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Abstract— Service robots performing tasks in human en-
vironments constantly face changes due to the dynamic of
the environments. Such robots need to reason about their
surrounding for a better understanding of it. Besides, it is
important to demonstrate capabilities that potential users would
find useful, thus validating the development of such systems.
One of these capabilities is to help a person to find what
she or he is looking for. This mundane task of searching
for an object is highly relevant in showing the non-expert
user that a robot can understand the world. In this paper,
we propose an efficient search strategy to find target objects
that have not been seen before, based on the reasoning about
in which scenes and with which objects they co-occur. Our
method consists of an inference process based on a Conditional
Random Field (CRF), that fuses the information about other
previously detected objects, the semantic floor map, and the
object-object/-room relations, to build a prediction map with the
most promising locations for an unseen object. To validate our
work, comparative experiments in simulated environments have
been performed, demonstrating the efficiency of our proposed
search strategy.

I. INTRODUCTION
Robots operating alongside humans are permanently con-

fronted with changing environments. Besides modeling the
robot’s surrounding, a major challenge is that the locations
of task-relevant objects is changing within a dynamic envi-
ronment. Despite the efforts to equip robots with complex
perception systems, both modeling and updating the robot’s
world representation remain open research questions. In
this work, we focus on the ability of a mobile robot to
find possible locations of movable objects in human living
environments. We are building on the environment modeling
from our previous work [1], and using the benchmark dataset
presented there with a new object-centric focus. Given a
query to search for a target object, several simple strategies
can be applied, e.g. random or room-by-room exploration.
Such brute-force strategies however do not consider multiple
information channels that we as humans would use, which
makes them inefficient and highly influenced by the robot’s
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Fig. 1. Given the semantic annotated floor plan and the acquired knowledge
about other objects within the apartment, the system generates a map
containing the probability to find an unseen target object in different
locations. Then it prioritizes the high-probability locations during the search.

starting position, as well as the dimensions and complexity
of the environment.

Thus, we propose a multi-cue search method for objects
in human living environments, that can appropriately com-
bine different types of prior knowledge, such as semantic
information and object-object/-room relations. Through this
a probabilistic understanding about the location of unseen
target objects is obtained, resulting in a more efficient search
strategy, as illustrated in Fig. 1. The core of our method is a
CRF [2] and its ability to encode known relations between
different observations. We fuse the information about the
locations where related objects were detected previously,
a semantic floor map, as well as co-occurrence statistics
of objects and room types, and determine the probability
of finding the object in a specific location. Thanks to the
rapid advancements in the field, very large images (in our
case floor-maps) can now be processed with complex CRF
models. While in [1] we used structured prediction [3], here
we opted for a fully connected model, for which efficient
inference is available as well in our use-case [4]. In this paper
we focus on the process of choosing the most promising
room where an unseen target object can be located. The in-
room exploration is beyond the scope of this work.

The main contributions of this work are: first, a search
method based on a probabilistic graphical model that can
efficiently determine a set of most likely locations of a
queried unseen target object, by exploiting co-occurrence
statistics mined from online datasets. Second, we conduct
a qualitative and quantitative evaluation on the Bosch Se-
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mantic Interpretation Challenge dataset [1] obtaining better
performance with respect to a baseline method. In addition,
we integrate the search method with a topological navigation
system [5] for performing the optimized search, in order
to show the benefits and feasibility of implementing our
approach in mobile robots.

II. RELATED WORK

The interaction with objects has become crucial in order
to build a semantic representation of the space [6]. Research
focused on object search strategies appeared in the literature
since the 70s. Early works like [7], [8] propose to extend the
search for one or several intermediate objects that commonly
have a relation with the actual target object. In [9] an indirect
search method considering distance and directional relations
between objects is proposed. More recently, Loncomilla et
al. [10] proposed a Bayesian based method for searching
through secondary objects. Even though this strategy can
reduce the computational costs as well as the search area,
sometimes the spatial relationship between both, target and
intermediate object, is not strong or does not exist. Further-
more, the difficulty of accurate object detection is still valid.

Other approaches address the problem of searching for
objects through direct strategies. Veiga et al. [11] use infor-
mation about objects and their relations to obtain uncertainty
estimates about the object location in a domestic environ-
ment. In [12] the search strategy is based on the Markov-
chain Monte Carlo method and includes the knowledge about
which objects tend to be close to one another. Kunze et
al. [13] incorporate ontological concepts and relations for
reasoning about the locations of object classes. Experiments
show increasing efficiency in the object search process by
minimizing the movement cost and the number of processed
images. Aydemir et al. [14] combine semantic information in
a partially observable Markov decision process. The depen-
dencies between objects and scene categories are modeled
through a probabilistic chain graph model. In [15] a model
based solely on temporal relationships between objects and
search locations is proposed. Joho et al. [16] pose the task of
looking for objects as an exploration problem and propose a
reactive search technique which determines where to explore
next based on local information about objects obtained by
radio-frequency identification sensors. The approaches de-
scribed above consider object and scene relations separately
and most of them have been evaluated in small environments.

With the rise of deep learning techniques, some works
apply more complex methods to find objects. In [17] and
[18] the search problem is approached through a deep
reinforcement learning model that learns action policies to
reach the target object. In [17] the target object has been
previously seen and the semantic segmentation and the depth
information are computed in each robot observation. Druon
et al. [19] propose a visual navigation method based on
the context information of previously detected objects to
calculate the similarity to the target object. The main draw-
back of these methods is that they are time-consuming and
demanding and sometimes fail due to the agent getting stuck

in the same place repeating the same actions. Confusions
between objects with similar semantics can also appear.

In our work, we propose a direct search strategy that
appropriately combine different types of prior information.
We consider the relations between objects and rooms, as well
as their influence on the task of finding new unseen objects.

III. GENERAL OVERVIEW

Our approach is based on the assumptions that objects
mainly occur in specific environments (e.g. a pan in a
kitchen) and that objects often co-occur with other objects.
Fig. 2 shows an overview of the proposed method. As it can
be seen, the core element is the fully connected CRF [2],
which fuses the information about some previously detected
objects, a semantic floor map, as well as object-object/room
relations to calculate the probability of finding the target
object within the corresponding grid-cell.

Fig. 2. Our proposed object search method. A 2D representation of the
environment, 3D object detections and the semantic information of the
environment are combined properly through a fully connected CRF to obtain
the most probable room where a target object is located.

Initially, the method assumes as input information: first,
a 2D representation of the environment which is generated
previously by the robot as shown in [20]. Second, we feed
a room-wise semantic annotated floor plan, as proposed in
[1], in combination with object-object and object-room co-
occurrences into the CRF. The co-occurrences have been
built based on the NYU-Depth V2 dataset [21] and the
COCO dataset [22]. Third, the 3D information of some
previously detected objects is considered to feed our CRF.
A Faster R-CNN object detector [23] is trained on a large
amount of different object classes included in COCO dataset.
Thereby, given the robot’s location and the corresponding
depth image of the detector’s RGB input image, the detected
objects are projected from 3D (by taking the median depth in
the bounding box) into the 2D floor-map of the environment.
Finally, the resulting object-annotated floor-map is further
input of the CRF. Then, during the inference process the CRF
outputs a heat map visualizing the most probable locations
(rooms) for the unseen target object. The method prioritizes
the high-probability locations during the search. Next, the in-
formation about the most probable room is incorporated into



our previously developed topological navigation system [5]
to generate an optimal search plan through the environment
to reach the desired room.

IV. BUILDING OBJECT AND ROOM
ASSOCIATIONS

Associating objects of daily use with certain categories
of places facilitates the search for an object in a specific
room context among other task [24], [25]. In the same way,
some objects tend to be near or far from others. We include
both concepts by exploiting object-room and object-object
occurrences. While for the object-room relations the statistics
presented in [1] based on NYU-Depth V2 dataset are ap-
plied, the object-object co-occurrences are built based on the
COCO dataset [22]. The object categories that appear among
our detections have been identified, and the probabilities
that they occur close to other objects from this subset are
computed. Working with co-occurrences generally implies
the use of similarity measures to normalize the data. The
associations between objects have been computed through
the Jaccard Similarity Index which enables to compare the
similarity, dissimilarity, and distance of members for two
sets [26]. Fig. 3 shows the object-object co-occurrences of
the object categories selected for this work.

Fig. 3. Object-object co-occurrences of the object categories detected in
our dataset. Blue color represents the lowest value and yellow color the
highest value. All remaining values get a color based on the probability.

The Jaccard coefficient J(Ak, Al) ∈ [0, 1] is the ratio
between the intersection and the union of the two sets Ak
and Al:

J(Ak, Al) =
|Ak ∩Al|
|Ak ∪Al|

=
|Ak ∩Al|

|Ak|+ |Al| − |Ak ∩Al|
, (1)

where Ak and Al depict subsets of the set of training
images I in which object k respectively l is detected. The
higher the value of J(Ak, Al), the greater is the probability
of the two objects k and l occurring close to each other.
Through this, helpful semantic cues are obtained that are
subsequently incorporated as inputs into our search method.

V. MODELING THE METHOD TO SEARCH FOR
OBJECTS WITH CRF

In this section, we present a detailed explanation of how to
fuse the different input data to obtain a robust estimate of the
location of an unseen target object. Graphical models provide
a natural way to represent the dependence of some variables
with others which makes them suitable for this use case. A
CRF [27] is a discriminative undirected probabilistic graph-
ical model that considers known relationships (contexts)
between observations to construct consistent predictions.
Here, the model generates a pixel-wise prediction in the
floor-map about the probability of the target object’s location.

Consider a set of random variables X = {X1, . . . , XN}
where Xi corresponds to pixel xi of the 2D geometric floor-
map G ∈ Rmxn, obtained by [20]. The Gibbs energy function
that characterizes a fully connected CRF to obtain the final
probability of finding a target object in pixel xi is:

E(X|G) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj) (2)

where i and j range from 1 to N . The pixel-wise unary
potential is depicted as ψu(xi), while the pairwise potential
ψp(xi, xj) is modeled as mixtures of Gaussian kernels.

The unary potential is calculated independently for each
pixel in G by fusing the object detector output and the
semantic room annotation. Given a target object ot, the
softmax output for a previously detected object od in pixel
xi is defined as p(od). Hence the unary potential is:

ψu(xi) =

{
p(od) ∗ J(ot, od) if p(od) > 0

J(ot, ξs) otherwise
(3)

where J(ot, od) is the co-occurrence probability between
the objects ot and od, and J(ot, ξs) is the co-occurrence
probability of finding the target object ot in the room ξs.

The pairwise potentials represent the relationships be-
tween all pair of pixels, that in our model have the form:

ψp(xi, xj) = µ(xi, xj)

K∑
m=1

ω(m)k(m)(fi, fj) (4)

where, similar to [4], µ(xi, xj) is a label compatibility
function and ω(m) a linear combination weight. The term
k(m)(fi, fj) defines a Gaussian kernel where fi and fj are
feature vectors for pixels xi and xj in an arbitrary feature
space. We implement two kernels which are defined as:

ω(1)exp(−|pi − pj |
2

2θ2α
− |Ii − Ij |

2

2θ2β
)︸ ︷︷ ︸

appearance kernel

+ω(2)exp(−|pi − pj |
2

2θ2γ
)︸ ︷︷ ︸

smoothness kernel

(5)
These kernels have been defined in terms of the color

vectors Ii and Ij and the position vectors pi and pj . The
parameters θα, θβ and θγ control the weighting within a
kernel and have to be set experimentally. The appearance
kernel is a color-dependent term where the features are
composed of the pixel location and the RGB pixel values.
The second kernel, smoothness kernel, removes local isolated



outliers within the map. The scalars ω(1) and ω(2) define
the weights which must also be adjusted. In this way, the
inference process is applied in the whole environment to
merge all the potentials and thus obtain a 2D floor-map with
the final probabilities in each pixel for the object sought.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

To evaluate the performance of our proposed search model
all the experiments have been conducted using the Bosch
Semantic Interpretation Challenge dataset [1]. This dataset
consists of 10 apartments from real homes that contains
for each a 3D mesh, rendered mesh views from various
viewpoints and a 2D projected ground truth floor plan with
annotated room types: bedroom, bathroom, living room,
dining room, storage room, kitchen, office, laundromat, child
room, and corridors. As target objects we selected seven
objects, which normally occur in a typical house: chair, bed,
bottle, cup, bowl, tv and book. Since this dataset does not
contain object annotations and to our knowledge no other
datasets for the task of object search exists, the Ground Truth
(GT) object locations are generated by applying a Faster R-
CNN object detector and map onto the 2D floor plan.

Besides, we can not place new objects into the apartments
of the dataset and scan it again, we simulate this process
by removing an object from the previous detections, and
then, ask to start searching for it. With this, our search
method receives a modified map with some missing objects
guaranteeing that the target object was not seen before. This
way we have an unbiased GT location for the object, and all
the information is equivalent to it being placed there after the
initial scan. In our experiments we use the library presented
in [4] to implement our CRF based model. Also, our method
has been integrated with a topological navigation system [5]
to obtain the best path to reach the most probable room.

B. Parameters Adjustment

In our experiments the parameters: ω(1), ω(2), θα, θβ and
θγ of our CRF (5) are set experimentally. Due to a good
train-test split is not possible, as the dataset is very small,
to adjust these parameters we have performed a grid-search
study. We define ω(1) as a parameter between 0 and 1 and
ω(2) = 1 − ω(1) and the parameter θ = θα = θβ = θγ .
For each value of ω(1) and θ, we evaluate our CRF based
method in all the apartments and target objects. Fig. 4 shows
a heat map of testing our CRF based method with different
parameter values. The darker the color the better are the
results predicting the most probable room. For a wide range
of values for ω(1) and θ the method obtains good results.

This study shows that our CRF based method is robust
to the choice of the relative weight of the pairwise poten-
tials, with a wide range of values performing well on all
apartments. Where ω(1) ∈ [0.31, 0.41] would describe the
range of values that works best for our method. The standard
deviations have a very limited effect, because we are ranking
complete rooms, thus the variance is not too sensitive. This

Fig. 4. Heat map of the parameters used by our CRF based method. The
heat map values correspond to the mean order of the GT room.

suggests that the parameters can be intuitively selected with
good generalization to unseen situations.

C. Quantitative CRF results

Fig. 5 shows an example of the proposed object search
method. Three different objects (bottle, cup and bowl), which
were not seen in advance, are searched in three apartments
(1, 2 and 5) of the Bosch dataset. First, the 3D detections
of some previously detected objects are projected in the
2D floor plan (a). Based on the scene labeled maps (b),
an inpainted process is applied to each room in order to
eliminate the walls (c). Since walls do not contain valuable
information, their unary potential is 0 which negatively
affects the final outcome. Due to the fully connected charac-
teristic of the CRF the 0 potential would radiate into the room
which would result in higher probabilities in the center of the
room than closer to the walls. Then, the unary potentials are
calculated (d), fusing the object-object/-room probabilities
and the information about the previously detected objects.
Through this, an initial probability map is obtained for the
target object in each room. After that, the pairwise potentials
are computed, resulting in a final heat map for the target
object location (e). The GT room used for comparisons can
be seen in (f). Lighter colors on the heat map represent
more likely locations for the target object. The darker areas
represent lower probabilities to find the target object there.

To evaluate the influence of the potentials in our method,
Fig. 6 shows the results of the ranking of the GT room for
each target object in each apartment, by applying only unary
potentials and incorporating the pairwise potentials into the
search process. The y-axis represents the frequency with
which the GT room is identified as the most likely room to
find the target object. The x-axis corresponds to the ranking
of the GT room. In addition, Table I shows the results of
evaluating our method using only unary potentials and when
incorporating our CRF based method in the 10 apartments
of the Bosch Semantic dataset.

TABLE I
PERCENTAGES OF HITS OF THE GROUND TRUTH ROOM FOR THE 10

APARTMENTS USED DURING THE EXPERIMENTS.

Apt. 1 2 3 4 5 6 7 8 9 10 Avg.

Unary 0.33 0.17 0.17 0.0 0.17 0.20 0.50 0.40 0.43 0.14 0.25

CRF 0.67 0.67 0.50 0.67 0.67 0.80 0.83 0.60 0.43 0.57 0.65



Fig. 5. The proposed search method applied to three apartments searching for three unseen objects. a) shows the projection of some previously detected
objects, b) corresponds with the scene labeling of the apartment, c) is the inpainted scene, d) the unary potential heat map, e) the final CRF heat map and
(f) the ground truth created for comparisons.

Fig. 6. Histograms of the ranking of the GT room for each target object in
each apartment. The GT room occupies the first position many more times
when using our CRF approach compared to applying only unary potentials.

As it can be seen, our CRF approach generates better
results, with the highest percentage of times that the GT
room is detected in the first place. 65% of the times the
most likely room corresponds to the GT room when our
CRF based search method is applied. In addition, 75% of
the times the GT room is classified as the first or second
option to look for the object. On the other hand, 25% of the
times, the GT room is classified as the first option to find the
objects when the model only considers the unary potential
information. Furthermore, the average of the final probability
in the most likely room is 89.23% considering only unary
potentials in (5), which increases to 97.16% when pairwise
potentials are included in our CRF based method.

D. Integration with a Topological Navigation System

In order to show the applicability and to evaluate the
efficiency of our proposed method, we integrate it with the
topological navigation system presented in [5]. The test has
been carried out in the apartment 1 of the Bosch dataset using
the Gazebo simulator. We have selected a differential drive
robot (20cmx30cm), equipped with a Hokuyo URG-04LX-
UG01 laser to map the environment. Three target objects
were selected: a bottle, a bed and a chair. Initially, the robot
is placed on the starting point to begin executing the search

task. The most likely room information generated by our
search method feeds the navigation system that calculates the
optimal path to reach it. The path planning process is based
on the Dijkstra algorithm. The decision about where to go is
based on the maximum utility, that is, the robot chooses the
room with the highest probability given by our CRF based
approach. In the case of ambiguities, meaning several rooms
with the same probability, the model considers the minimum
path. Table II compares the search task by applying only
unary potentials and incorporating pairwise potentials to find
the target object. The distance traveled, the time spent on the
search task and the number of steps through which the robot
has to pass until it reaches the goal are calculated.

TABLE II
RESULTS OF THE SEARCH FOR OBJECTS THROUGH THE TOPOLOGICAL

NAVIGATION SYSTEM.

Unary CRF
Target
object

distance
(m)

time
(s)

steps
distance

(m)
time
(s)

steps

bottle 14.81 12.21 2 3.39 3.17 1
bed 27.55 15.64 3 12.20 8.06 1

chair 23.53 13.63 3 10.01 8.20 1

The results show that our CRF based method requires
less distance and invests less time going to the room where
the target object is located compared to using only unary
potential information. Regarding the number of steps, in
most cases using the estimates of the CRF method, the room
with the highest probability corresponds to the correct room.
Hence, the robot tends to make only one step to reach the
goal. In other cases, when the correct room is not the most
likely, the planner directs to the first room and then re-plans
to the next most likely room and so on until it reaches the GT
room. The results from the experiments carried out in this
work demonstrate the effectiveness, robustness and validity
of our approach to the task of searching for an object when
information of the environment is appropriately considered.



E. Comparison with a Baseline Method

To obtain fair comparison results, the methods have to be
evaluated in the same conditions, target objects and object
poses. To the best of the authors’ knowledge, there is no
dataset available for comparison of object search methods
in human living environments. To overcome this issue, we
have designed a baseline method to compare with our CRF
model using the Bosch Semantic dataset. While in the CRF,
cues from several methods and information channels are
merged, one could also think of a Convolutional Neural
Network (CNN) learning implicitly a mapping from visual
cues in an image to the probability of finding the target object
within this camera view. Based on this idea, we implement
a baseline method that consists of four main steps (Fig. 7).

Fig. 7. Baseline method. Using transfer learning a CNN is retrained to
predict the most probable location of a target object in each of the 10
apartments of the Bosh dataset.

First, the fully connected layer of a pre-trained Inception
V3 model is retrained on the COCO dataset. The dataset
contains images with and without the target objects, leading
to a binary classification problem. This way, the CNN
implicitly learns the object-object/-room relations. Second,
the CNN is applied to image frames within apartments of
the Bosch dataset. As a result, the probability of the target
object being in each image is obtained. Third, the predicted
output for each frame is associated with the 3D point cloud
according to the viewpoint. At the end, each seen 3D point
of the cloud has a probability of the target object. Then,
the probability of finding the target object in each room
is obtained by merging the probabilities of the points that
belong to each room. To do that, we apply a majority voting
to obtain the maximum probability found in each room.
Through this, the highest probability of each room associated
with the target object is obtained.

Fig. 8 shows the results of comparing the baseline method
with our CRF based approach in the estimation of the most
likely room where the unseen target objects can be located.
This method has been executed on the same dataset and
looking for the same target objects as described in section
VI-A. As it can be seen, our CRF approach outperforms the
baseline method, with the highest percentage of times that
the GT room is detected in the first place. Table III shows the
results of evaluating both approaches in the 10 apartments
of the dataset. With the baseline method, only 42% of the
times the most probable room corresponds to the GT room

compared to 65% when the CRF based model is applied.
Moreover, 75% of the times the GT room is classified as
the first or second option applying our CRF based method
compared to the 55% when the baseline method is applied.

Fig. 8. Comparison of the ranking of the GT room for each target object
in each apartment using our CRF approach and the baseline method.

TABLE III
PERCENTAGES OF HITS OF THE GROUND TRUTH ROOM FOR THE 10

APARTMENTS APPLYING OUR CRF METHOD AND THE BASELINE.

Apt. 1 2 3 4 5 6 7 8 9 10 Avg.

CRF 0.67 0.67 0.50 0.67 0.67 0.80 0.83 0.60 0.43 0.57 0.65

Baseline 0.0 0.50 0.33 0.67 0.33 0.80 0.67 0.40 0.43 0.14 0.42

In addition, the average of the final probability in the
most likely room is 94.83% applying the baseline method
and 97.16% building the estimates with our CRF based
search method. Applying the baseline approach, in some
cases the model predicts objects that are not present in the
real detections. This is due to the method’s characteristic
training the network on objects related to context where
ambiguities might occur.

VII. CONCLUSIONS

In this work we proposed an efficient search strategy to
find target objects that have not been seen before in human
living environments. Our CRF based method considers ad-
ditional cues which influence the robots understanding of
its environment, namely the object and context relations as
well as semantic information. The presented experiments
demonstrate the usefulness and efficiency of our method to
estimate the most probable room where a target object can
be located. In addition, our method has been tested in the
whole Bosch Semantic dataset, that is built from 10 real
apartments, which demonstrates the flexibility to apply it in
different environmental conditions.

As future work, we plan to conduct tests in real-world en-
vironments and enhance the cost function of the topological
navigation model to optimize the calculation of the best path.
Likewise, we would like to study the influence of the walls
in the calculation of our search model based on CRF and the
incorporation of another type of semantic information.



REFERENCES

[1] M. Brucker, M. Durner, R. Ambruş, Z. C. Márton, A. Wendt, P. Jens-
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