
Loop Closure Detection in Closed Environments
Nils Rottmann1, Ralf Bruder1, Achim Schweikard1, Elmar Rueckert1

Abstract—Low cost robots, such as vacuum cleaners or lawn
mowers employ simplistic and often random navigation policies.
Although a large number of sophisticated mapping and planning
approaches exist, they require additional sensors like LIDAR
sensors, cameras or time of flight sensors. In this work, we
propose a loop closure detection method based only on odometry
data which can be generated using low-range or binary signal
sensors together with simple wall following techniques. We show
how to include the detected loop closing constraints into a pose
graph formulation such that standard pose graph optimization
techniques can be used for map estimation.
We evaluate our map estimate and loop closure approach using
both, simulation and a real lawn mower in complex and realistic
environments. Our results demonstrate that our approach gener-
ates accurate map estimates on the basis of odometry data only.
We further show that our assumption about the discriminative
nature of neighboring poses in the pose graph is solid, even under
large odometry noise. These improved map estimates provide the
basis for smart navigation policies in low cost robots and extends
their abilities to goal-directed behavior like pick and place or
complete coverage path planning in realistic environments.

I. INTRODUCTION

During the last decade, research and development in the area
of autonomous mobile robots have made significant progress.
Nowadays robots such as vacuum cleaners or lawn mowers
can be found in many households fulfilling their intended
tasks. However, most of the robots employ thereby simplistic
navigation strategies, such as a random walk, due to the lack
of suitable maps and accurate sensors required for successful
path planning. While most existing work for mapping and
localization utilizes long-range sensors, such as LIDAR
sensors, RGB-D cameras or time of flight sensors, robots for
private households lack such sensor-richness. The reason for
that is that such sensors are either too expensive, aiming for
low acquisition and maintenance costs, or not suitable for
outdoor environments, e.g. to reflections and direct sunlight.
Moreover, simultaneous localization and mapping (SLAM)
algorithms require certain amount of computational power
which is often not available. However, intelligent navigation
from low cost hardware is essential for mobile robots to
enter our daily life. For example, autonomous lawn mowers
employed with random walk policies are limited to simple
environments, e.g. they can not enter small corridors.

In this paper, we propose a sophisticated mapping algorithm
that can generate a map estimate of the environment based only
on odometry data. Such data can be generated by following the
wall or border line for an area of interest. Such wall following

1Institute for Robotics and Cognitive Systems, University of Luebeck, Ratze-
burger Allee 160, 23562 Luebeck, Germany {rottmann, bruder,
schweikard, rueckert}@rob.uni-luebeck.de

strategies can be executed using simple wall sensors, bumpers
or signal wire sensors. The generated odometry data can be
used for the proposed map estimation method. We will focus
in this paper on how to achieve the most suitable map using
only the recorded odometry data.

In order to reduce computational complexity, we first prune
our problem using path segmentation. Thereby, we cluster
the individual path points generated from the odometry data
into straight line segments. Based on the pruned data set we
generate a pose graph in which we search for loop closing
constraints using shape comparison. We include these loop
closing constraints into our pose graph formulation and
optimize the graph using standard pose graph optimization
techniques, such as the Levenberg-Marquardt algorithm.
Finally, we introduce a measure for the mapping error based
on the deviation of areas between the estimated map and the
true shape of the environment.

We first evaluate our method in a complex simulation environ-
ment using standard motion models. Afterwards, we show how
our method performs in a real robot, a Viking MI 422P, set up in
a real garden environment. In order to represent real conditions
as best as possible we learned the odometry parameters for
the motion model by means of Log Likelihood estimation.
Moreover, we show in simulations that our approach is robust
even under a large amount of odometric drift, which is essential
for successfully mapping outdoor environments.

A. Contributions and Organization

The contributions of the paper are two-fold. First, an efficient
and simple method for loop closure detection using odometry
only data is presented and second, a map evaluation scheme
based on comparing two map areas, the estimated map and
a groundtruth, is proposed. Both contributions are necessary
to generate accurate map estimates with only low-range or
binary sensors, which then enables low-cost robots to imple-
ment intelligent navigation and path planning strategies. These
contributions are discussed in Section II. In Section III we
evaluate our approach in a realistic mowing scenario and in
a challenging simulated apartment environment. We conclude
in Section IV.

B. Related Work

Most of the existing work on SLAM [20] or graph-based
SLAM [9] relies on long-range sensors, such as LIDARs
or cameras [3], [7], [15], [8]. Most of these approaches are
using sensor fusion and probabilistic reasoning, e.g. particle
filter [11] or extended kalman filter [1]. However, there are

ar
X

iv
:1

90
8.

04
55

8v
1

 [
cs

.R
O

]
 1

3
A

ug
 2

01
9

some approaches which try to handle the SLAM problem
using only sparse sensor data, e.g. [2], to avoid expensive
sensing. Existing work for low-range sensors [22], [6], such
as sonars or infrared sensors, requires linear features which
are not necessarily present in outdoor environments. Indoor
mapping with limited sensing using a wall following approach
has been presented in [24]. However, this approach makes
the assumption of an approximately rectilinear structure,
which may be true for most indoor environments but not for
outdoor applications. In contrast, our proposed approach is not
restricted to such structural assumptions and can be used for
either indoor or outdoor applications with arbitrary shapes.

Generating the path from odometry data leads to a pose-graph
representation, which is often used for the SLAM problem
[21], [17] and has been first introduced by Lu and Milios
1997, [19]. Pose graph optimization has been addressed in
several studies, e.g TORO [10], g2o [16], iSAM2 [14] and
LAGO [5]. Thereby, TORO is based on gradient descent
and is an extension of Olson’s algorithm [21]. It applies a
tree-based parameterization to distribute residual errors across
the graph that improves the performance. The ”general graph
optimization” framework, g2o, has been designed to perform
the optimization of different least squares problems, which
can be represented as a graph. It thereby relies on the Gauss-
Newton method. The iSAM2 method applies Bayes trees
using incremental variable re-ordering and fluid relinearization
to solve sparse nonlinear incremental optimization problems.
LAGO addresses the pose graph optimization problem by
decoupling the orientation and translation. We use the simpler
Levenberg-Marquardt algorithm [9], which worked reasonably
well for pose graph optimization. There, the function is
approximated by its first order Taylor expansion around the
current initial guess p̂ in order to then find the solution to the
optimization problem iteratively.

In order to reduce computational complexity, we prune the data
using path segmentation. Such a pruning can lead to a huge
reduction of computational time at the price of a small increase
in error [18].

II. METHODS

We start by introducing the standard pose graph formulation:
Let p = {p0, . . . ,pN} be a set of N+1 poses representing the
position and orientation of a mobile robot in a two dimensional
space, hence pi = [x>i , ϕi]

>. Here, xi ∈ R2 is the cartesian
position of the robot and ϕi ∈ [−π, π] the corresponding
orientation as an euler angle with the integer i = 0:N . The
relative measurement between two poses i and j is then given
as

ξij =

[
R>i (xj − xi)
ϕj − ϕi

]
= pj � pi, (1)

where Ri = Ri(ϕi) is a planar rotation matrix and � the
pose compounding operator which has been introduced in [19].
These relative measurements are, in general, affected by noise.

Fig. 1. Pose graph with five vertices connected with five edges. Four of
the edges are odometric constraints and one is a loop closing constraint. On
the right, the incidence matrix is shown divided into the parts containing the
odometric constraints and the loop closing constraints.

Thus, including a zero mean Gaussian noise εij ∼ N (0,P ij)
leads to the noisy relative measurements

ξ̂ij = ξij + εij . (2)

In general, there are two different types of relative pose
measurements: Odometric constraints and loop closing
constraints. Here, the first constraints are generated by the
wheel odometry of the differential drive robot. The second
type of constraints are provided by the robot recognizing a
match between actual measurements and past measurements
by revisiting places. Subsection II-B shows how to efficiently
identify and add loop closing constraints to the pose graph for
odometry only data.

The pose graph is thereby represented as a directed graph
G(V, E) with N+1 vertices and N+M edges, where N is the
number of odometric constraints and M the number of loop
closing constraints. The connection between the vertices by
the edges can be compactly written using an incident matrix
A. There, every column represents an edge connecting two
vertices with each other. The row number thereby represents
the vertex from which the edge starts, denoted by −1, and
the vertex where the edge leads to, denoted by 1. In Figure 1
a pose graph is exemplarily shown in combination with the
according incidence matrix A.

The overall optimization problem is then to minimize the
sum of weighted residual errors rij(p) in regard to the pose
estimates p

min
p

∑
(i,j)∈E

||rij(p)||2P ij
(3)

with

||rij(p)||2P ij
= [(pj � pi)− ξ̂ij]>P

−1
ij [(pj � pi)− ξ̂ij]. (4)

The covariance matrix corresponding to the relative measure-
ments ξ̂ij is thereby given as P ij .

A. Path Segmentation / Data Pruning

Path segmentation is used in order to cluster the individual
path points retrieved from the odometry data into straight
line segments. It is mostly used to reduce the complexity
of the mapping problem, e.g. [18] or [24]. The reduction

Algorithm 1 DP Generation
• Parameters: Lmin, emax
• Inputs: x
• Outputs: DP

1: DP = [x0]
2: S = [x0]
3: if new x available then
4: d = ||DPend − x||
5: if d < Lmin then
6: S ← [S,x]
7: else
8: Stmp = [S,x]
9: e = errorLineFit(Stmp)

10: if e < emax then
11: S ← Stmp
12: else
13: DP ← [DP,Send]
14: S ← [Send,x]
15: end if
16: end if
17: end if

of complexity will allow later improvements to the path by
standard pose graph optimization techniques. Therefore, as
shown in Figure 2, the errors between the individual odometry
data points and a straight line segment are calculated and
summed up to compare it with a certain threshold emax. If the
sum of the errors exceeds the threshold a new line segment
with different orientation is generated. The path segmentation
scheme is presented in Algorithm (1) and is inspired by
[24]. We now shortly state the idea of the path segmentation
approach.

Assume the position estimates based on the odometry are given
as X = {x0, . . . ,xn}. Here n+ 1 is the number of data points
received from the odometry. First, a set of dominant points
DP = {x0} and a temporarily subset S = {x0} are initialized
using the first position estimate x0. Hereby, the set of dominant
points DP represents the pruned data set and the temporarily
subset S contains the data points which are approximated by the
current straight line segment. We now successively include all
odometry data points into the algorithm. Thereby, a new data
point x is integrated into the temporary subset S ← {S,x}.
Afterwards, two conditions are checked:

Lmin > ||DPend − Send|| (5)

and

emax >
1

|S| − 2

|S|−1∑
i=2

ei, (6)

where DPend and Send are the last added items in the
respective set. If both, Equation (5) and Equation (6), are true,
the temporary subset S is not any longer a valid representation
for the current straight line segment. Thus, the position Send−1

is added to the set DP and the temporary subset S is set

v

S1

Si

ei

Send

Fig. 2. To generate a new dominant point, the distance
ei with j = 2, . . . , |S| − 1 is investigated. This distance represents the
shortest distance between point Si and vector v. More details are given in
Subsection II-A.

back to S = {Send,x}. Here, ei defines the shortest distance
between the point Si and the vector v = Send − S1 and |S| is
the cardinality of the set S. In Figure 2 the error calculation is
exemplarily shown and in Figure 3 a resulting pruned data set is
depicted compared to the original data set. The parameters Lmin
and emax are problem specific and have to be tuned accordingly.

Based on the pruned data set DP , the poses for the pose graph
are generated as

p = {[DP>1 , ϕ1]>, . . . , [DP>|DP |−1, ϕ|DP |−1]>}, (7)

where |DP | is the cardinality of the set of dominant points and

ϕi = atan2(vi,y,vi,x) with vi = DPi+1 −DPi. (8)

For the pose graph N = |DP |−2 and the relative measurements
ξ̂ can be calculated using Equation (1). In Figure 4 an example
for the generation of the pose graph based on the set of
dominant points is shown. The part of the corresponding
incidence matrix containing the odometric constraints can be
then written as

AOdometry =

−1 0 0 . . .
1 −1

0 1
. . .

0
. . .

...

∈ RN+1,N . (9)

B. Loop Closure Detection

Only the pose data generated in Subsection II-A can be used
to find loop closing constraints. Therefore, it is required for
the robot to cycle several times along the boundary line of
the area of interest. We then compare the shape of the path,
searching for poses with similar shaped neighborhoods in
order to find vertices which can be matched onto each other.
These matched vertices can then be added as loop closing

2 m

2
 m

Orig. Path

2 m

2
 m

Orig. Path

DPs

Fig. 3. Path Segmentation: In the left panel the original odometry data with
37687 data points is shown. In the right panel the path segmentation with 137
dominant points, marked as red dots, is presented.

constraints to the pose graph.

First, generate a piecewise linear function of the orientation
in regard to the length of the path θ = θ(x). The function is
defined as

θ(x) = φi for li−1 ≤ x < li, i = 0, 1, . . . , N. (10)

The cumulated orientations φi and path lengths li can be
calculated as

φi = φi−1 + ∆φi

li = li−1 + ||vi||
(11)

starting with φ0 = ϕ0 and l0 = 0 and going through all poses of
the pruned graph. Here vi = xi − xi−1 and ∆φi = ϕi − ϕi−1

with pi = [x>i , ϕi]
>. In Figure 5 an example function based

on the segmented data from Figure 3 is shown.

Second, a comparison between the shapes of the neighborhood
of the poses using the introduced piecewise orientation function
θ(x) is done. Therefore, let LNH be the length to both sides of a
pose which defines its neighborhood. A correlation error matrix

Fig. 4. The figure shows how the dominant points are transformed to a set
of poses. Thereby, we start by with the first dominant point as the initial pose
given by p0 = [x>

0 , ϕ0]> with x0 = DP1 and ϕ0 = atan2(v1,y ,v1,x),
v1 = DP2 −DP1.

60 80 100 120

-20

-18

-16

-14

-12

-10 Angle

DPs

Fig. 5. Example for the piecewise linear orientation function θ(x). The green
circled regions show similar path segments. The vertices of the pose graph are
pictured as red dots.

C is then generated as follows:
Comparing the neighborhood of the pose pi and pj , the orien-
tation function θ(x) is grounded according to the orientations
φi, φj and lengths li, lj such that two neighborhood functions
θi(x) and θj(x) are generated, e.g. θi(x) = θ(x+ li)− φi.
Both functions are then evaluated at m linearly distributed
points from −LNH to +LNH which result into two vectors θi
and θj . The correlation error then add up to

Cij =
1

m

m∑
k=1

||θi,k − θj,k||2. (12)

In Figure 6 the correlation errors between the vertices are
shown.

Third, we search for local minima which are below a
threshold cmin in the correlation error data. This leads to
convenient pairs for loop closure SPk = {pi,pj} for i 6= j.
In general, this procedure leads to a set of loop closing pairs
SP = [SP1, SP2, . . . , SPM], where M is the number of loop
closing constraints found. The selection of an appropriate
value for LNH is hereby crucial to find sufficiently accurate
pairs for loop closure. In general, picking a larger value for
LNH will lead to a more cautious selection and vice versa.
Also, the threshold cmin affects the loop closing detection
significantly. Thereby, a huge neighborhood parameter LNH
and large odometry errors should be compensated by choosing
a large value for cmin and vise versa.

The loop closing constraints can now be included into the
pose graph representation by adding the relative measurements
ξ̂ij = [0, 0, 0]> between the poses i and j for the loop closing
pair SPk = {pi,pj}. The incident matrix for the loop closing
measurements can be built as

ALoop Closing =
[
a1 . . . aM

]
∈ RN+1,M (13)

with the vector ak representing the loop closing pair
SPk = {pi,pj} by denoting ak,i = −1 and ak,j = 1 and the

50 100 150

50

100

150

0

0.5

1

1.5

2

2.5

Fig. 6. Correlation error of the shapes of the neighborhood between the vertices
of the pose graph. For better reading we plotted log(1−Cij) and only a section
of the matrix. The variables xi and xj are representing the position l of the
vertices i and j in meter along the path.

rest of the entries with zeros. The complete incidence matrix
for the pose graph is then defined as

A = [AOdometry,ALoop Closing] ∈ RN+1,N+M . (14)

C. Pose Graph Optimization

Let eij(pi,pj) = (pj � pi)− ξ̂ij such that Equation (3) can
be rewritten as

min
p

∑
(i,j)∈E

e>ijΩijeij , (15)

where Ωij is the information matrix for the relative measure-
ment ξ̂ij . To solve Equation (15) the information matrices Ωij

have to be determined with Ωij = P−1
ij . For the odometric

constraints we generate the covariance matrices as

P odometric,ij = diag

cos(ϕi)(α3δT + α4δR)
sin(ϕi)(α3δT + α4δR)

α1δR + α2δT

 (16)

on the basis of the odometry model presented in [23] and under
the assumption that only one translation δT and one rotation δR
occur. The parameters α1, . . . , α4 are robot specific and must
be determined. For the loop closing constraints, the covariance
matrices can be calculated using the correlation error from
Equation (6) and the parameters γ1 and γ2

P lc,ij = diag
([
γ1 γ1 γ2

])
Cij . (17)

The parameters γ1 and γ2 can be used to improve the map
estimate in complex environments. In our experiments all
parameters were set to one. We then use the popular Levenberg-
Marquardt algorithm as presented in [9] in order to solve the
pose graph optimization problem from Equation (15).

D. Map Generation and Evaluation

With Subsection II-C we optimized our pose graph, for which
an example can be seen in the mid panel of Figure 7. Now,
we shortly explain how to generate a closed trajectory from
the optimized pose graph which can then be stored as a
map of the environment. First, we cut off the prefix and the
suffix of the pose graph, because these parts have not been
optimized due to missing loop closing constraints. Thereby,
the prefix is the part of the pose graph before the first loop
closing constraint and the suffix the part of the pose graph
after the last loop closing constraint. In order to generate a
closed path, we investigate further the generated loop closing
pairs. Here, we search for the first loop closing pair which
represents a complete turn around the borderline. Setting the
points of the this loop closing pair onto each other leads
to a closed trajectory as presented in the right panel of Figure 7.

To compare different map estimates with each other we cal-
culate the deviation of area between the estimated map gen-
erated using the above algorithms and the true shape of the
environment. Therefore, we assume that the true shape of the
environment is given as a polygon defined by the points Xtrue.
The idea is to determine a rotation matrix R and a translation
vector T which transforms the set of points X , representing
the closed map estimate, onto the set of points Xtrue

X̂ = R ·X + T , (18)

such that

∆A = 1− Atrue ∩Aestimate

Atrue ∪Aestimate
(19)

is minimized. Here, ∆A represents the difference between the
areas of the map estimate and the true shape of the environment.
We use simple gradient descent in order to find a convenient
rotation matrix and translation vector for Equation (18). Since
gradient descent requires a good initial guess in order to not get
stuck into a local minimum, we use Horns method [13] to first
find such initial guess. Therefore, we use the in Subsection
II-B described method for loop closure detection in order to
find pairs of points between the estimated map and the true
shape of the environment which can be mapped onto each
other. In Figure 8 the deviation between the true shape of the
environment and the estimated map is depicted in light blue.

Fig. 7. The figures shows the steps we use for generating a polygon map of the
boundary from the odometry data. The left panel shows the original odometry
data, the mid panel the optimized pose graph and the right panel the closed
polygon.

Fig. 8. Deviation of areas between an original map and the map estimate. The
deviation is presented in light blue with ∆A = 9%.

III. RESULTS

We tested the above proposed mapping method for odometry
only data in simulations with challenging environments and on
real data. For the real system, a Viking MI 422P, a purchasable
autonomous lawn mower, has been used. For the simulation
environment and for the estimation of the covariance matrices
Equation (16), we used the odometry motion model presented
in [23]. We calibrated the odometry model by tracking lawn
mower movements using a visual tracking system (OptiTrack)
and computed the parameters using maximum likelihood es-
timation. The calibrated parameters for the Viking MI 422P
are presented in Table I. For generating real data, we drove
the lawn mower manually along the boundary line of the
courtyard depicted in Figure 9(a). Additionally, we simulated
a differential drive robot with the specifications of the lawn
mower in a challenging apartment environment. Moreover, we
successively increased the odometry error in order to show that
the proposed approach works even with large odometry errors
and leads to sufficiently accurate results. As error measurement
we used the deviation of areas between the true shape of the
environment and the estimated map, as presented in Subsection
II-D. Parameter specifications regarding the robot and the
proposed method can be found in the Appendix, Section V.

A. Apartment Environment - Simulation

We used simulations in order to test our algorithm in a
challenging environment, namely an apartment floor as
depicted in Figure 10. Since the apartment environment
is complex we set the threshold cmin to 1.0. Simulating
the differential drive robot using the in Table I presented
odometry parameters and a simple wall following algorithm
results into the estimated path depicted in the left panel of
Figure 11. The resulting map estimate can be seen in the

TABLE I
MEASURED PARAMETERS FOR THE ODOMETRY MOTION MODEL ([23]).

α1 α2 α3 α4

0.0849 0.0412 0.0316 0.0173

TABLE II
MEAN VALUES AND STANDARD DEVIATION FOR DIFFERENT ODOMETRY

PARAMETERS.

α 0.1 0.2 0.3 0.4 0.5
µ∆A 7.91% 11.71% 14.01% 17.35% 27.30%
σ∆A 1.21% 2.09% 2.95% 3.79% 6.68%

right panel together with the true shape of the apartment. The
error between the true shape and estimated map is ∆A = 4.5%.

To simulate a drastic odometry drift, we set the odometry
parameters to αi = 0.4 for i = 1, . . . , 4. This leads to an
estimated path of the simulated robot as depicted in the
left panel of Figure 12. The results of our map estimate is
presented in the right panel of Figure 12. The mapping error
is ∆A = 17.8%.

In order to show the robustness of our approach, we evaluated
our method on the apartment environment for different values
of α with αi = α for i = 1, . . . , 4. Therefore, we simulated the
robot for every parameter setting α = {0.1, 0.2, . . . , 0.5} ten
times and calculated the mean error µ∆A and standard deviation
σ∆A, which can be seen in Table II. As expected, the mean µ∆A

rises monotonously with increasing α as well as the standard
deviation σ∆A.

B. Courtyard Environment - Real Data

For the real data set the parameter cmin is set to 0.3 to take
into account the shape of the estimated path generated from
the odometry data. This path can be seen in the left panel at
Figure 9(b). In the right panel, the map estimate generated using
the proposed method is depicted together with the true shape of
the courtyard environment. The error between both, according
to the method presented in Subsection II-D, is ∆A = 11.87%.
The data for the courtyard has been retrieved from available
CAD data.

IV. CONCLUSION

We have presented a method for map estimation based on
odometry only data. This method is essential for cheap or
small robots, such as vacuum cleaners or lawn mowers. Our
method does not require any additional assumptions like for
example a rectilinear structured environment [24] or linear
features [22], [6]. The required odometry data can be collected
using a wall following scheme for which low range sensors or
binary sensors are sufficient. Such sensors are widely used in
actual purchasable household robots. Furthermore, we showed
that our approach performs well in challenging environments,
such as an apartment. Even when simulating large odometry
noise, our approach can generate an accurate map estimate.
The map estimate of the environment allows the robot to plan
its intended task, such as cleaning the floor or mowing the
lawn, instead of executing a random walk behavior. In a related
work [12], probability distributions were used to update a dirt
coverage map to keep the dirt level below a certain threshold.
In another work [4], complete coverage is proven under the

(a) The courtyard of our Institute. We used the
inner lawn area for testing the proposed mapping
method.

10 m

1
0

 m

5 m

5
 m

True Shape

Estimate

(b) The left panel shows the estimated path of the robot generated from its wheel odometry and the
right panel the estimated map and the true shape of the test environment.

Fig. 9. The real courtyard depicted in (a) and the collected odometry data together with the map estimate shown in (b).

3 m

3
 m

Fig. 10. The apartment envrionment used for the simulations.

3 m

3
 m

3 m

3
 m

True Shape

Estimate

Fig. 11. The left panel shows the estimated path of the simulated robot
generated using the introduced odometry model. The right panel shows the
estimated map and the true shape of the apartment environment.

assumption of a bounded error. According to the first example
a probability distribution encoded by a particle filter can be used
to update a coverage map. This map allows then the execution
of path planning strategies to avoid random walk behavior. This
approach seems promising and will be further investigated.

V. APPENDIX

The velocity of the lawn mower driving along the boundary has
been set to 0.3 m s−1. The odometry data has been sampled

5 m

5
 m

3 m

3
 m

True Shape

Estimate

Fig. 12. The left panel shows the estimated path of the simulated robot gen-
erated using the introduced odometry model and harsher odometry parameter,
αi = 0.4 for i = 1, . . . , 4. The right panel shows the estimated map and the
true shape of the apartment environment.

TABLE III
DEFAULT PARAMETERS FOR THE PROPOSED MAP ESTIMATION METHOD.

Lmin emax LNH M γ1 γ2

0.1 m 0.001 30 m 100 1.0 1.0

with a frequency of approximately 20 Hz. The algorithmic
parameters used for the map estimation can be found in
Table III. Here the chosen parameters Lmin = 0.1 m, M = 100
and emax = 0.001 for the path segmentation part reduce the
complexity of the problem sufficiently while maintaining the
path given by the odometry data. Moreover, the parameter
for loop closure detection LNH = 30 m, since the used test
environments have circumferences of Uapartment = 100 m and
Ucourtyard = 106.79 m respectively. Thus, slightly over 50% of
the length of the circumference is used for shape comparison.

REFERENCES

[1] Tim Bailey, Juan Nieto, Jose Guivant, Michael Stevens, and Eduardo
Nebot. Consistency of the ekf-slam algorithm. In Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, pages 3562–3568.
IEEE, 2006.

[2] Kristopher R Beevers and Wesley H Huang. Slam with sparse sensing.
In ICRA, pages 2285–2290, 2006.

[3] Christian Brenneke, Oliver Wulf, and Bernardo Wagner. Using 3d laser
range data for slam in outdoor environments. In Intelligent Robots and
Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, volume 1, pages 188–193. IEEE, 2003.

[4] Timothy Bretl and Seth Hutchinson. Robust coverage by a mobile robot
of a planar workspace. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 4582–4587. IEEE, 2013.

[5] Luca Carlone, Rosario Aragues, José A Castellanos, and Basilio Bona. A
fast and accurate approximation for planar pose graph optimization. The
International Journal of Robotics Research, 33(7):965–987, 2014.

[6] Young-Ho Choi, Tae-Kyeong Lee, and Se-Young Oh. A line feature based
slam with low grade range sensors using geometric constraints and active
exploration for mobile robot. Autonomous Robots, 24(1):13–27, 2008.

[7] Javier Civera, Dorian Gálvez-López, Luis Riazuelo, Juan D Tardós, and
JMM Montiel. Towards semantic slam using a monocular camera. In
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pages 1277–1284. IEEE, 2011.

[8] Nikolas Engelhard, Felix Endres, Jürgen Hess, Jürgen Sturm, and Wol-
fram Burgard. Real-time 3d visual slam with a hand-held rgb-d camera.
In Proc. of the RGB-D Workshop on 3D Perception in Robotics at the
European Robotics Forum, Vasteras, Sweden, volume 180, pages 1–15,
2011.

[9] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Bur-
gard. A tutorial on graph-based slam. IEEE Intelligent Transportation
Systems Magazine, 2(4):31–43, 2010.

[10] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Nonlinear con-
straint network optimization for efficient map learning. IEEE Transactions
on Intelligent Transportation Systems, 10(3):428–439, 2009.

[11] Giorgio Grisetti, Gian Diego Tipaldi, Cyrill Stachniss, Wolfram Burgard,
and Daniele Nardi. Fast and accurate slam with rao–blackwellized particle
filters. Robotics and Autonomous Systems, 55(1):30–38, 2007.

[12] Jürgen Hess, Maximilian Beinhofer, and Wolfram Burgard. A probabilis-
tic approach to high-confidence cleaning guarantees for low-cost cleaning
robots. In Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 5600–5605. IEEE, 2014.

[13] Berthold KP Horn, Hugh M Hilden, and Shahriar Negahdaripour. Closed-
form solution of absolute orientation using orthonormal matrices. JOSA

A, 5(7):1127–1135, 1988.
[14] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J

Leonard, and Frank Dellaert. isam2: Incremental smoothing and mapping
using the bayes tree. The International Journal of Robotics Research,
31(2):216–235, 2012.

[15] Kurt Konolige, Motilal Agrawal, Robert C Bolles, Cregg Cowan, Martin
Fischler, and Brian Gerkey. Outdoor mapping and navigation using stereo
vision. In Experimental Robotics, pages 179–190. Springer, 2008.

[16] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and
Wolfram Burgard. g 2 o: A general framework for graph optimization. In
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 3607–3613. IEEE, 2011.

[17] Yasir Latif, César Cadena, and José Neira. Robust loop closing over time
for pose graph slam. The International Journal of Robotics Research,
32(14):1611–1626, 2013.

[18] Yasir Latif and José Neira. Go straight, turn right: Pose graph reduction
through trajectory segmentation using line segments. In Mobile Robots
(ECMR), 2013 European Conference on, pages 144–149. IEEE, 2013.

[19] Feng Lu and Evangelos Milios. Globally consistent range scan alignment
for environment mapping. Autonomous robots, 4(4):333–349, 1997.

[20] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit,
et al. Fastslam: A factored solution to the simultaneous localization and
mapping problem. Aaai/iaai, 593598, 2002.

[21] Edwin Olson, John Leonard, and Seth Teller. Fast iterative alignment
of pose graphs with poor initial estimates. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference on,
pages 2262–2269. IEEE, 2006.

[22] Ozan Ozisik and Sirma Yavuz. Simultaneous loclization and mapping
with limited sensing using extended kalman filter and hough transfrom.
Tehnicki vjesnik/Technical Gazette, 23(6), 2016.

[23] Sebastian Thrun. Probabilistic robotics. Communications of the ACM,
45(3):52–57, 2002.

[24] Ying Zhang, Juan Liu, Gabriel Hoffmann, Mark Quilling, Kenneth Payne,
Prasanta Bose, and Andrew Zimdars. Real-time indoor mapping for
mobile robots with limited sensing. In Mobile Adhoc and Sensor Systems
(MASS), 2010 IEEE 7th International Conference on, pages 636–641.
IEEE, 2010.

	I Introduction
	I-A Contributions and Organization
	I-B Related Work

	II Methods
	II-A Path Segmentation / Data Pruning
	II-B Loop Closure Detection
	II-C Pose Graph Optimization
	II-D Map Generation and Evaluation

	III Results
	III-A Apartment Environment - Simulation
	III-B Courtyard Environment - Real Data

	IV Conclusion
	V Appendix
	References

