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Abstract— In this paper, we present a robust method for
detecting multiple balls without using color information. The
method builds upon the boosted Haar classifier approach
introduced by Viola et al. [11] and is applied onto an image from
a catadioptric camera without performing rectification of the
image. We compare the method with one based on a classical
color segmentation approach. Originally both methods have
been developed for the participation on the 2012 ”SICK robot
day”, an international robotics competition. The task was to
collect balls with a robot and put them into dedicated perches
within a certain amount of time. Both methods showed to be
robust during the competition. Our team placed second out of
fifteen contenders.

I. INTRODUCTION

Real-time detection of dynamic objects is still an in-
teresting research topic in the field of robotics. Many
robotics competitions involve object detection tasks, like the
RoboCup, ELROB, US FIRST, or FIRA RoboSot1. Often
objects like balls are labeled with a specific signal color,
since it is challenging to implement algorithms that are inde-
pendent of color information. While still popular, the goal is
to move away from color labeling and use objects of arbitrary
color, which enlarges the field of application of the used
methods. In the ”SICK robot day”, an international robotics
competition, white balls have been introduced. Methods for
detecting ball objects without color information have been
presented by Hanek et al. [5] or Treptow et al. [10] within the
context of the RoboCup robotics competition. Both methods
share the assumption, that there is only a single ball to detect.
They use particle filters or other tracking approaches that
follow a single object in the image and fail once more objects
are introduced. In this paper we present a method based on
the approach by Viola et al. [11] which is able to detect
multiple balls in real-time. The method does not rely on color
information and has proven to be robust against different
lighting conditions. Since it works without any tracking, it
can be used in a highly dynamic environment with non linear
motion.

We successfully applied the method in one run of the
”SICK robot day”.

Although the detection via the Viola-Jones approach is not
rotationally invariant by default, we were able to apply it on
the raw image of a catadioptric camera without performing a
cylindrical or spherical projection, like it is done e.g. in [3],
[6] or [9]. This way we enabled real-time processing without

1RoboCup: www.robocup.org, ELROB: www.elrob.org, US FIRST:
www.usfirst.org, FIRA RoboSot: www.fira.net/?mid=robosot

Fig. 1. Our robot picking up a ball during the robotics competition.

the need of additional graphical hardware. To our knowledge
this is the first time the classifier by Viola et al. is utilized
in this manner.

The remainder of this paper is organized as follows: In
Section II we describe the 2012 SICK robot day robotics
competition. Section III gives details of our experimental
setup. The ball detection approaches that we implemented
are explained in Section IV. In Section V the experimental
results of both methods are presented and discussed. We
conclude our paper in Section VI.

II. SICK ROBOT DAY COMPETITION

The ”SICK Robot Day” is an international robotics com-
petition for research teams organized by the sensor company
SICK AG. It takes place in Waldkirch, Germany every two
years. Each time a new task is introduced. In 2012, the
challenge was to collect rubber balls with a single robot
and put them into a dedicated perch. 15 teams participated
by designing and programming an autonomous mobile robot
dedicated to fulfill the task. The indoor competition featured
a circular arena with a diameter of approx. 20 m, which was
filled with 87 balls of three different colors, 29 green, 29
yellow and 29 white ones. The balls had a diameter of 18 cm.
Each team participated in two 10 minute runs: During one
run, three teams competed simultaneously with their robot,
each being assigned to a specific ball color drawn by lot.
Starting at a home perch, which was marked with the team’s
ball color, the robot could earn one point by dropping a ball
with the assigned color into the perch, or lose one point



instead for dropping a ball of a different color.
While it is common to use a color segmentation to detect

balls in such competitions, like in the RoboCup, here a
difficulty arose to detect the white balls. They do not contain
color information which one could use to distinguish them
from parts in the camera image that are less colored as well.
Brightness alone is insufficient for detection, due to lighting
changes and shadows of the balls. Sun glares and reflection
of sunlight from the large windows at the arena also appear as
white spots in the camera image. We therefore implemented
a method for detection of white balls comprising shape
information, and compared the method with a classical color
segmentation approach.

III. EXPERIMENTAL SETUP

A. Robot Setup
The experiments were accomplished using two custom

built robots that were former used as soccer players in the
RoboCup. They feature a triangular basis with holonomic
drive using three Swedish wheels, a ball kicking device, and
a gripper to pick up balls, especially designed for partici-
pating at the SICK robot day. The robots are equipped with
two laser rangefinders, one SICK S300 and one LMS100.
They allow the robots to scan almost all of the arena. An
omnidirectional camera is mounted on top of the robot,
looking upwards against a hyperbolic mirror. The camera
itself is an AVT Marlin with a resolution of 780×580 pixels,
working at a frame rate of 15 Hz. It is featured by a modified
driver which allows us to directly work with YUV-422 images
(8 bits per channel). All of the application code for the task
runs on an onboard Mini-ITX computer featuring an Intel
Core 2 Duo with a processing speed of 2.53 GHz and 2 GB
of RAM. We budgeted one core for image processing, the
other core was needed for the remaining modules such as
localization and path planning.

B. Datasets
During the time working on the challenge 37 log files

were captured. They were recorded in several indoor places,
so the algorithms properties could be trained and tested
under changing environments. For training the Viola/Jones
approach nine log files were used to create patches containing
white balls. One log file was taken directly during the SICK
robot day from within the original arena, containing 866
images. Data from this file was used as validation set in
our experiments presented in section V. This way we could
examine the performance of both approaches under real
competition conditions, and demonstrate the robustness of
the detectors when run in a new environment.

IV. DETECTION METHODS

The following section describes the implemented methods
to detect the balls within the camera image. A typical image
is shown in Figure 2. This section is split in two parts:
First we explain our implementation of the classical color
segmentation approach. In the second part we describe how
we applied the object detection framework by Viola et al.
[11] to the problem.

Fig. 2. Typical image from the catadioptric camera.

A. The Color Segmentation Approach
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Fig. 3. Image processing pipeline of the color segmentation approach.

Our first approach relies on many readily-available meth-
ods, e.g. on the OpenCV graphics library [1]. Figure 3
displays the general pipeline which is used to process the
images. For each color of interest, there exists a binary
image to which every positively tested pixel position is
written. After generating the binary images, they are filtered
to remove speckles from noise while keeping regions of inter-
est. These remaining regions are found using the cvBlobLib
library [7]. The library determines the connected regions, or
blobs, in each binary image and returns their contour. On
these contours we apply a Randomized Hough Transform
[12] to detect circular shapes. Every shape which can be
approximated with a circle is considered a ball and put to
the results. The remaining blobs are discarded.

1) Color Segmentation: Each color segmentation requires
defined color ranges or discrete values within a color space.
We chose YUV as color space, since the camera provided
YUV images, saving time consuming image conversions.



Color values could either be ignored or picked. We sampled
colors from the training set described in section III-B for
each ball color and defined all colors within a radius of 15
within the color space as ball color. These colors are stored
in a lookup table to speed up the query process during the
segmentation.

2) Morphological Filtering: With assuming a ball size of
at least four pixels within the image, we remove noise by
applying morphological filters to the binary images. Omitting
this step would slow down the entire detection, since too
many regions in the image would be further examined by
the following detection steps. The operators that are used on
the images are the open and the close operator given by the
OpenCV framework.

3) Blob Detection: In the next step connected regions are
found on the filtered binary images. It is implemented using
the cvBlobLib, which returns a list of polygons for each
region. A typical segmented image can be seen in figure 4.

Fig. 4. Blob extraction using OpenCV.

4) Randomized Hough Transform: The extracted blobs
are examined regarding the shape using the Randomized
Hough Transform (RHT) [12]. The balls appear circular in
the image, therefore blobs that are not recognized as circular
by the RHT are rejected and not further processed. Since
there are many balls, they often occlude each other, and
several balls appear as one single blob. This is why we chose
the RHT over other common methods like RANSAC [4],
since it can detect multiple circles (see figure 5).

Fig. 5. Detection of occluding balls.

Every time circles are merged, the position and radius of
the already existing one are corrected. Let ~cnew and rnew
be the new calculated center and radius while ~cold, rold are
already known and ~cfound, rfound are corresponding to a
new estimated circle.
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Besides correcting the position, the circle is voted to be
more important by counting the times it was merged with
newer circles. Meaning that it is very likely that there actually
is a circle at this position. Depending on the times triples are
sampled, it is possible to define a minimum amount of votes,
so a circle is accepted to be valid. If there is no valid circle
no clear circular shape could be estimated.

5) Final Evaluation: We perform a final test on the
remaining regions of interest to remove false positives. Pixels
with the color of interest given by the lookup table are
counted within the circle. After that the amount of these
pixels was put in relation to the estimated area of the circle.
Objects with a ratio of the desired color below a given
threshold are rejected.

B. The Boosted Haar Classifier Cascade Approach

To overcome the problem of lacking color information
and exploiting the shape features of a ball in the camera
image, we implemented a detector based on the approach
by Viola et al. [11]. It uses Haar wavelets as basic visual
features, shown in figure 7. They capture information of
intensity differences of neighboring regions in a grayscale
image, which we directly get from the camera using the Y
component of the YUV image. The Haar features are scalable



and can be evaluated quickly, utilizing an Integral Image.
Originally designed for face detection, it makes use of a
training database consisting of face and non-face images.
Viola et al. apply AdaBoost on the database, a supervised
machine learning algorithm, which selects a set of Haar
features to distinguish between faces and non-faces. The so
trained classifier can then be used to detect faces in an image
by applying it on a subwindow, which is moved across the
image line by line and in multiple scales.

Image Input

Grayscale Image

Viola-Jones Detection

Color Evalutation of 

found Objects

Result Output

Color Image

Fig. 6. Image processing pipeline of the Haar classifier approach.

Fig. 7. The four used types of Haar features (from [11]).

Fig. 8. Example image patches used for training the classifier.

To speed up the detection process, a so called Attentional
Cascade is introduced [11]. A cascaded classifier is built
from a series of classifiers, acting as a degenerated decision
tree: Starting with the first classifier from the cascade,

reject reject

accept

reject

true true true

false false false

image 
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Fig. 9. Structure of the attentional cascade.

the succeeding classifier is only evaluated if the preceding
classifier has not rejected the image (see figure 9). This way
an image can quickly be scanned for candidate regions of
a face with a fast but unspecific classifier, and subsequently
examined on the remaining candidate regions by more and
more sophisticated classifiers.

Depending on the training set, the Haar classifier method
can be used to detect arbitrary objects, which has been
shown to work with soccer balls [10] and in a former SICK
robot day competition with numbered signs [8]. Due to
their rectangular shape, Haar features may seem unsuitable
for detecting circles. However, since they can be evaluated
rapidly, many of them can be used to approximate round
shapes.

Compared to RoboCup [10], we experienced the given
scenario to be more challenging in two aspects: First, com-
pared to a soccer ball, the white balls showed no texture
at all (see fig. 2), second, there were multiple balls in the
arena, whereas in [10] it was assumed that there is only one
soccer ball on the field. This assumption allowed the use of
a particle filter, which speeded up the detection and could
compensate wrong classifications of the cascade.

We created a training set based on log files recorded with
our robot (see also section III-B). For the non-ball images we
simply cropped random patches out of an image series, which
we recorded during a robot run through an arena without
balls. The ball images were semi-automatically extracted
using the differential image method: While the robot was not
moving, single balls were rolled through the arena. These
could be distinguished from the non moving background.
After that the patches were reviewed, and false detections
were removed. The final training set contained 2569 ball
images and 10000 non-ball images. Example images are
shown in figure 8. During training the cascade layers, we
applied the bootstrapping technique from [11], i.e. we refined
the training set after training one layer in two steps: First
we removed all images that are rejected by the cascade that
has been trained so far. In the second step, we applied the
currently trained cascade on the image series from the run
through the empty arena, and refilled the non-ball set with
patches that pass the cascade, therefore being false positives
which still need to be rejected by the succeeding layers.
This way we maintained a large non-ball training set of
10000 images. For each cascade layer we set the detection
rate to 0.97 and the false positive rate to 0.4. We trained
until the cascade did not find enough false positives to refill
the training set, which yielded a cascade consisting of 14
classifier layers, the first layer using 3 and the last using 300



features.
1) Reducing the Search Space: Despite the speed im-

provement from the attentional cascade, the approach by
Viola et al. is slow compared to color segmentation. To
achieve real-time performance, we made several adaptions,
which resulted in an efficient detector. First we applied a
fixed mask to the image from the catadioptric camera, i.e.
we examined only the parts of the image that actually con-
tained visual information. Second we considered the possible
locations of balls in the image. They fully cover the masked
region, and balls also appear in different sizes, which usually
leads to the need of scanning the image several times with
differently scaled Haar classifiers. However, since all balls lie
on the ground during the competition, the size of a ball in the
image functionally depends on its position within the image.
The function is found by calibration, and helps to reduce the
search space by one dimension. With these improvements we
could reduce the number of image subwindows that need to
be examined from originally 822,417 down to 97,576.

Fig. 10. The image from the catadioptric camera is subdivided into four
quadrants, each scanned with a classifier specific for the respective ball
orientations.

2) Handling Different Orientations: The Haar classifier
is scalable, but not invariant to rotation, neither in plane nor
out of plane. Since balls are round, one could think this is
not an issue, but due to shading and shadows of the ball its
image has an orientation. The top is always brighter than the
bottom. This makes it necessary to regard orientation when
designing the detector. In our case, images are taken from a
catadioptric camera (see figure 2). Therefore the balls appear
in every possible orientation. Many works exist, where the
image is unwrapped using a spherical or cylindrical transfor-
mation, such that objects appear upright and allow detection
using a Haar based classifier ([3], [6], [9]). In order to save
computational time, we omit unwrapping the image, and find
the variously oriented balls directly on the raw image.

To detect all orientations with a Haar classifier approach,
one can train many classifiers for different orientations and
apply them all onto the image. This was done e.g. in [2]. The
drawback is that now the image is scanned multiple times

with n detectors, therefore being n times slower than with a
single one.

Another approach is to train one classifier with all possible
orientations in the training set. This is possible if the objects
remain similar in different orientations, as it is in our case.
We therefore trained a classifier with balls of all orientations.
This led to a working but slow classifier, because it learned
a huge set of features (3954 features in the first ten cascade
layers), which were needed to circumscribe the positive set
within the feature space.

However, there is also a functional dependence of orien-
tation and position in the image. Since the balls cast their
shadows to the ground, these shadows always appear directed
towards the center of the image (see figure 2). In the same
manner the brighter part is directed away from the center.
Therefore, the idea is to train a set of rotational specific
detectors, and apply on each area only the detector which
is specific for that orientation. We compromised this idea to
train a classifier specific to all orientations that appear in the
upper left quadrant of the image, and created the detectors
for the remaining 3 quadrants by mirroring the features of
the trained one. During the extraction of balls for the training
we also mirrored the ball patches, that were not cropped out
of the upper left quadrant of the camera image, such that all
balls appear being extracted from the upper left quadrant.

With this technique we came up with a set of faster
classifiers, that together cover the whole area, being split in
four quadrants (see figure 10). While the first ten layers of
the rotational invariant detector consisted of 3954 features,
we reduced this number to 1116 for each rotational specific
detector, without having the overhead of applying multiple
detectors one each subwindow of the image.

3) Constant Time Approach: Because of the nature of
the attentional cascade, the time for evaluating a camera
image is not constant. It increases with the number of balls
as well as with objects that appear similar to balls, since
all these objects will pass the lower layers of the cascade
and will trigger the evaluation of the more complex layers.
This could lead to time lags where camera frames will be
skipped, which is critical during the competition. To ensure
that the algorithm runs in real-time, we implemented a time-
out such that the algorithm stops scanning after a fixed time
has passed, and started the scan close to the center of the
image, effectively searching for balls close to the robot first.
If the algorithm is stopped, it is likely to return a list of balls
which are nearby. This was sufficient for the task during the
”SICK robot day” competition, since within the rules it is a
good strategy to pick up balls close to the robot, especially
if it is holonomic like in our case.

4) Color Evaluation of Found Objects: After detection
of the balls, we added a final stage to the whole classifier
which labels the balls according to their different color, since
it is crucial for the task to pick up the balls with the right
color. After passing the final layer of the cascade detector,
the remaining patches are examined using the full YUV
image from the camera and the lookup table described in
the first approach. This way we could separate white balls



TABLE I
DETECTION PERFORMANCE OF THE COLOR SEGMENTATION AND

VIOLA-JONES APPROACH. THE FIRST TWO VALUES ARE RELATIVE TO

THE TOTAL NUMBER OF TRUE BALLS IN THE TEST SET.

Color Segmentation Viola-Jones

true positives in % 51.1 63.0
false negatives in % 48.9 37.0
false positives per frame 1.73 0.45

from yellow balls, since they appear similar in the grayscale
image.

V. EXPERIMENTAL RESULTS

We evaluated the performance of both approaches as well
as their computation time by using the ground truth dataset
described in section III-B.

A. Detection Performance

The performance of the detectors was evaluated in the
following way: Each ball is either correctly detected (true
positive) or missed (false negative). Detections that do not
coincide to a ball are counted as false positives. Hereby
we say that a detection coincides with a ball if and only
if the intersection of both bounding boxes covers at least
one fourth of each individual bounding box. This is because
the bounding boxes returned by the detectors usually differ
from the manually drawn boxes slightly in position and size.
The results are listed in table I.

While the detection rate of both methods may seem low
to the reader, one has to consider that due to the catadioptric
system the balls appear small in the image, even at distances
of 1 m. Many images also contained motion blur. Therefore
distant balls in blurred images were almost unrecognizable
even for humans. This fact was tolerable for the competition,
since it was important to find balls nearby.

B. Computation Time

We measured the computational time of both methods by
running them on a single core of our robot (Core 2 Duo,
2.53 GHz, 2 GB RAM) without any other job running at the
same time. For evaluating the Viola/Jones approach we did
not use the constant time approach.

The color segmentation approach took 16.5 ms on average
per frame, with a standard deviation of 4.2 ms, while the Haar
based approach took 39.3 ms, with a standard deviation of
14.8 ms.

VI. CONCLUSIONS

We implemented and compared two methods for detecting
multiple balls in a dynamic scenario. The classical approach
showed to be fast and worked sufficiently for balls with a
distinguishable color. For white balls our method based on
a Haar classifier outperforms the classical approach. With
this method our robot was able to detect white balls in
real-time. Still it leaves enough computational resources for
other processes that run on the mobile robot. This method

is also transferable to other objects, since it is based on a
machine learning approach that can be trained with arbitrary
objects. While the Viola-Jones framework has already been
applied on omnidirectional image data, we showed that it
can work directly on unwrapped images. Assuming objects
to be upright in a rectified image, it implies that these objects
appear in a radial orientation within the unwrapped image,
and therefore our technique can be applied.

For future work it would be interesting to further pursue
the handling of in plane rotation, as it usually appears
in images taken from omnidirectional cameras. One could
arrange a set of eight detectors specific for each octant easily
by rotating all features of a classifier in addition to mirroring.
An even finer grading could be accomplished by performing
several training rounds, each time with a training set of
balls being rotated on plane towards a given orientation.
While consuming more training time and disk space for all
detectors, it will not increase processing time as still only
one detector is applied onto a certain region in the image.
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