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Abstract— We present an approach for recognizing all objects
in a scene and estimating their full pose from an accurate
3D instance-aware semantic reconstruction using an RGB-D
camera. Our framework couples convolutional neural networks
(CNNs) and a state-of-the-art dense Simultaneous Localisation
and Mapping (SLAM) system, ElasticFusion, to achieve both
high-quality semantic reconstruction as well as robust 6D pose
estimation for relevant objects. While the main trend in CNN-
based 6D pose estimation has been to infer object’s position
and orientation from single views of the scene, our approach
explores performing pose estimation from multiple viewpoints,
under the conjecture that combining multiple predictions can
improve the robustness of an object detection system. The
resulting system is capable of producing high-quality object-
aware semantic reconstructions of room-sized environments,
as well as accurately detecting objects and their 6D poses.
The developed method has been verified through experimental
validation on the YCB-Video dataset and a newly collected
warehouse object dataset. Experimental results confirmed that
the proposed system achieves improvements over state-of-
the-art methods in terms of surface reconstruction and ob-
ject pose prediction. Our code and video are available at
https://sites.google.com/view/object-rpe.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a cru-
cial enabling technology for autonomous warehouse robots.
With the increasing availability of RGB-D sensors, research
on visual SLAM has made giant strides in development
[1], [2], [3]. These approaches achieve dense surface re-
construction of complex and arbitrary indoor scenes while
maintaining real-time performance through implementations
on highly parallelized hardware. However, the purely geo-
metric map of the environment produced by classical SLAM
systems is not sufficient to enable robots to operate safely and
effectively in warehouse applications with a high demand on
flexibility. For instance, automated picking and manipulation
of boxes and other types of goods requires information about
the position and orientation of objects. The inclusion of rich
semantic information and 6D poses of object instances within
a dense map is required to help robots better understand
their surroundings, to avoid undesirable contacts with the
environment and to accurately grasp selected objects.

Beyond classical SLAM systems which solely provide a
purely geometric map, the idea of a system that generates
a dense map in which object instances are semantically
annotated has attracted substantial interest in the research
community [4], [5], [6], [7]. Semantic 3D maps are important
for robotic scene understanding, planning and interaction. In
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the case of automated warehouse picking, providing accurate
object poses together with semantic information are crucial
for robots that have to manipulate the objects around them
in diverse ways.

To obtain the 6D pose of objects, many approaches were
introduced in the past [8], [9], [10]. However, because of
the complexity of object shapes, measurement noise and
presence of occlusions, these approaches are not robust
enough in real applications. Recent work has attempted to
leverage the power of deep CNNs to solve this nontrivial
problem [11], [12], [13]. These techniques demonstrate a
significant improvement of the accuracy of 6D object pose
estimation on some popular datasets such as YCB-Video or
LineMOD. Even so, due to the limitation of single-view-
based pose estimation, the existing solutions generally do
not perform well in cluttered environments and under large
occlusions.

In this work, we develop a system for 6D objects pose
estimation that benefits from the use of our accurate intance-
aware semantic mapping system and from combining mul-
tiple predictions. Intuitively, by combining pose predictions
from multiple camera views, the accuracy of the estimated
3D object pose can be improved. Based on this, our frame-
work deploys simultaneously a 3D mapping algorithm to
reconstruct a semantic model of the environment, and an
incremental 6D object pose recovering algorithm that carries
out predictions using the reconstructed model. We demon-
strate that we can exploit multiple viewpoints around the
same object to achieve robust and stable 6D pose estimation
in the presence of heavy clutter and occlusion.

Our main contribution is, therefore, a method that can
be used to accurately predict the pose of objects under
partial occlusion. We demonstrate that by integrating deep
learning-based pose prediction into our semantic mapping
system we are able to address the challenges posed by
missing information due to clutter, self-occlusions, and bad
reflections.

II. RELATED WORK

In recent years, CNN architectures have been extended
to the object pose estimation task [11], [12], [13]. Sin-
gleShotPose [12] simultaneously detects an object in an RGB
image and predicts its 6D pose without requiring multiple
stages or having to examine multiple hypotheses. It is end-
to-end trainable and only needs the 3D bounding box of
the object shape for training. This method is able to deal
with textureless objects, however, it fails to estimate object
poses under large occlusions. To handle occlusions better, the
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Fig. 1: Overview of the proposed system.

PoseCNN architecture [11] employs semantic labeling which
provides richer information about the objects. PoseCNN
recovers the 3D translation of an object by localizing its
center in the image and estimating the 3D center distance
from the camera. The 3D rotation of the object is esti-
mated by regressing convolutional features to a quaternion
representation. In addition, in order to handle symmetric
objects, the authors introduce ShapeMatch-Loss, a new loss
function that focuses on matching the 3D shape of an object.
The results show that this loss function produces superior
estimation for objects with shape symmetries. However, this
approach requires Iterative Closest Point (ICP) for refinement
which is prohibitively slow for real-time applications. To
solve this problem, Wang et al. proposed DenseFusion [13]
which is approximately 200x faster than PoseCNN-ICP and
outperforms previous approaches in two datasets, YCB-
Video and LineMOD. The key technique of DenseFusion
is that it extracts features from the color and depth images
and fuses RGB values and point clouds at the per-pixel level.
This per-pixel fusion scheme enables the model to explicitly
reason about the local appearance and geometry information,
which is essential to handle occlusions between objects. In
addition, an end-to-end iterative pose refinement procedure is
proposed to further improve pose estimation while achieving
near real-time inference. Although DenseFusion has achieved
impressive results, like other single-view-based methods it
suffers significantly from the ambiguity of object appearance
and occlusions in cluttered scenes, which are very common
in practice. In addition, since DenseFusion relies on segmen-
tation results for pose prediction, its accuracy highly depends
on the performance of the segmentation framework used. As
in pose estimation networks, if the input to a segmentation
network contains an occluder, the occlusion significantly
influences the network output. In this paper, while exploiting
the advantages of the DenseFusion framework, we replace
its segmentation network by our semantic mapping system
that provides a high-quality segmentation mask for each
instance. We address the problem of the ambiguity of object
appearance and occlusion by combining predictions using
RGB-D images from multiple viewpoints.

III. METHODOLOGY

Our pipeline is composed of four main components as
illustrated in Fig. 1. Input data is processed through a

segmentation network followed by a registration stage. Using
the estimated sensor pose, the dense 3D geometry of the
map or model is updated by fusing the points labeled in the
fusion stage. The last component is 6D object pose estimator
that output the pose of objects by combining predictions
from single-view-based predictions. In the following, we
summarise the key elements of our method.

Segmentation: The network takes in RGB images (only
keyframes) and extracts instance masks labeled with object
class, which serve as input to the subsequent registration and
fusion stages.

Registration: Estimate camera poses within the Elastic-
Fusion pipeline using a joint cost function that combine the
cost functions of geometric and photometric estimates in a
weighted sum.

Data Fusion: Our map representation is an unordered
list of surfels similar to [3]. The surfel map is updated by
merging the newly available RGB-D frame into the existing
models. In addition, segmentation information is fused into
the map using our instance-based semantic fusion scheme.
To improve segmentation accuracy, misclassified regions are
corrected by two criteria which rely on a sequence of CNN
predictions.

Object Pose Estimation: First, we employ DenseFusion
that operates on object instances from single views to pre-
dict object poses. Instead of using depth and color frames
captured by the camera, we use the surfel-splatted predicted
depth map and the color image of the model from the
previous pose estimate for DenseFusion. The predicted poses
are then used as a measurement update in a Kalman filter to
achieve optimal 6D pose of objects.

A. Instace-aware Semantic Mapping

Segmentation: We employ an end-to-end CNN frame-
work, Mask R-CNN [14] for generating a high-quality
segmentation mask for each instance. Mask R-CNN has
three outputs for each candidate object, a class label, a
bounding box offset, and a mask. Its procedure consists
of two stages. In the first stage, candidate object bounding
boxes are proposed by a Region Proposal Network (RPN).
In the second stage, classification, bounding-boxregression,
and mask prediction are performed in parallel oneach small
feature map, which is extracted by RoIPool. Note that to
speed up inference and improve accuracy the mask branch
is applied to the highest scoring 100 detection boxes after
running the box prediction. The mask branch predicts a
binary mask from each RoI using an FCN architecture [15].
The binary mask is a single m×m output regardless of class,
which is generated by binarizing the floating-number mask
or soft mask at a threshold of 0.5.

Registration: Similar to ElasticFusion, our approach aims
to estimate a sensor pose that minimizes the cost over a com-
bination of the global point-plane energy and photometric
error. We wish to minimize a joint optimization objective:

Ecombined = Eicp + ωErgb (1)



(a) frame 66 (b) Ground truth (c) Mask R-CNN (d) Object-RPE

(e) frame 1916 (f) Ground truth (g) Mask R-CNN (h) Object-RPE

Fig. 2: Examples of masks generated by Mask R-CNN and produced by reprojecting the current scene model.

where Eicp and ωErgb are the geometric and photometric
error terms respectively.

Data association: Given an RGB-D frame at time step t,
each mask M from Mask R-CNN must be corresponded to
an instance in the 3D map. Otherwise, it will be assigned as
a new instance. To find the corresponding instance, we use
the tracked camera pose and existing instances in the map
built at time step t− 1 to predict binary masks via splatted
rendering. The percent overlap between the mask M and
a predicted mask M̂ for object instance o is computed as

U(M, M̂) =
M ∩ M̂
M̂

. Then the mask M is mapped to object

instance o which has the predicted mask M̂ with largest
overlap, where U(M, M̂) > 0.3.

To efficiently store class probabilities, we propose to
assign an object instance label o to each surfel and then
this label is associated with a discrete probability distribution
over potential class labels, P (Lo = li) over the set of class
labels, li ∈ L. In consequence, we need only one probability
vector for all surfels belonging to the same object entity.
This makes a big difference when the number of surfels
is much larger than the number of classes. To update the
class probability distribution, means of a recursive Bayesian
update is used in [16]. However, this scheme often results in
an overly confident class probability distribution that contains
scores unsuitable for ranking in object detection [6]. In order
to make the distribution become more even, we update the
class probability by simple averaging:

P (li|I1,..,t) =
1

t

t∑
j=1

(pj |It) (2)

Moreover, previous related works miss the back-
ground/object probability from the binary mask branch that
predicts which pixels correspond to the main classes (non-
background), and which pixels correspond to the back-
ground. Conversely, we enrich segmentation information
on each surfel by adding the probability to account for
background/object predictions. To that end, each surfel in
our 3D map has a non-background probability attribute po.

As presented in [14] the binary mask branch first generates
a m×m floating-number mask which is then resized to the
RoI size, and binarized at a threshold of 0.5. Therefore, we
are able to extract a per-pixel non-background probability
map with the same image size 480×640. Given the RGB-D
frame at time step t, a non-background probability po(It)
is assigned to each pixel. Camera tracking and the 3D back
projection introduced in section enables us to update all the
surfels with the corresponding probability as following:

po =
1

t

t∑
j=1

pj(It) (3)

Segmentation Improvement: Despite the power and
flexibility of Mask R-CNN, it usually misclassified object
boundary regions as background. In other words, the detailed
structures of an object are often lost or smoothed. Thus, there
is still much room for improvement in segmentation. We
observe that many of the pixels in the misclassified regions
have non-background probability just slightly smaller than
0.5, while the soft probabilities mask for real background
pixel is often far below the threshold. Based on this obser-
vation, we expect to achieve a more accurate object-aware se-
mantic scene reconstruction by considering non-background
probability of surfels within a n frames sequence. With this
goal, each possible surfel s (0.4 < po < 0.5) is associated
with a confidence ϑ(s). If a surfel is identified for the first
time, its associated confidence is initialized to zero. Then,
when a new frame arrives, we increment the confidence
ϑ(s) ← ϑ(s) + 1 only if the corresponding pixel of that
surfel satisfies 2 criteria: (i) its non-background probability
is greater than 0.4; (ii) there is at least one object pixel inside
its 6-neighborhood. After n frames, if the confidence ϑ(s)
exceeds the threshold σobject, we assign surfel s to the closest
instance. Otherwise, ϑ(s) is reset to zero. Here, we found
n = 10 and σobject = 10 provide good performance.

B. Multi-view Object Pose Estimation

Given an RGB-D frame sequence, the task of 6D object
pose estimation is to estimate the rigid transformation from



the object coordinate system O to a global coordinate system
G. We assume that the 3D model of the object is available
and the object coordinate system is defined in the 3D space of
the model. The rigid transformation consists of a 3D rotation
R(ω, ϕ, ψ) and a 3D translation T (X,Y, Z). The translation
T is the coordinate of the origin of O in the global coordinate
frame G, and R specifies the rotation angles around the X-
axis, Y-axis, and Z-axis of the object coordinate system O.

Our approach outputs the object poses with respect to
the global coordinate system by combining predictions from
different viewpoints. For each frame at time t, we apply
DenseFusion to masks back-projected from the current 3D
map. The estimated object poses are then transferred to the
global coordinate system G and serve as measurement inputs
for an extended Kalman filter (EKF) based pose update stage.

Single-view based prediction: In order to estimate the
pose of each object in the scene from single views, we
apply DenseFusion to masks back-projected from the current
3D map. The network architecture and hyperparameters
are similar as introduced in the original paper [13]. The
image embedding network consists of a ResNet-18 encoder
followed by 4 up-sampling layers as a decoder. The PointNet
architecture is a multi-layer perceptron (MLP) followed by
an average-pooling reduction function. The iterative pose
refinement module consists of 4 fully connected layers that
directly output the pose residual from the global dense
feature. For each object instance mask, a 3D point cloud is
computed from the predicted model depth pixels and an RGB
image region is cropped by the bounding box of the mask
from the predicted model color image. First, the image crop
is fed into a fully convolutional network and then each pixel
is mapped to a color feature embedding. For the point cloud,
a PointNet-like architecture is utilized to extract geometric
features. Having generated features, the next step combines
both embeddings and outputs the estimation of the 6D pose
of the object using a pixel-wise fusion network. Finally, the
pose estimation results are improved by a neural network-
based iterative refinement module. A key distinction between
our approach and DenseFusion is that instead of directly
operating on masks from the segmentation network, we use
predicted 2D masks that are obtained by reprojecting the
current scene model. As illustrated in Fig. 2 our semantic
mapping system leads to an improvement in the 2D instance
labeling over the baseline single frame predictions generated
by Mask R-CNN. As a result, we expect that our object pose
estimation method benefits from the use of the more accurate
segmentation results.

Object pose update: For each frame at time t, the
estimates obtained by DenseFusion and camera motions from
the registration stage are used to compute the pose of each
object instance with respect to the global coordinate system
G. The pose is then used as a measurement update in a
Kalman filter to estimate an optimal 6D pose of the object.
Since we assume that the measured scene is static over the
reconstruction period, the object’s motion model is constant.
The state vector of the EKF combines the estimates of

translation and rotation:

x = [X Y Z φ ϕ ψ]> (4)

Let xt be the state at time t, x̂−t denote the predicted state
estimate and P−t denote predicted error covariance at time t
given the knowledge of the process and measurement at the
end of step t− 1, and let x̂t be the updated state estimate at
time t given the pose estimated by DenseFusion zt. The EKF
consists of two stages prediction and measurement update
(correction) as follows.

Prediction:

x̂−t = x̂t−1 (5)

P−t = Pt−1 (6)

Measurement update:

x̂t = x̂−t ⊕Kt(zt 	 x̂−t ) (7)

Kt = P−t (Rt + P−t )−1 (8)

Pt = (I6×6 −Kt)P
−
t (9)

Here, 	 and ⊕ are the pose composition operators. Kt is
the Kalman gain update. The 6×6 matrix Rt is measurement
noise covariance, computed as:

Rt = µI6×6 (10)

where µ is the average distance of all segmented object
points from the corresponding 3D model points transformed
according to the estimated pose.

IV. EXPERIMENTS

We evaluated our system on the YCB-Video [11] dataset
and on a newly collected warehouse object dataset. The
YCB-Video dataset was split into 80 videos for training and
the remaining 12 videos for testing. For the warehouse object
dataset, the system was trained on 15 videos and tested on
the other 5 videos. Our experiments are aimed at evaluating
both surface reconstruction and 6D object pose estimation
accuracy. A comparison against the most closely related
works is also performed here.

For all tests, we ran our system on a standard desk-
top PC running 64-bit Ubuntu 16.04 Linux with an Intel
Core i7-4770K 3.5GHz and a nVidia GeForce GTX 1080
Ti 6GB GPU. Our pipeline is implemented in C++ with
CUDA for RGB-D image registration. The Mask R-CNN
and DenseFusion codes are based on the publicly available
implementations by Matterport1 and Wang2. In all of the
presented experimental setups, results are generated from
RGB-D video with a resolution of 640x480 pixels. The
DenseFusion networks were trained for 200 epochs with a
batchsize of 8. Adam [17] was used as the optimizer with
learning rate set to 0.0001.

1https://github.com/matterport/Mask_RCNN
2https://github.com/j96w/DenseFusion

https://github.com/matterport/Mask_RCNN
https://github.com/j96w/DenseFusion
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Fig. 3: The set of 11 objects in the warehouse object dataset.

(a) (b) (c)

Fig. 4: We collected a dataset for the evaluation of recon-
struction and pose estimation systems in a typical warehouse
using (a) a hand-held ASUS Xtion PRO LIVE sensor.
Calibration parameters were found by using (b) a chessboard
and (c) reflective markers detected by the motion capture
system.

A. The Warehouse Object Dataset

Unlike scenes recorded in the YCB-Video dataset or other
publicly available datasets, warehouse environments pose
more complex problems, including low illumination inside
shelves, low-texture and symmetric objects, clutter, and oc-
clusions. To advance warehouse application of robotics as
well as to thoroughly evaluate our method, we collected
an RGB-D video dataset of 11 objects as shown Fig. 3,
which is focused on the challenges in detecting warehouse
object poses using an RGB-D sensor. The dataset consists
of over 20,000 RGB-D images extracted from 20 videos
captured by an ASUS Xtion PRO Live sensor, the 6D poses
of the objects and instance segmentation masks generated
using the LabelFusion framework [18], as well as camera
trajectories from a motion capture system developed by
Qualisys3. Calibration is required for both the RGB-D sensor
and motion capture system shown in Fig. 4. We calibrated
the motion capture system using the Qualisys Track Man-
ager (QTM) software. For RGB-D camera calibration, the
intrinsic camera parameters were estimated using classical
black-white chessboard and the OpenCV library. In order
to track the camera pose through the motion capture system,

3https://www.qualisys.com

Fig. 5: Examples of 3D object-aware semantic maps from
the YCB-Video dataset and the warehouse object dataset.

we attached four spherical markers on the sensor. In addtion,
another four markers were also placed on the outer corners of
a calibration checkerboard. By detecting these markers, we
were able to estimate the transformation between the pose
from the motion capture system and the optical frame of the
RGB-D camera.

B. Reconstruction Results

In order to evaluate surface reconstruction quality, we
compare the reconstructed model of each object to its ground
truth 3D model. For every object present in the scene,
we first register the reconstructed model M to the ground
truth model G by a user interface that utilizes human input
to assist traditional registration techniques [18]. Next, we
project every vertex from M onto G and compute the distance
between the original vertex and its projection. Finally, we
calculate and report the mean distance µd over all model
points and all objects.

The results of this evaluation on the reconstruction datasets
are summarised in Table I and Table II. Qualitative results
are shown in Fig. 5. We can see that our reconstruction
system significantly outperforms the baseline. While Elas-
ticFusion results in the lowest reconstruction errors on two
YCB objects (006 mustard bottle and 011 banana can), our
approach achieves the best performance on the remaining
objects. The results show that our reconstruction method has
a clear advantage of using the proposed registration cost
function. In addition, we are able to keep all surfels on
object instances always active, while ElasticFusion has to
segment these surfels into inactive areas if they have not been
observed for a period of time ∂t. This means that the object
surfels are updated all the time. As a result, the developed
system is able to produce a highly accurate object-oriented
semantic map.

C. Pose Estimation Results

We use the average closest point distance (ADD-S) metric
[11], [13] for evaluation. We report the area under the ADD-
S curve (AUC) following PoseCNN [11] and DenseFusion

https://www.qualisys.com


TABLE I: Comparison of surface reconstruction error and pose estimation accuracy results on the YCB objects.

Reconstruction (mm) 6D Pose Estimation
ElasticFusion Object-RPE DenseFusion (DF) DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

002 master chef can 5.7 4.5 96.4 96.8 96.5 97.0 97.6
003 cracker box 5.2 4.8 95.5 96.2 96.2 96.9 97.3
004 sugar box 7.2 5.3 97.5 97.4 97.0 97.2 98.1
005 tomato soup can 6.4 5.7 94.6 94.7 95.2 95.6 96.8
006 mustard bottle 5.2 6.1 97.2 97.7 97.9 97.9 98.3
007 tuna fish can 6.8 5.4 96.6 97.1 97.4 98.1 98.5
008 pudding box 5.6 4.3 96.5 97.3 97.1 97.6 98.4
009 gelatin box 5.5 4.9 98.1 98.0 98.2 98.4 99.0
010 potted meat can 7.4 6.3 91.3 92.2 92.5 92.9 94.7
011 banana 6.2 6.4 96.6 96.8 96.8 97.4 97.9
019 pitcher base 5.8 4.9 97.1 97.5 97.9 98.2 99.3
021 bleach cleanser 5.4 4.2 95.8 96.5 95.9 96.3 97.6
024 bowl 8.8 7.4 88.2 89.5 90.3 90.8 93.7
025 mug 5.2 5.4 97.1 96.8 97.3 97.5 99.1
035 power drill 5.8 5.1 96.0 96.6 96.8 96.8 98.1
036 wood block 7.4 6.7 89.7 90.3 90.6 91.2 95.7
037 scissors 5.5 5.1 95.2 96.2 96.2 96.2 97.9
040 large marker 6.1 3.4 97.5 98.1 97.9 97.6 98.5
051 large clamp 4.6 3.9 72.9 76.3 77.1 77.8 82.5
052 extra large clamp 6.2 4.6 69.8 71.2 72.5 73.6 78.9
061 foam brick 6.2 5.9 92.5 93.4 91.1 91.0 95.6
MEAN 6.1 5.3 93.0 93.6 93.7 94.1 95.9

TABLE II: Comparison of surface reconstruction error and pose estimation accuracy results on on the warehouse objects.

Reconstruction (mm) 6D Pose Estimation
ElasticFusion Object-RPE DenseFusion (DF) DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

001 frasvaf box 8.3 6.2 60.5 63.2 64.1 65.4 68.7
002 small jacky box 7.4 6.9 61.3 66.3 65.1 66.2 69.8
003 jacky box 6.6 5.8 59.4 65.4 66.5 68.3 73.2
004 skansk can 7.9 7.7 63.4 66.7 67.5 67.8 68.3
005 sotstark can 7.3 5.9 58.6 62.4 65.3 66.2 69.5
006 onos can 8.1 6.9 60.1 63.4 65.7 66.1 70.4
007 risi frutti box 5.3 4.2 59.7 64.1 63.2 63.5 67.7
008 pauluns box 5.8 5.3 58.6 62.4 65.9 66.6 70.2
009 tomatpure 7.4 6.2 63.1 65.6 66.3 67.3 73.1
010 pallet 11.7 10.5 62.3 64.5 64.6 66.3 67.4
011 half pallet 12.5 11.4 58.9 64.1 63.1 63.4 68.5
MEAN 8.0 7.0 60.5 64.4 65.3 66.1 69.7

[13]. The maximum threshold is set to 10cm. The object pose
predicted from our system at time t is a rigid transformation
from the object coordinate system O to the global coordinate
system G. To compare with the performance of DenseFusion,
we transform the object pose to the camera coordinate
system using the transformation matrix estimated from the
camera tracking stage. Table I and Table II present a detailed
evaluation for all the 21 objects in the YCB-Video dataset
and 11 objects in the warehouse dataset. Object-RPE with the
full use of projected mask, depth and color images from the
semantic 3D map achieves superior performance compared
to the baseline single frame predictions. We observe that
in all cases combining information from multiple views
improved the accuracy of the pose estimation over the
original DensFusion. We see an improvement of 2.3% over
the baseline single frame method with Object-RPE, from
93.6% to 95.9% for the YCB-Video dataset. We also observe
a marked improvement, from 60.5% for a single frame to
69.7% with Object-RPE on the warehouse object dataset.
Furthermore, we ran a number of ablations to analyze Object-

RPE including (i) DenseFusion using projected masks (DF-
PM) (ii) DenseFusion using projected masks and projected
depth (DF-PM-PD) (iii) DenseFusion using projected masks,
projected depth, and projected RGB image (DF-PM-PD-
PC). DF-PM performed better than DenseFusion on both
datasets (+0.6% and +3.9%). The performance benefit of
DF-PM-PD was less clear as it resulted in a very small
improvement of +0.1% and +0.9% over DF-PM. For DF-PM-
PD-PC, performance improved additionally with +0.5% on
the YCB-Video dataset and +1.7% on the warehouse object
dataset. The remaining improvement is due to the fusion of
estimates in the EKF. In regard to run-time performance,
our current system does not run in real time because of
heavy computation in instance segmentation, with an average
computational cost of 500ms per frame.

V. CONCLUSIONS

We have presented and validated a mapping system that
yields high quality object-oriented semantic reconstruction
while simultaneously recovering 6D poses of object in-



stances. The main contribution of this paper is to show
that taking advantage of deep learning-based techniques
and our semantic mapping system we are able to improve
the performance of object pose estimation as compared to
single view-based methods. Through various evaluations,
we demonstrate that Object-RPE benefits from the use of
accurate masks generated by the semantic mapping system
and from combining multiple predictions based on Kalman
filter. An interesting future work is to reduce the runtime
requirements of the proposed system and to deal with moving
objects.
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