTf(“) (23) Where we have used the reduced QRIdfL4], i.e.,
: : R R
R (o) )| |7l s-afg] -l @lff]-er e
: » :( ) Oncedx¥)(0:k) is found, the new estimate is updated as:
AR
Ry (k)Mo (k) " D0 : klk) = KO0 : k|k) +0xO0: k) (29)
: R Given an initial estimatex(®)(0 : k|k) that resides within

the attraction basin of the global optimum, this iteratike a
gorithm computes the global minimum (i.e., MAP estimate)

P, (2(0]k) — %(0]0)) for the entire state trajectory.
' E. iSAM estimation
Qp/ (1) (Rr,(k + k) — £(Xg, (K[k), um, (£))) As the robots continue moving and tracking, new mea-
: surement§ zg, 7, (k + 1) (or zg,r,(k + 1)), sequentially
5~ . o become available. In principle, we need to recompute tHe ful
: (k+ 1|k) — @1, k
ri= Qr’ (%) (e (v + 1] _) 7. (%)% (w[k)) (24) JacobianJ and solve the batch MAP problem from scratch.
. : However, this is an expensive operator, even by exploiting
Ry’ (k) (2r,R, (k) — h(XR, (5|k), X, (5]k))) the sparsity of the Hessian matrix [5], [8], [15]. To save
: computations, we focus on the iISAM algorithm [7], which
-1 . L. reuses the previously-computed Jacobian amodementally
Ry} (k) (a7 (5) = B, (5IF), %1, (x]R)) updates the QR factorization directly.
i ' | In particular, we augmern (without recomputing it) with

. the new measurement Jacobifn, . [see (28)]:
In the above expression (23), !

_1 __1 _ 1 _1 _1 J. = J Ql 0 _11:{ (30)
A= Ding (Pyd . Quf(0) QpF (0) - R (0). - Ry () “T R | T L0 1) R,

for all , i, andj. On the other hand, during the commonly-We now aim to decomposg, into triangular form (i.e.,
used Gauss-Newton iterations, the Hessian matkiy, is Sduare-root information matrix). Sinck was already fac-

approximated by: torized into the triangula[R, we only need to zero out
the new block row, i.e., the new measurement Jacobian
Ay = Pg‘é + Hr,,, in order to obtain the updated square-root information
k-1 N k-1 M matrix R,. This can be achieved efficiently, for example,
SN Fh(R)QRNE) Fr (k) + > Y FL (k) k)Fr(k)+ by using Givens QR [14]. Similarly, the corresponding
®=0i=1 #=0 i=1 new vector,d,, can be obtained by applying the same
f ; ) )
Givens rotations to the augmented residual veaflyr,:=
> D Hi +Z Y Hifw (k) Hr,, (k) d ol
K=0{i,j}€Sr }=0 {i,j} €Sz o _
= J7J (25) RT; (ZR'LTj - h(meij ))

It is important to note that, although relinearization is
This is a good approximation for small-residual probnot needed at each time step when a new measurement
lems [13]. Due to the sparse structure of the matridés,, becomes available, in order to reduce the linearization er-
Fr,, Hr,;, andHr,; [see (6), (12), (14), and (18)], the matrix rors, we relinearize the system at the latest, and thus the
A, is also sparse, which can be exploited to speed-up thest, state estimates periodically [7] or as needed when the

solution of the linearized system. linearization point significantly deviates from the cuiren
In particular, based on (22) and (25), it is not difficult tostate estimate [9]. In addition, we can combine variable
show that minimization of (21) is equivalent to: reordering [7] with this batch factorization to reduce fill-
in of the resulting triangular system [see (27)], which can
5}13(13% c(X(0: klk) +0x(0: k)) < further speed up the subsequent incremental estimation.
5)1(1(1111 [[Tox(0 : k) — |2 (26) 3Note that the robot and target motion [see (5) and (11)] cazohsidered

as a different type of measurements and hence can be trezémyausly.



I1l. OBSERVABILITY ANALYSIS rotations and high-order kinematic states (e.g., velpcitye

In this section, we examine the parameter observabilifjus see that, without the use of prior information, the glob
properties [12] of the batch-MAP-based CLATT systemPOS€ and high-order k|nema_t|c _states c_ann_ot .be determlned.
which, for the time being, is considered as a paramet&n the other hand, when prior information is included (i.e.,
(instead of state) estimation problem. The study of parametP’(0/0) < oc), the Hessian becomes full-rank [see (23)
observability examines whether the information providgd ba@nd (25)], and thus it is possible to uniquely determine
the available measurements is sufficient for estimating tHStimates for all the state variables. These results agitae w
parameters without ambiguity. When parameter obserwabiliOUr intuition, that based on relative measurements aldwee, t
holds, the Fisher information (Hessian) matrix is inveeib State trajectory cannot be determined with respect to the
Since the information matrix describes the informationilava 9/obal frame of reference. Therefore, when designing a new
able in the measurements, by studyingritélspace we can 1SAM alg(_)_rlthm, we expect the estimator to haye the similar
gain insights about the directions in the parameter (stat@Pservability properties as the batch-MAP estimator.
space along which information should be acquired.

In particular, the observability properties of the CLATT IV. 'UNSCENTED SAM
system are based on the following lemma: The unscented transformation is often used to reduce lin-

Lemma 3.1: The Hessian matrix of the batch-MAP-baseckarization errors for many nonlinear estimation problesis |
CLATT [see (25)] in the case of no prior at time-stephas  Hence, we expect the similar gain when using it in the
a nullspace of dimensiotiree and is given by" iSAM to compute the Jacobians, and thus the Hessian. On

. . i the other hand, we also expect that the resulting Hessian
1'2 Ff)R,.(O|k) has simi_lar obs_ervability properties as .that qf the batch-
0 | MAP estimator, i.e., the nullspace has dimension three (see
Section IIl). However, this generally is not the case. When
: : numerically computing the dimension of the nullspace of
I, T'br, (k[k) the Hessian, we find that it is three only for first few time
0 1 steps, and decreases quickly as more measurements become
N, (k) = span | : : (31) available. This indicates that theaive U-iISAM acquires
col |, THr, (0|k) nonexisf[ent_information from the available measurements,
0 (Tgim(dy /2 ® T)dr, (0[k) in the d|rect_|ons of the state space whe_r(_e no |nforn_1at|on is
. o actually available, such as the global position and orteria
: : which degrades the performance.
L I'pr, (W‘?)A To address the aforementioned issue, we explicitly en-
0 (Taim(dr,)/2 @ T)dr, (k) force the desired observability properties on the unscente
: transformation. To this end, we first design a nullspace

) for the Hessian matrix of the U-iISAMN(k), that has

where® denotes the Kronecker product. ) ) A .
Proof. We assume a variable ordering of first all thecorrect dimension three. Although ideally we would like to
' ve such a nullspace to be the one for the batch-MAP

robot poses, then all the target states. This assumption'l1&" e . . , ) .
employed only to simplify the notation, and does not affecgStimator (31), this is not possnb!e n the iISAM since it
the results of the analysis, since the ordering of the viegab uses_thesmpothed st.ate esumates (i.ex({|k) where! < £,

does not change the rank of the Hessian matrix. Based on i@t i, using the information from future measurements).

structure of the Jacobiangr, (6), Hp, (14), Hr.. (18) Instead, we choose the nullspace in the same form as that
it is easy to verify that]—‘Ryl\}b ~ 0 ;”ZR Nz') _'0 ang ©f the batch-MAP estimator (31) but computed using the
i 1 ig - 1

4. Ny — 0; while in proving F. N, — 0 [see (12)], we propagated state estimates for all the times (i.&(£+ 1|¢)).

the fact thab d(1 r ati Once the desired nullspack(k), is determined, we are
usethefac 7; an ( dim(xr,)/2 © 1 ) @I€ COMMUIAIVE 0 14 fing the appropriate Jacobians. In particular, we

(e.g., this can be seen from the constant-velocity motiogympyte the propagation Jacobians through the standard
model (35) which is the most commonly used in practice)ynscented transformation. By construction, these prdjmga
These equalities gnmedlately result in [see (23) and (25)}acobians for both robots and targets, denoteddy),
ING =0=0=J INp = AN, B il automatically satisfy the observability constrairie.,

This result indicates that any small changes of the Sta$(k)N(k) — 0. In contrast. the measurement Jacobians

along the directions spanned by the columnBgfk) cannot  (incjyding the robot-to-robot measurement Jacobian aad th
be discerned based on the available measurements. Sim ot-to-target measurement Jacobian), denoteBIby), is

to [6], the first two columns ofN, (k) describe global gegjgned to be the one closest to the true Jacobian while
translations of the state, while the third one describebajlo satisfying the observability constraint, i.e.,

4Since we are interested in the information contained in tailable min ||H0 _ H(k)||% (32)
measurements, we consider the case without prior ®g;9 — oo). In H(k)
this case, the first block row of the matrik(23) corresponding to the prior . N
becomes zeros and can be ignored without changing the rathle ahatrix. subject to H(k)N(k) =0 (33)



TABLE |

where||-|| » denotes the Frobenius norm, aHd is the ideal ROBOT AND TARGET STATE ESTIMATION ERRORS

measurement Jacobian evaluated at the true states. In prac-
tice, since the true states are unavailable, we instead wgmp

it using the standard unscented transformation. It is itt@mbr SAM U-SAM MAP

to point out that in order to save computations we should Robot Position RMSE (m)

exploit the structure of the measurement Jacobians (14) Robot1:  2.1218 1.7019 1.4820
and (18) and only consider the nonzero components of these Robot 2: 2.0390 1.7583 1.4757
Jacobians in formulating the problem (32)-(33). To this,end  ropot 31 1.4663 1.0338 0.8127

only the corresponding entries of the nullspasék) are

used accordingly. The optimat]osed-form solution to the Robot Heading RMSE (rad)

problem (32)-(33) is based on the following lemma: Robot 1:  0.1282 0.0892 0.0602

Lemma 4.1: The optimal solution to the minimization Robot 2:  0.1315 0.1055 0.0737

problem (32) and (33) is given by: Robot 3:  0.1339 0.0907 0.0603
H(k) = H, (Tgimx) — N(N'N)~INT) (34) Target Position RMSE (m)

Proof: See Appendix I. ] Target 1:  2.8814 1.9731 0.8204

It is interesting to note that, sincéN in (34) is Target 2:  6.7421 3.8297 0.8245

the unobservable subspace (nullspace) at time-siep
(Liim(x) — N(NTN)~*N7) is the subspace orthogonal to
N, i.e., the observable subspace at time-stefHence, as Target 1 0.2172 0.1357 0.0314
seen from (34), the measurement JacobHiik), is the Target 2:  0.2922 0.1751 0.0293
projection of the most accurate measurement Jacobian onto
the observable subspace so that no spurious information is
acquired from the measurements.

Target Velocity RMSE (m/sec)

i = 1,2, while the initial estimate of the target state is set to

V. SIMULATION RESULTS %7,(0]0) ~ N (x7,(0), Pr,(0]0)), with the initial covariance

A seri ¢ Monte-Carl . wdi Pr,(0/0) = Diag(I>, 0.01L,).

q ct:cfner? dgr aor'noe:c, 2;2 d.ctgor?]ga”:%n Sdf:cf::nz’vfreegon' While any type of measurements (e.g., range-and-bearing,
u u variou tions using i ype earing-only, and range-only measurements) is applicable

measurements in order to validate the proposed U-iSA ; . .

algorithm. In the simulation tests, we consider the CLAT or the proposed algorithm, we here consider the case with
9 : ' sjgnificant nonlinearity, where each robot records distanc

2?2?280”:2 Vgg'i: ;Tg?r;(éﬁotficﬁg:joergyQovf(;; zﬂo?/;gz easurements to all other robots and targets. Note that
gets. Hg. or simplicity we assume that each robot can observe all

example of trajectories of the robots and the targets, whic hers at every time step. However, this is not a necessary

is obtained from one realization of the Monte-Carlo trials. . . .
sumption, as the analysis can easily be extended to the

a
For the results presented in this section, three identicgg . .

. . . . . ' se where multiple propagation steps occur between update

robots with a simple differential drive model start from the, ple propag P P

. (e.g., limited sensing range, or different sampling frevpies
same place and move on a planar surface, at a constant lin 3? een proprioceptive and exteroceptive sensors). & thi
velocity of v = 0.5 m/sec, while the rotational velocity is

q , th i distributi 0.5. 0.5 rad/ test, data association is also assumed to be known in order
TLawnt rodm dzun_l E[)_rm .::Sﬂ:' u I(I)n (_)tvér— -5,0.5] ra tsec_. to focus on comparing the estimation performance. The

€ standard ceviation ot the velocily measurement NOISE {g, ,yarq deviation of the distance measurement noise i equ
equal too, = 2%v, while the rotational velocity measure-

. : i to 3% of the actual distance.
ments are corrupted by noise with standard deviatipr= 1 . .
. 100 Monte-Carlo simulations were performed, and three
deg/sec. On the other hand, we adopt a zero-acceleratior. o S
. i estimators were compared: (i) the batch MAP, which is the
target motion model [12]:

best that can be achieved in practice and serves as the

xr,(t) = Fr,xr, (t) + Gr,wr, (1) (35)  benchmark, (i) the iSAM [7], and (iii) the proposed U-
where iISAM. Note that both iISAMs relinearize and do a batch
0010 0 0 o () update_eve_ry 20 time steps. The comparison results are
00 0 1 0 0 ny(t) shown in Fig. 1 and Table I. As expected, the batch MAP
Fr, = 00 0 0 G, = 1 ol Xm (t) = fo (t) achieves the best accuracy in terms of root mean squared
00 0 0 0 1 y'T:(t) errors (RMSE). Most importantly, it becomes clear that the

’ proposed U-iSAM performs better than the standard iISAM.
andwr, (t) = [w.(t) wy(t)]" is zero-mean, white Gaus- This is attributed to the fact that the U-iSAM employs the
sian noise with covarianck (wr, (t)wr, (T)T} = ¢I26(t —  unscented transformation (statistical linearizatioripiprove
7), ¢ = 0.01, andé(t — 7) is the Dirac delta function. In our the accuracy of linearization approximation, while ensgri
implementation, we discretize the continuous-time systeiihe correct observability properties so that no spurious in
model (35) with time step\t = 1 sec. The initial true state formation is gained from the available measurements (see
of the target isx7,(0) = (—=1)" [10 —10 —0.1 O.l]T, Section 1V).
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Fig. 1. Monte-Carlo results for a CLATT scenario where threleots move randomly inside a 60 m 60 m arena and track two targets whose motion
follows a zero-acceleration model. Starting positionshef tobots are marked hy) and those of the targets liy. We show the estimation results only

for one robot and one target, while the results for the otbbpts and target are similar to the ones presented here.
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