
Prioritized Multi-agent Path Finding for Differential Drive Robots

Konstantin Yakovlev1, Anton Andreychuk2 and Vitaly Vorobyev3

Abstract— Methods for centralized planning of the collision-
free trajectories for a fleet of mobile robots typically solve the
discretized version of the problem and rely on numerous simpli-
fying assumptions, e.g. moves of uniform duration, cardinal only
translations, equal speed and size of the robots etc., thus the
resultant plans can not always be directly executed by the real
robotic systems. To mitigate this issue we suggest a set of mod-
ifications to the prominent prioritized planner – AA-SIPP(m) –
aimed at lifting the most restrictive assumptions (syncronized
translation only moves, equal size and speed of the robots)
and at providing robustness to the solutions. We evaluate the
suggested algorithm in simulation and on differential drive
robots in typical lab environment (indoor polygon with external
video-based navigation system). The results of the evaluation
provide a clear evidence that the algorithm scales well to large
number of robots (up to hundreds in simulation) and is able to
produce solutions that are safely executed by the robots prone
to imperfect trajectory following. The video of the experiments
can be found at https://youtu.be/Fer_irn4BG0.

I. INTRODUCTION

Problem of finding feasible, collision free trajectories for
multiple robots navigating in a shared environment is a
challenging problem that is lacking general efficient solution.
Essentially, two approaches to multi-robot navigation are
common. One is to adjust the velocity profiles of the robots
in a reactive fashion, taking into account current observa-
tions. Methods implementing this approach, e.g. ORCA [1],
typically scale well to large number of robots but can not
guarantee that each robot reaches its goal. Another approach
is to plan the collision-free trajectories beforehand assuming
that robots will execute them precisely or within some given
tolerance that has been accounted for (see works [2]–[5] etc.).
In this work we adopt the planning approach.

Multi-robot planners typically solve a discretized version
of the problem – multi-robot path planning on graphs [6] also
attributed as multi-agent path finding (MAPF) [7]. They often
provide guarantees on completeness, optimality (or bounded
sub-optimality) of the solutions (w.r.t to discretization).
Unfortunately most of the MAPF planners, like the ones
presented in [8]–[11], rely heavily on numerous simplifying
assumptions, e.g. neglecting agents’ size, assuming all agents
move synchronously with the same speed etc. To make the
MAPF solutions applicable to real robots one can post-
process them as proposed in [12] or can modify the planning

1Konstantin Yakovlev is with Federal Research Center for Computer
Science and Control of RAS and with Higher School of Economics.

2Anton Andreychuk is with Peoples’ Friendship University of Russia
(RUDN University).

3Vitaly Vorobyev is with Kurchatov Institute.
Corresponding author is Konstantin Yakovlev, yakovlev@isa.ru.
This is a preprint of the paper accepted to ECMR 2019:
https://ieeexplore.ieee.org/document/8870957

Fig. 1. Motivation scenario. A fleet of the wheeled robots (a) having to
safely navigate the shared environment (c). The discretized model of the
problem is shown in (b).

algorithm itself in the way that it lifts as much constraints
as possible [13]–[17] and/or produces robust solutions that
are more likely to be executed safely [18]–[20].

Following this line of research we suggest the prioritized
multi-agent planner, particularly suited for differential drive
robots that have a shape of (or can be modelled as) disks.
It builds up on our previous work on any-angle safe interval
path planning [21] and, to the best of our knowledge, it is the
first multi-agent planner that in practice i) does not restrict
robots’ moves to syncronized translations; ii) allows moves
of arbitrary durations (i.e. durations that are not strictly tied
to the preliminary discretized timeline); iii) allows planning
for robots with different sizes; iv) does not require moving
speed to be the same; v) takes rotation actions into account
when planning. It also preemptively tries to minimize the
risk of collisions, occurring due to imperfect execution. On
top of that, to increase the chance of finding the solution
and to decrease the cost of the solution, as it is known that
prioritized planning is not complete/optimal in general, we
incorporate such techniques as deterministic re-scheduling
and start safe intervals into the algorithm.

The proposed algorithm is extensively tested in simulation
and on real robots. Results of the evaluation provide a strong
evidence that algorithm scales well to large number of robots
(up to hundreds in simulation) and that the solutions it
produces can be safely executed by the robots with imperfect
localization and trajectory following.

ar
X

iv
:1

91
1.

10
57

8v
1 

 [
cs

.R
O

] 
 2

4 
N

ov
 2

01
9

https://youtu.be/Fer_irn4BG0


II. PROBLEM STATEMENT

Consider n robots populating the workspace that is tessel-
lated to a grid (see Fig. 1b). Each robot can translate, rotate
or wait-in-place. Waiting and rotating is allowed only at the
center of a grid cell and initially all robots are waiting at
their start cells. When moving inertial effects are neglected
and the speed is fixed for a move (but can vary from one
move to the other). The safety zone of a robot (or a robot
itself) is modeled as an open-disk of radius r(i).

A state (configuration) for a robot is a tuple (x, y, θ),
where x, y are the spatial coordinates and θ is the heading
angle. The configuration is valid w.r.t to static obstacles if the
distance between (x, y) and the closest point of the obstacle
is greater or equal r(i). The trajectory for a robot i is a
mapping tr(i) : [0,∞) → C

(i)
free, s.t. tr(i)(0) = start and

∃Ti ∀t ≥ Ti tr
(i)(t) = goal. Here start = (xs, ys, θs) and

goal = (xg, yg, θg) are the initial and the goal states and
C

(i)
free is the union of all feasible states for the robot i. The

cost of the trajectory is the time needed execute it.
Two trajectories are said to be collision free if the robots

following them never collide. The problem is to find n
trajectories for the robots, s.t. each pair of them is collision
free. The cost of the solution might be either the makespan,
that is the maximum over the costs of individual trajectories,
or the flowtime, that is the sum of costs. In this work optimal
solutions are not targeted, but the low cost solutions are,
obviously, preferable.

III. METHOD

A. Prioritized planning

Prioritized planning is a well-known approach [22], when
each robot is assigned a unique priority and then individual
trajectories are planned sequentially in accordance with the
imposed ordering. Prioritized planning is complete in case
individual planner avoids start locations of the lower-priority
robots and the instance satisfies certain conditions [3]. In
some cases prioritized planning is also optimal [23]. In
general, though, it is neither optimal nor complete. One
of the approaches to mitigate this issue is to re-plan with
other priority ordering in case of failure. In [24] random re-
shuffling was proposed, in [23] a deterministic algorithm for
systematic exploration of priority orderings was suggested.
In this work we adopt a heuristic algorithm proposed in
[25] for re-assigning priorities. In case of failure it sets
the priority of the failed robot to maximum and re-plans.
This approach is fast and easy to implement and in practice
it significantly raises the chances of finding solution and
outperforms random re-ordering.

Another enhancement for prioritized planning we imple-
mented is utilizing start safe intervals [25] (SSIs). Planning
with SSIs means that start locations of the low-priority robots
are considered to be blocked for the predefined amount of
time and un-blocked afterwards. Such an ad-hoc technique
contributes to increasing the chance of finding a solution,
thus decreasing the number of re-planning attempts, thus
lowering down the runtime.

For individual planning we use the enhanced AA-SIPP
algorithm. Original planner [21] assumed that all agents
are of equal radii and move with the same speed. The
planning was conducted for translations (and waits) only.
We lift these assumptions, i.e. we plan for translations and
rotations (and waits), assume that different robots might
have different rotation/translations speeds and take them into
account when planning. We also perform the computation of
the so-called earliest arrival time in a more straightforward
fashion compared to a verbose algorithm described in [21].
As a result we end up with a more versatile and easy-to-
implement version of AA-SIPP.

The source code of the resultant planner is open and
available at https://github.com/PathPlanning/
AA-SIPP-m.

B. Individual planner: enhanced AA-SIPP

1) High-level overview: AA-SIPP stands for any-angle
safe interval path planning. It is a heuristic search planner
that groups contiguous, collision-free time points for each
element of the configuration space into the intervals and use
them to define the nodes of the search space [26]. Utilizing
intervals relieves the search effort as now for each configura-
tion only a limited number of search nodes, proportional to
how many dynamic obstacles hit this configuration, might
be generated while a conventional discrete planner might
generate [1, ..., T ] nodes for a single configuration, where
T is the time horizon that might be very large.

To illustrate the idea of interval planning suppose that
the robot cur needs to move to the cell (3, 2) as shown
on Fig.2, and it is known that two high-priority robots pass
nearby and hit the cell. In this case 3 safe intervals for a
configuration (3, 2, θ) should be considered, i.e. the robot
can reach (and stay in) the cell before the first obstacle
hits is, or in between the first obstacle leaves away and the
second obstacle hits the configuration, or after the second
obstacle moves away. SIPP-based planners, e.g AA-SIPP,
consider all three possibilities by trying to generate 3 search
nodes corresponding to this configuration. Within each safe
interval a paradigm of “reach the configuration as early as
possible” is adopted. Such an approach coupled with with the
A* search strategy guarantees finding optimal solution (w.r.t
to the discretization), i.e. the trajectory that avoids all the
static and dynamic obstacles and minimizes time. Detailed
code of the algorithm can be found in [21].

2) Computing intervals: AA-SIPP search nodes are iden-
tified by the tuples s = [cfg, interval]. cfg = (x, y, θ)
accounts for robot’s position and heading. interval = [ts, tf ]
– is the contiguous period of time for a configuration, during
which there is no collision and it is in collision one time point
prior and one time point after the period.

When a planner considers a move to a cell it should
attempt generating k successors corresponding to k distinct
safe intervals. Figure 2 illustrates how safe intervals are
computed. First, we draw circumferences centered at that cell
of the radii equal to r(cur) + r(i), where r(cur) is the safety
radius of the current robot (the one we are planning for)

https://github.com/PathPlanning/AA-SIPP-m
https://github.com/PathPlanning/AA-SIPP-m


Fig. 2. Computing safe and collision intervals for a cell through which
passes two different robots.

and r(i) is the radii of the moving obstacles (high-priority
robots) that pass nearby. Then, using conventional formulas
of geometry, we compute the coordinates of the points at
which the circumferences intersect the corresponding path
segments. Knowing these points, as well at the obstacle
trajectories, we may now compute the collision intervals and
inverse them to get the safe intervals we are interested in.
Now the planner can attempt to generate the successors (one
per each safe interval). Whether an attempt succeeds depends
on whether the move to the target cell is valid w.r.t static and
dynamic obstacles.

3) Estimating the feasibility of the move w.r.t. static obsta-
cles: Naive approach to estimate the feasibility of the move
between the grid cells is to a) assume that robot fits inside
the cell, i.e. r(cur) ≤ 0.5l, where l is the size of the cell and
b) constrain the robot to move to 4 cardinal directions only.
In that case one can simply check whether the target cell is
traversable. We wish not to restrict agent’s size, e.g. to be
able to handle agents that are bigger then the grid cells, and
to handle moves between arbitrary grid cells. To do so we
developed the original procedure of estimating the feasibility
of the move w.r.t. static obstacles.

The idea behind the procedure is to identify which cells
are hit by the robot moving along the line connecting the
move’s endpoints and check their traversability. This is done
in a similar way to how algorithms from computer graphics,
e.g. Bresenham algorithm [27], identify pixels that lie along
the straight line between two fixed points – see Fig. 3. We
iteratively process the columns of the grid and for each
column compute how many cells residing up/down the line
to check (these cells are marked with “+”). We additionally
process the endpoints of the move to identify which cells
line inside the circumference of the given radius (these cells
are marked with “#”) and check them as well.

Instead of estimating the feasibility of the move w.r.t to
static obstacles in the described fashion, one might think
of a more conventional approach: enlarge obstacles by the
half-radius of the agent and treat it as a moving point. The
problem with that approach is two-fold. First, we need to
make such transformation for each agent of different size,

Fig. 3. Estimating the feasibility of the translation move for a robot of
arbitrary radius.

thus we will end up with storing and operating with multiple
workspaces. Second, as the disk-robots can be of arbitrary
radius, e.g. r = 0.6 cells, we may end up with marking some
cells as blocked only because they partially overlap the no-
way zone. Thus, we may fail to find the path although it
exists (due to some enlarged obstacles have merged).

4) Estimating the feasibility of the move w.r.t. dynamic
obstacles and computing earliest arrival time: If the trans-
lation to the destination cell is feasible, it must be performed
as soon as possible, following SIPP’s paradigm of reaching
each node at the earliest possible time. Problem is that
the immediate translation might lead to a collision with
a high-priority robot passing nearby or waiting/rotating at
the cell that lies on the way. We treat all cases uniformly
by considering wait/rotate moves as translations with zero
velocity. The only exception is when a high-priority robot
is waiting at its goal position. In this case the move for
the current robot can not be performed anyhow and the
corresponding successor is discarded.

To detect collision between two translating disks (one –
corresponding to the current robot, another – to the high-
priority one) we rely on the closed-loop formula from [28],
which gives yes/no answer to the collision query (it also
computes time to collision but we do not use it for planning
purposes). This formula takes disks radii and translation
velocities as arguments, so we are not restricted to predefined
move speeds and agent sizes anymore.

If collision occurs we increment the duration of the wait
action preceding the translation on some predefined value δ
and repeat. In such a way we find the time when current robot
can safely start moving. This time moment is guaranteed to
exist as dynamic obstacle will sooner or later move out of
the way. The earliest arrival time is now computed based
on the time spent for waiting and for translating. Finally,
the successor is generated in case two conditions hold: 1)
the departure time belongs to the safe interval of the source
node; 2) the arrival time belongs to the safe interval of the
target node.

The proposed approach to compute the earliest arrival time
is straightforward and can be easily implemented compared
to the approach originally introduced in [21].



5) Handling rotations: Commonly multi-agent path find-
ing solvers assume that an agent do not need to rotate before
translation. In the studied domain this assumption does not
hold. Fortunately, as we do not discretize timeline into the
timesteps we can naturally plan for rotations of any duration
and on any angle needed, by simply assuming that before
translating robot spends (θ′ − θ)ω time units for rotating,
where ω is rotation speed, θ is current heading and θ′ is
the desired heading. As said before, waits and rotations are
treated uniformly when checking for collisions, so, from the
collision-avoidance perspective, rotation is equivalent to wait
action. Thus, rotation actions of arbitrary duration can be
seamlessly embedded to the suggested planning framework
reaffirming its versatility.

C. Increasing robustness

When it comes to real robots one can not expect perfect
execution, which might lead to collisions although the plan
is valid. To increase the robustness of the generated solutions
we suggest two approaches. First, one can inflate the robots’
size thus introducing extra-safety zone around them. We can
do so by virtue of the proposed collision checking routines
that are not tailored to specific size. Second, one can add
additional wait of some arbitrary duration, say d, before any
translation move when planning. At the execution phase, in
case a robot fails to arrive to the waypoint on time, it has
to wait before next move not d but d − delay timepoints,
where delay is the amount of time the robot is late. Thus,
chances are each translation move actually starts on time and
the path following error is discharged (at least partially). We
evaluated both suggested approaches on real robots and they
showed convincing results. More sophisticated approaches,
e.g. the one described in [18], might also be realized within
the suggested framework.

IV. EXPERIMENTAL EVALUATION
A. Simulated experiments

By conducting experiments in simulation we pursued
two aims. First, we wanted to assess how the suggested
algorithm scales to large number of robots. Second, we
wanted to compare it to direct competitors. Unfortunately
the second aim is hard achieve as, to the best of authors
knowledge, at the moment of writing this paper there existed
no other centralized multi-agent path finding solver that
simultaneously (and without pre- or post-processing) handles
rotations and translations into arbitrary direction, supports
actions not tied to discrete timeline, supports varying robots’
size and speed. At the same time the prominent decentralized
algorithm – ORCA [1] – supports (almost) all of those
features (ORCA does not support rotate actions explicitly
but rather adjusts robots’ velocity at a high rate that can be
considered analogous to rotation). Thus, we chose it for the
comparison. The source code of both algorithms is publicly
available1, 2. Video of the selected experiments can be found
at https://youtu.be/Fer_irn4BG0.

1https://github.com/PathPlanning/AA-SIPP-m
2http://gamma.cs.unc.edu/RVO2/

1) Empty hall: 100 meta-instances accommodating 300
robots were generated on empty 64 × 64 grid. Three types
of robots were involved. Robots of the first type are small
and fast: their radius equals 0.3 cells and translation speed is
1.5 cells per time unit. Second type robots translate with the
speed of 1 cell per time unit and their radius is 0.5. Robots of
the third type are large and slow: their radius equals 1.0 and
translation speed is 0.5. Rotation speed is 180◦ per time unit
for all robots. Each meta-instance contained 100 robots of
each type. Start and goal locations and headings were chosen
randomly. During experimental evaluation we transformed
each meta-instance to the instance with the specific number
of robots. We started with 5 robots of each type, i.e. 15
robots on a map, and then gradually increased the number
up to 300 of robots. Time limit was set to 1 minute. If the
algorithm was not able to produce a solution within allotted
time, we stopped it and count this run as failure.

The following parameters were used for AA-SIPP(m).
Robots were assigned initial priorities based on the Euclidean
distance between start and goal – the lower the distance,
the higher the priority was. The value for the Start safe
interval was set to 3. We used deterministic re-scheduling
in case of failure by raising the priority of the failed robot.
For ORCA we set time boundary equal to 10, sight radius
to 15 and maximum neighbors to 15. These values were
chosen empirically based on the preliminary evaluation of
AA-SIPP(m) and ORCA.

Resultant metrics are shown on. Fig. 4. We average
across the instances that were successfully solved by both
algorithms. No results for AA-SIPP(m) for 285 and 300
agents are given due to the low success rate.

Overall, AA-SIPP(m) managed to solve all the instances
with up to 210 robots, while ORCA eventually failed even
when 45 robots were involved. Densely populated environ-
ments posed a problem to AA-SIPP(m). When the number
of robots exceeded 240 AA-SIPP(m) almost always required
re-scheduling and often the time was out. As a result AA-
SIPP(m) solved less than 10% of instances with 285 or 300
agents while the success rate of ORCA dropped to about
50-60%.

AA-SIPP(m) always outperforms ORCA in terms of flow-
time and almost always in terms of makespan. When the
number of robots is low ORCA’s flowtime is 10-15% worse.
As the number of agents grows up and reaches 150, the
difference becomes more than 50%. In terms of makespan the
difference is not so significant and is about 4% on average.

2) Non-empty hall: To evaluate the algorithms’ perfor-
mance in non-empty environments we added 10 static ob-
stacles to the map. Each obstacle was a rectangle formed
of 20× 2 cells. To let ORCA avoid them we used the code,
proposed by the algorithm’s authors, that builds the visibility
graph and finds a reference path for each robot on this graph
using Dijkstra’s algorithm.

The results are presented in Fig. 5. In contrast to the
previous tests, success rate of ORCA is not 100% even for 15
agents. In terms of solution cost AA-SIPP(m) shows much
better results than ORCA. When the number of robots is low

https://youtu.be/Fer_irn4BG0
https://github.com/PathPlanning/AA-SIPP-m
http://gamma.cs.unc.edu/RVO2/


Fig. 4. Results on the 64x64 empty grid. OX-axis is the number of agents (on all charts). Success rate is in percent, runtime – in seconds, flowtime/makespan
– in time units.

Fig. 5. Results on the 64x64 grid with 10 rectangular obstacles. OX-axis is the number of agents (on all charts). Success rate is in percent, runtime – in
seconds, flowtime/makespan – in time units.

their results are rather close, but when the number of agents
exceeds 60 the difference becomes significant and reaches
about 2x in flowtime and almost 40% in makespan.

3) Summary: Principally, AA-SIPP(m) scales well to
large number of robots in simulation. When static obstacles
are present AA-SIPP(m) significantly outperforms ORCA
no matter how many robots are involved. Success rate is
higher and the flowtime/makespan is notably lower. The only
advantage of ORCA is lower runtime, which is predictable
as it is a reactive navigation algorithm based on a rather
simple collision-avoidance strategy compared to deliberative
planning via heuristic search performed by AA-SIPP(m).
When there are no obstacles and the number of robots is
moderate AA-SIPP(m) solves more instances than ORCA
and provides solutions of better quality. The only case when
ORCA can be considered preferable is when the map is
empty and the number of robots is very high (more than
285 in our case).

B. Evaluation on the wheeled robots

We conducted experiments with 6 identical differential
drive robots depicted on Fig. 1a. Each robot is 21x21 cm in
size and is able to move with maximum speed of 10 cm per
second (that was the speed we used for planning). Rotation
speed is 24◦ per second. Each robot is equipped with the
colored marker, that is tracked by the external vision-based
navigation system composed of the 6 web-cameras, and with
a APC220 radio module to communicate with the central
computing station. The latter is the PC laptop that runs
Ubuntu and ROS. We implemented ROS modules for i)
retrieving, filtering and processing the video-stream from the
cameras; ii) localizing the robots, i.e. computing (x, y, θ)
state for each robot; iii) communicating with the robots, i.e.
sending them the next action of a plan to execute. Action
execution is performed locally, i.e. using the controllers
installed on the robots. The PID regulator is used to maintain
near-constant translation and rotation velocity.

The polygon is depicted on Fig. 1c. It is 6x4.8 m bounded
rectangle containing 3 obstacles. This polygon was repre-
sented as 108 × 72 grid (cell size was 5 cm). For planning
purposes robots were modelled as disks. The minimum
radius we used was 15 cm which corresponds to almost-
zero safety zone for a robot, as when it rotates it describes
a circle of radius 14.8 cm.

Before evaluating how well AA-SIPP(m) plans are ex-
ecuted by the robots, we have run a preliminary series
of experiments with only one robot involved, aimed at
estimating the accuracy of trajectory execution. We executed
2 different trajectories 20 times each and tracked the position
of the robot to compare the executed trajectory against the
planned one. We discarded the heading and compared only
(x, y) components of the trajectories. The average RMSE
turned out to be 30.65 cm, that is 1.45 of robot actual size.

The error is quite big so we conducted AA-SIPP(m) eval-
uation on 6 robots, setting the radius of the disk modelling
each robot to be 15, 25 and 35 cm. First, we planned without
adding waits, then added 5s waits before each translation
(and use these waits to compensate delays of reaching the
waypoints). 10 different solvable instances were generated.
Thus, in total 10 × 3 × 2 = 60 experimental runs on real
robots were made.

The results are depicted on Fig. 6. Executing trajectories
that were planned without inflating the safety zone and
without utilizing add-waits technique leads to collisions in
100% of cases. Inflating the safety zone and using wait
augmentation made the produced solutions much more robust
and suitable for execution by the robots. In fact, 100% of
plans were safely executed when the radius was 35 cm and
5 s waits were added before each translation. The price
one has to pay for such a robustness is a 2x increase in
flowtime/makespan when compared to ideal plans, i.e. the
ones that were constructed w/o waits for 15 cm disks (see
Fig. 6 on the right).



Fig. 6. Left: Percent of safely executed instances when planning for
different robots’ size and with/without wait augmentation technique. Right:
flowtime/makespan overhead compared to the ideal plan, i.e. the one that
was obtained for radius = 15 cm and without wait augmentation.

In general, the suggested planner proved to be a flexible
and versatile tool in practice. After appropriate tuning it
was capable of providing robust solutions that were safely
executed by real robots in the absence of perfect localization
and path following.

V. CONCLUSIONS AND FUTURE WORK

In this work we suggested an enhanced multi-agent path
finding algorithm based on prioritization and safe interval
path planning that lifts numerous assumptions characteristic
to the algorithms of this kind. The resultant planner supports
varying robots’ size, translation/rotation speeds, non-fixed
moves’ durations etc. and is particularly suitable for differ-
ential drive wheeled robots. One of the directions of future
research is increasing the computational efficiency of the
algorithm, another one is applying the proposed techniques to
the planners that do not rely on prioritization and guarantee
completeness/optimality, e.g. CBS-planners.

ACKNOWLEDGMENT

This work was supported by the Russian Foundation for
Basic Research (project #18-37-20032), RUDN University
Program 5-100, special program of the presidium of Russian
Academy of Sciences

REFERENCES

[1] J. Van Den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” Robotics research, pp. 3–19, 2011.

[2] D. Le and E. Plaku, “Cooperative multi-robot sampling-based motion
planning with dynamics,” in Proceedings of The 27th International
Conference on Automated Planning and Scheduling (ICAPS 2017),
2017, pp. 513–521.

[3] M. Čáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Transactions on Automation Science and Engineering, vol. 12, no. 3,
pp. 835–849, 2015.

[4] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in Proceedings of The 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2011), 2011, pp. 3260–3267.

[5] R. Barták, J. Švancara, V. Škopková, and D. Nohejl, “Multi-agent path
finding on real robots: First experience with ozobots,” in Proceedings
of the 16th Ibero-American Conference on Artificial Intelligence
(IBERAMIA 2018), 2018, pp. 290–301.

[6] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[7] H. Ma and S. Koenig, “AI buzzwords explained: multi-agent path
finding (MAPF),” AI Matters, vol. 3, no. 3, pp. 15–19, 2017.

[8] T. S. Standley, “Finding optimal solutions to cooperative pathfinding
problems,” in Proceedings of The 24th AAAI Conference on Artificial
Intelligence (AAAI 2010), 2010, pp. 173–178.

[9] B. de Wilde, A. W. ter Mors, and C. Witteveen, “Push and rotate:
cooperative multi-agent path planning,” in Proceedings of the 12th In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2013), 2013, pp. 87–94.

[10] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant., “Conflict-based
search for optimal multiagent path finding,” Artificial Intelligence
Journal, vol. 218, pp. 40–66, 2015.

[11] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Proceedings of The 7th Annual Symposium on Combina-
torial Search (SoCS 2014), July 2014, pp. 19–27.

[12] W. Hönig, T. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian,
and S. Koenig, “Multi-agent path finding with kinematic constraints.”
in Proceedings of The 26th International Conference on Automated
Planning and Scheduling (ICAPS 2016), 2016, pp. 477–485.

[13] T. Walker, N. R. Sturtevant, and A. Felner, “Extended increasing
cost tree search for non-unit cost domains,” in International Joint
Conference on Artificial Intelligence (IJCAI 2018), 2018.

[14] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[15] R. Barták, J. Švancara, M. Vlk, et al., “A scheduling-based approach
to multi-agent path finding with weighted and capacitated arcs,” in
Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS 2018), 2018, pp. 748–756.

[16] J. Li, P. Surynek, A. Felner, H. Ma, and S. Koenig, “Multi-agent path
finding for large agents,” in Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI 2019), 2019, p. in press.

[17] H. Ma, W. Hönig, T. K. S. Kumar, N. Ayanian, and S. Koenig,
“Lifelong path planning with kinematic constraints for multi-agent
pickup and delivery,” in Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI 2019), 2019, p. in press.

[18] M. Čáp, J. Gregoire, and E. Frazzoli, “Provably safe and deadlock-
free execution of multi-robot plans under delaying disturbances,”
in Proceedings of the 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2016), 2016, pp. 5113–5118.

[19] G. Wagner and H. Choset, “Path planning for multiple agents under
uncertainty,” in Proceedings of The 27th International Conference on
Automated Planning and Scheduling (ICAPS 2017), 2017, pp. 577–
585.

[20] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, and N.-F. Zhou,
“Robust multi-agent path finding,” in Proceedings of the 11th Annual
Symposium on Combinatorial Search (SOCS 2018), 2018, pp. 2–9.

[21] K. Yakovlev and A. Andreychuk, “Any-angle pathfinding for multiple
agents based on SIPP algorithm,” in Proceedings of The 27th Inter-
national Conference on Automated Planning and Scheduling (ICAPS
2017), 2017, pp. 586–593.

[22] M. Erdmann and T. Lozano-Pérez, “On multiple moving objects,”
Algorithmica, vol. 2, pp. 1419–1424, 1987.

[23] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching with
consistent prioritization for multi-agent path finding,” in Proceedings
of the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019),
2019, p. in press.

[24] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for
prioritized path planning of multi-robot systems,” in Proceedings of
The 2001 IEEE International Conference on Robotics and Automation
(ICRA 2001), vol. 1, 2001, pp. 271–276.

[25] A. Andreychuk and K. Yakovlev, “Two techniques that enhance the
performance of multi-robot prioritized path planning,” in Proceedings
of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2018), 2018, pp. 2177–2179.

[26] M. Phillips and M. Likhachev, “SIPP: Safe interval path planning for
dynamic environments,” in Proceedings of The 2011 IEEE Interna-
tional Conference on Robotics and Automation (ICRA 2011), 2011,
pp. 5628–5635.

[27] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems journal, vol. 4, no. 1, pp. 25–30, 1965.

[28] S. J. Guy and I. Karamouzas, “Guide to anticipatory collision avoid-
ance,” in Game AI Pro 2: Collected Wisdom of Game AI Professionals,
S. Rabin, Ed., 2015, ch. 19, pp. 195–208.


