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Abstract— In this paper, we present a system for incre-
mentally reconstructing a dense 3D model of the geometry
of an outdoor environment using a single monocular camera
attached to a moving vehicle. Dense models provide a rich
representation of the environment facilitating higher-level scene
understanding, perception, and planning. Our system employs
dense depth prediction with a hybrid mapping architecture
combining state-of-the-art sparse features and dense fusion-
based visual SLAM algorithms within an integrated framework.
Our novel contributions include design of hybrid sparse-
dense camera tracking and loop closure, and scale estimation
improvements in dense depth prediction. We use the motion
estimates from the sparse method to overcome the large and
variable inter-frame displacement typical of outdoor vehicle
scenarios. Our system then registers the live image with the
dense model using whole-image alignment. This enables the
fusion of the live frame and dense depth prediction into the
model. Global consistency and alignment between the sparse
and dense models are achieved by applying pose constraints
from the sparse method directly within the deformation of the
dense model. We provide qualitative and quantitative results for
both trajectory estimation and surface reconstruction accuracy,
demonstrating competitive performance on the KITTI dataset.
Qualitative results of the proposed approach are illustrated
in https://youtu.be/Pn2uaVqjskY. Source code for the
project is publicly available at the following repository https:
//github.com/robotvisionmu/DenseMonoSLAM

I. INTRODUCTION

Over the past decade, approaches to fusion-based dense
visual SLAM have demonstrated the ability to build high
fidelity dense 3D models of an environment facilitating
higher-level scene understanding, perception and planning
[1], [2], [3], [4]. However, given that these techniques
typically require active RGB-D sensors, their applicability
in outdoor scenarios has been limited. On the other hand,
sparse and semi-dense monocular systems have found a large
degree of success in these environments but are limited in
their resulting sparse or partially dense representations [5],
[5], [6], [7], [8], [9], [10]. Here, we investigate the potential
of recent results in monocular dense depth prediction in
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Fig. 1: Trajectory and dense reconstruction of an odom-
etry sequence from [11], [12]. (a) shows the final surfel
model produced by our system. The model contains ap-
proximately 16m surfels. (b) shows the estimated trajectory
alongside the ground truth trajectory. (c) shows an up-close
view of the reconstruction as the vehicle passes through an
intersection contained in (a).

combining these approaches’ strengths. In particular, we
employ dense depth prediction in developing a monocular
SLAM system that achieves comparable accuracy to sparse
camera tracking algorithms while allowing dense fusion-
based modeling of the environment. We demonstrate the
effectiveness of this approach by tracking and mapping an
environment from a single monocular camera attached to a
moving vehicle.

Using passive vision sensors over active sensors, such as
LiDAR, in autonomous driving SLAM systems has many
advantages. A calibrated monocular camera is inexpensive,
lightweight, and can be used as a direction sensor providing
rich photometric and geometric measurements of the scene
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at every frame. In contrast, LiDAR is expensive, heavy, and
produces a relatively sparse signal compared to the dense
measurements provided by a vision sensor. Indeed, recent
deep learning-based depth estimation and object detection
indicates that the accuracy advantage of LiDAR over monoc-
ular vision-based systems is closing [13].

On the other hand, monocular vision systems suffer from
ambiguity and drift in the estimated scale of the reconstruc-
tion [14] and are not as robust as stereo and multi-sensor
systems in texture-less regions and during fast camera motion
[6], [7]. Furthermore, with the exception of a few techniques
for dense and semi-dense map representations [15], [8], [16],
these systems produce sparse reconstructions which only
offer a coarse-grained description of the scene’s geometry
[17], [18], [19], [5], [20].

Multi-sensor platforms attempt to leverage the combined
advantages of monocular, inertial, stereo, LiDAR, and GPS
sensors. However, such platforms need careful internal and
external calibration, which can be done online to main-
tain synchronization and geometric alignment between the
sensors and, ultimately, achieve accurate performance. In
the autonomous driving domain, even the most carefully
calibrated rig will move and warp in real-time due to the
effects of heat, wear and tear of mechanical parts like tires,
variations in loading of the vehicle, and the knocks and
bumps inherent in driving on roads [21]. GPS comes with
its complexities, requiring line-of-sight with at least four
satellites to infer position, which can prove challenging in
urban environments [22].

More recently, several systems have emerged that rep-
resent the state-of-the-art in traditional monocular SLAM,
and visual-odometry performance [6], [20], [23], [24], [9],
[10], [8]. The ORB-SLAM open-source SLAM frameworks
[5], [20], [6] in particular represent the state-of-the-art in
monocular SLAM. Similar to PTAM, ORB-SLAM [20] splits
the SLAM problem into sub-problems that can be solved in
different threads; (i) a feature-based camera tracking thread
that runs in real-time; (ii) a local mapping thread that takes
keyframes extracted by the first thread and optimizes a
local area of the map around this keyframe using bundle-
adjustment (BA); and (iii) a global mapping thread that
integrates loop closure constraints and maintains global con-
sistency.

Visual SLAM systems based around the concepts of
dense alternation, every pixel fusion, and direct whole-
image alignment-based camera tracking, have shown that
it is possible to build dense, high-fidelity models of indoor
scenes in real-time with active depth sensors such as the Mi-
crosoft Kinect. These systems and the models they produce
have many benefits in downstream machine perceptions and
spatial reasoning tasks. They can produce ‘watertight’ maps
that model the continuous surface that underlies the scene.
For example, this allows them to synthesize accurate novel
views and realistically fuse augmentations into the scene
for AR effects [1], [3], [2], [4], [25]. High-resolution dense
models may become more necessary for robot planning in
the future to accommodate a broader range of scenarios (e.g.,

analyzing surface geometry in unevenly paved roads [26],
obstacle detection and avoidance [13], etc.).

More and more deep learning is being used to improve the
performance of SLAM systems. Broadly speaking, neural
networks have been applied in two critical areas within
the SLAM problem; in the representation of geometric and
visual information [27], [28], [29], and in overcoming the ill-
posedness of many of SLAM’s subproblems, for example,
depth estimation from monocular images [30], [31], [32],
[33]. Several systems have been presented that demonstrate
hybrid approaches to monocular visual SLAM and VO [34],
[27], [35], [36], while other approaches implement a fully
learned SLAM pipeline [37], [38]. In comparison to this
work, these systems have either not been designed with large-
scale fast, outdoor camera motion in mind [34], [27], [37],
[35], or do not produce dense models [36], [38].

The work most similar to our aproach is the dense surfel-
based fusion system of [39], combining camera tracking from
a sparse SLAM system (ORB-SLAM2 [20]) with a dense
fusion-based back-end. The substantial difference with the
current work is the degree to which they couple the sparse
and dense maps. In [39], a sub-mapping approach is em-
ployed where each surfel is anchored to a reference keyframe
from the sparse system. Local and global optimisations of
the keyframe poses by the sparse system are reflected in the
dense map by ensuring the pose of a surfel relative to its
anchor keyframe remains constant. In contrast, our system
maintains a much looser coupling between the sparse and
dense representations. The sparse pose is used to initialise a
dense alignment that registers the camera to the dense map
allowing for fusion of the current frame. Loop closures from
the sparse system are used to constrain a deformation graph
that non-rigidly deforms the surfels themselves. In this way,
the benefits of each system are leveraged, while the systems
themselves are only indirectly connected through 6-DOF
transformations and 3D constraints. Furthermore, we quan-
titatively demonstrate the effectiveness of our approach in
outdoor automotive environments using deep-learned depth
estimation.

The contribution of this paper is the development of a
system for live dense metric 3D reconstruction in outdoor
environments using a single RGB camera attached to a
moving vehicle. Although other researchers have reported
dense and semi-dense SLAM or dense VO approaches, to
the best of our knowledge, this is the first fully dense SLAM
system quantitatively evaluated on automotive scenarios.
The novelty of our approach lies in the use of a dense
depth prediction network [30] within a hybrid architecture,
combining state-of-the-art sparse feature tracking and dense
fusion-based visual mapping algorithms in a loosely coupled
fashion. We improve our previous approach to dense depth
prediction [30] for the SLAM application by the addition of
new regularization losses and better scale estimation.

Using the motion estimates from the sparse method to
overcome the large and variable inter-frame displacement
typical of outdoor vehicle scenarios, our system then registers
the live image with the dense model using whole-image



alignment. This allows dense depth prediction and fusion
of the live frame into the model. Global consistency and
alignment between the sparse and dense models are achieved
by applying pose constraints from the sparse method directly
within the deformation of the dense model. We evaluate
the method over the KITTI benchmark dataset, providing
qualitative and quantitative results for both the trajectory and
surface reconstruction accuracy.

II. A HYBRID APPROACH

We take a hybrid approach to dense monocular track-
ing and mapping. A feature-based SLAM system, ORB-
SLAM3[6], is used to provide an initial estimate of the
camera’s pose for each frame. The pipeline then follows a
dense alternation architecture, extending the ElasticFusion
(EF) SLAM system [3], in which the map is first held fixed.
At the same time, the camera is tracked against it, using
the initial pose estimate from the previous step. Once the
camera pose has been estimated, it can fuse the current
frame into the map. We densely predict per pixel metric
depth estimates using a SOTA self-supervised convolutional
neural network, UnRectDepthNet [30]. The various sub-
systems predominantly operate on different processors; the
GPU is used extensively by the dense alternation and depth
prediction network, while ORB-SLAM operates on the CPU.
Our hybrid architecture is summarised as follows:

1) A scale-aware depth prediction network is used to
estimate a metric depth map for each frame. An initial
estimate of the camera motion is made using ORB-
SLAM’s feature-based camera tracker, which is suited
to the fast motion of the vehicle.

2) The initial pose estimate is further refined by aligning
it to the current active model in view of the camera.

3) Live RGB images and corresponding predicted metric
depth maps are fused into a global dense surfel model
of the scene. The surfel model is divided into an
active and an inactive portion as per the original EF
algorithm.

4) When ORB-SLAM identifies a loop closure, we use
the resulting loop closure constraint within the EF
deformation graph to correct the geometry of the dense
surfaces. This brings the previously visited inactive
portion of the map back into alignment with the current
active portion. Importantly, this also keeps the different
map and camera trajectories of ORB-SLAM and EF
consistent.

Figure 2 shows the architecture of our system. In the
remainder of this section, we will describe how these key
elements are combined into one system that builds consistent
dense surfel models from a monocular camera attached to a
moving vehicle. The section provides complete coverage of
the system where the principal novelty is covered in II-A,
II-D, and II-E. We then present and discuss experimental
results that demonstrate the efficacy of our system in III.

A. Scale-aware depth estimation

Following UnRectDepthNet [30], we establish the same
structure-from-motion (SfM) framework for self-supervised
depth estimation. We carry out the view synthesis by employ-
ing the pinhole camera projection model. The final objective
consists of a photometric term Lp and an edge smoothness
regularization term Ls. In addition, the cross-sequence depth
consistency loss Ldc and the scale recovery approach are
employed. In the following paragraphs, we discuss the new
improvements that lead to a considerable gain in accuracy.

We employ feature-metric losses from [40], where dis-
criminative, Ldis, and convergent, Lcvt, losses are calculated
on the current frame’s, It’s, feature representation by incor-
porating a self-attention autoencoder to obtain robust global
features of the scene. The primary goal of Ldis and Lcvt is
to keep the optimization objective from getting trapped at
several local minima for low texture areas such as sky and
road. It is a crucial loss feature that uses image gradients
to penalize small slopes while emphasizing low-texture ar-
eas. The self-supervised loss landscapes are restricted from
forming proper convergence basins using first-order deriva-
tives to regularize the target features. However, enforcing
discriminative loss alone will not ensure that we reach the
best solution during gradient descent. As there exists incon-
sistency among first-order gradients, (i.e., gradients that are
spatially adjacent point in opposite directions), convergent
Lcvt loss is employed to enable gradient descent from a far-
off distance. It has a relatively large convergence radius and
expresses the loss to have uniform gradients throughout the
optimization step by supporting feature gradient smoothness
and large convergence radii accordingly. The total objective
Ldepth is

Ldepth = Lr(It, Ît′→t) + α Ls(D̂t) + ρ Ldc(D̂t, D̂t′) (1)

+ Lr(F̂t, F̂t′→t) + ζ Ldis(It, F̂t) + η Lcvt(It, F̂t)

Where F̂t is the estimated feature at time t, It is the current
colour image, D̂t the estimated depth map, Lr is the standard
reconstruction matching term, and α, ρ, ζ and η weigh the
smoothness term Ls, cross-sequence depth consistency Ldc,
discriminative Ldis and convergent Lcvt losses respectively.

Scale ambiguity is a challenging problem in monocular
depth estimation [41], [42]. As a result, an absolute value
is needed to serve as an anchor point, provided through a
measurement from another dedicated sensor to obtain actual
depth estimation. We use a combination of Velodyne point
cloud and calibration information to improve the estimation
of scale. We use Velodyne Lidar as ground truth and estimate
the scale factor by associating the calculation with the correct
pixel in the image plane, minimizing `2 loss. In addition, we
assume depth consistency across training and testing datasets.
It can be helpful in datasets with high pose variability, such
as KITTI, where the camera is still at the same height and
looking at the ground from the same perspective. We fit
a ground plane and use calibration information and known
camera height to find the scale factor. We use a combination
to improve our scale estimation.
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Fig. 2: An overview of our system architecture. UnRectDepthNet is used to estimate a depth map for the current live
camera image. ORB-SLAM then tracks the motion of the camera since the last frame. Internally ORB-SLAM continues
to extract keyframes and pass them to its local and global mapping threads. The sparse feature map on the right is used
internally by ORB-SLAM. Once the camera motion has been estimated, the pose is used to synthesize a dense view of the
current active surfel model. The pose estimate is further refined by performing a direct joint photometric and geometric
alignment between the synthetic and live RGB-D frames, taking the pose estimate from ORB-SLAM as an initialization
point. Assuming no local or global loop closures have occurred during this timestep, the live RGB image and predicted depth
are fused into the surfel model. If ORB-SLAM has detected a global loop closure, then a global deformation is attempted.
Surface-to-surface constraints for optimization of the deformation graph are generated from the pre-corrected and corrected
(post loop closure) poses of the camera P t

kf and P̂ t
kf respectively. If deformation graph optimization fails or no global loop

is detected by ORB-SLAM, a local loop closure is attempted as per the original EF algorithm.

B. ORB-SLAM3 - Feature-based RGBD Tracking

ORB-SLAM3 [6] builds a sparse map of a scene, rep-
resented using a covisibility graph where each node in the
graph corresponds to a keyframe consisting of a pose and
a set of 3D points. When two keyframes view common
map points, an edge between them is added to the graph.
The system has 3 main threads. The camera tracking thread
receives RGB-D frames from the camera, extracts ORB
features, and computes an initial pose estimate via motion
only BA with the previous frame. The estimate is further
refined by aligning the current frame to a local map of
covisible keyframes. New keyframes are detected and sent
to a background thread. Here the local map in the vicinity of
the new keyframe is optimized with a full bundle adjustment.
Loops between the latest keyframe and historic keyframes are
detected with DBoW[43]. If geometric alignment between
the new keyframe and the matched keyframe succeeds, then
a loop is closed, and an edge between the two keyframes
is added to the graph. The local map in the vicinity of the
keyframe is rigidly transformed into place. The rest of the
keyframe graph is corrected using pose graph optimization.
A final full BA is performed to recover the MAP estimate
of all keyframe poses and structure.

C. ElasticFusion - Dense Surfel Fusion

ElasticFusion [3] estimates a dense surfel map M of a
scene as viewed from a handheld RGB-D sensor. The map

M is a flat list structure containing a set of surface elements
Ms describing local planar patches of the underlying scene
surface. EachMs contains a 3D position, a normal, a radius
r indicating its extent, a confidence value indicating quality
of its estimation, an RGB color, a timestamp t when it
was last fused, and a timestamp to when it was inserted
into the map. M is itself divided into two disjoint subsets;
an active portion containing surfels that have recently been
measured by the live camera data and an inactive portion
containing those surfels that have not been measured in a
threshold amount of time. Camera tracking is performed by
direct alignment of the current camera frame to a synthetic
model view using the pose of the camera at the previous
timestep. Frames are fused by back projecting each pixel to
a 3D point using the depth map and the camera’s intrinsic
matrix. The system also has a visual place recognition loop
closure mechanism based on fern encoding; however, we
do not utilize this module. Local loops are identified by
aligning views of the active and inactive portions of Ms

in the current camera view, allowing inactive surfels to be
reactivated. Both global and local loop closures provide
surface-to-surface constraints to optimize a space deforming
graph, which is then applied to Ms. Camera tracking and
deformation-based loop closures will be discussed in later
sections as we describe how we combine them with the other
systems.



Fig. 3: A loop closure example; (i) a car begins exploring (green arrow); (ii) after a period of time a loop is closed
between an area previously mapped by the car and its current location; (iii) before a loop closure is applied, drift is evident
in the model; (iv) the active portion of the model (green) has drifted from the inactive portion of the model (gray). Red
arrows highlight corresponding points between the active and inactive map; (v) a global surface deformation has been
applied bringing the active portion of the map back into alignment with the inactive portion. Red lines are surface-to-surface
constraints generated from the loop closing pair P t

kf → P̂ t
kf ; (vi) as the car moves back into the region of the road already

mapped in the first pass, local loop closures are triggered, reactivating portions of the map for use in mapping and tracking;
(vii) the final global model.

D. Hybrid Camera Tracking

In our system, at each timestep, t, the current live camera
frame Ft, consisting of color image It and predicted depth
map Dp

t , is passed to ORB-SLAM to compute an initial
estimate of the camera pose Pt. Note that this is the camera
pose before any refinement by the local mapping thread in
the case that Ft is extracted as a keyframe. Though this initial
pose is accurate (as can be seen in Table I), it cannot be used
directly for the fusion of Ft intoM. ORB-SLAM continues
to improve its local map, while the dense surfel map does not
undergo any significant correction until a local or global loop
closure is triggered. This can lead to Pt, and therefore the
live frame, becoming misaligned from the dense map. Our
goal is to track the camera and to build an accurate model,
and so we need to balance the accuracy of Pt against the
need to stay aligned with the dense model in order to fuse
Ft accurately.

To bring the camera back into alignment with the model,
we perform a frame-to-model refinement of Pt. The active
map around Pt is rendered into a virtual camera positioned
at Pt. A 6DOF transformation T ∈ SE3 that aligns the
live frame to the virtual one is then estimated in an iterative
non-linear least-squares joint photometric and geometric op-
timization embedded in a 3 level image pyramid. Composing
T with Pt yields a refined pose estimate for the current
frame that can now be used to fusion as per the original EF
algorithm [3].

E. Hybrid Loop Closures

When ORB-SLAM identifies a loop closure between the
latest keyframe Kfi and a historic keyframe in the map,
Kfh, a transformation Th

i that aligns Kfi with Kfh is
computed. This yields a pose pair; the uncorrected pose of
the new keyframe Pi

kf and the pose of the keyframe after

loop correction P̂i
kf . ORB-SLAM’s loop closure mechanism

proceeds to apply the loop closure and optimize its sparse
map as per the original algorithm [6].

To update the dense surface to reflect the loop closure
Pi

kf → P̂i
kf , we non-rigidly deform each surfel using a

deformation graph G in the same way as EF [3]. G consists of
a set of nodes Gn sampled from the surfels inM. Each node
consists of a position (i.e., the sampled surfel’s position),
a timestamp (also sampled surfel’s timestamp), an affine
transformation GnT and a set of temporally nearby neighbor
nodes. The temporal connectivity of the nodes prevents
interference between multiple passes of the same surface at
different points in time. To apply G toM, a set of temporally
and spatially nearby influencing nodes is computed for each
Ms ∈ M. A weighted sum of the GnT in these nodes are
applied to the surfel to deform it into place.

To optimize the GnT , a set of surface-to-surface corre-
spondences are generated from a loop closure, mapping
surface points from the active region to the inactive region
of the model. Cost function terms on the distance between
correspondences, as well as terms that maximize the rigidity
and smoothness of the deformation, ensure that, when ap-
plied to the surface, it brings the correspondences together.
A pinning term holds the inactive map in place, ensuring
that it is the active map that is deformed into the inactive
map. Further constraints on the relative position of historical
correspondences from previous loop closures prevent new
deformations from breaking the old loop closures. The final
cost is optimized using Gauss-Newton gradient descent to
retrieve the set of deforming affine transforms GnT . See [3]
for more details.

In order to reflect ORB-SLAM loop closures in the dense
model in our system using the deformation graph, we first
generate a set of surface-to-surface correspondences from



Sequence O
trel(%)

H
trel(%)

H+L
trel(%)

D3[36]
trel(%)

ORB[20]
trel(%)

01 31.17 24.49 25.34 1.07 1.39
02 2.97 3.11 2.38 0.80 0.76
06 1.16 1.42 1.34 0.67 0.51
08 1.90 2.14 2.11 1.00 1.05
09 1.85 2.02 1.62 0.78 0.87
10 1.24 1.50 1.41 0.62 0.60

TABLE I: Results on test set of KITTI odometry. Results
from ORB-SLAM stereo and a SOTA VO system D3VO
are shown for comparison. Though not SOTA, these results
show that our system’s camera tracking achieves a level of
accuracy necessary for building a fused 3D surfel model.
It can be seen that using predicted depth leads to accurate
RGBD tracking with ORB-SLAM (O). We show the effect
of introducing pre-fusion alignment (H) and applying global
loop closures to the dense model (H+L).

Pi
kf → P̂i

kf . To do so, the active surfels Ma ∈ M in
view of Pi

kf are computed, as are the timestamps of the
inactive surfels in view of P̂i

kf . These timestamps are used
during optimization of GnT to pin the inactive surfels ofM in
place. Each of the Ma

s generates a constraint consisting of
a source point, computed by composing Ma

s , with Pi
kf and

a destination point computed by composing Ma
s with P̂i

kf .
These constraints are then used to optimise the deformation
in the same way as [3].

Note that Kfi is not necessarily the current live camera
frame. It could therefore fall outside the current active region
of the map. If it is outside the active region of the map, then
this will hinder the system’s ability to generate surface-to-
surface constraints. We found that by setting the active time
window appropriately (δt = 200frames), the system could
find sufficient constraints during loop closures.

Closing loops in this way achieves two goals; adjusting the
dense surface geometry to stay consistent with the real world;
and keeping the dense map consistent with ORB-SLAM’s
sparse map and camera pose estimates. It also balances the
need for this consistency against the computational intensity
of correcting dense geometry. Figure 3 illustrates each of the
steps involved in the hybrid loop closure process.

III. EVALUATION

We show quantitative and qualitative results of our system
tested on the KITTI odometry benchmark dataset [11]. We
have evaluated the accuracy of trajectory estimation and
surface reconstruction and provide a breakdown down of
the computational performance of the system. All processing
was done on a machine with an Intel Core i7−7700K CPU,
16GB of RAM, and an NVIDIA GTX 1080 Ti GPU.

A. KITTI - Tracking

The KITTI odometry benchmark dataset provides 11
sequences with ground truth poses. We show results for
sequences 01, 02, 06, 08, 09 and 10. The remainder of the
sequences are used during training of the depth prediction
network and hence ommitted from our evaluation. For each

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Sequence 01 from the KITTI odometry dataset is
challenging for monocular systems. (a) and (b) show the
live color image from the camera and UnRectDepthNet’s
depth prediction respectively. (c) and (d) show ElasticFu-
sion’s corresponding model predictions. (e) shows a portion
of the final global model. (f) shows a comparison between
the estimated and ground-truth trajctories.

test sequence we use the relative translational error trel
averaged over sequences ranging in length from 100m to
800m [11]. Table I shows the results alongside a SOTA
SLAM system, ORB-SLAM2 [20], and D3VO [36], a SOTA
VO system. Interestingly, our experiments show that using
the dense depth predictions and the RGBD operating mode
of ORB-SLAM (O) results in accurate metric-scale camera
tracking with a monocular camera. While introducing hybrid
tracking (H) increases error w.r.t the ground truth, it allows
the current frame to be fused into the model. Introducing
hybrid loop closures (H+L) helps bring the sparse and dense
models back into alignment and reduces global error in the
model and trajectory. Sequence 01 is challenging for our
system. Scenes with little structure lead to a degradation
in depth prediction and camera tracking. Figure 4 shows
qualitative results of this sequence.

B. KITTI - Surface Reconstruction

We evaluate surface reconstruction accuracy on several
sequences from the KITTI odometry benchmark. As KITTI
does not include ground-truth surface models, we compare
against models constructed from the Velodyne point clouds
that accompany each sequence. To do so, we transform each
point cloud in the sequence into a global coordinate system
using the corresponding ground truth poses. We then apply a
voxel filter to downsample the resultant point cloud. In Table
II, we show the surface-to-surface mean distance between
points in the estimated model and the nearest point in the
Velodyne point cloud model. Before computing the score, the
two models are rigidly aligned. We use the labels from [44]



Sequence O
(m)

H
(m)

H+L
(m)

02 5.95 6.40 4.03
06 1.23 0.97 0.64
08 2.70 2.46 2.72
09 1.23 1.18 0.71
10 0.89 0.79 0.82

TABLE II: Surface Accuracy of our system on KITTI.
Sequence 01 has been ommitted due to poor tracking per-
formance (see Table I)
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Fig. 5: Breakdown of time taken by our system to process
each frame in sequence 09 the KITTI odometry benchmark
[11]. Our systems falls just outside of true real-time rates of
10hz for KITTI. In future work we hope to utilize hardware
with half precision support to improve system run-time.

Operation Median(ms) Mean(ms) std. dev.(ms)

ORB-SLAM Tracking 40.04 41.93 25.13
Dense Mapping 30.97 35.61 15.82

Depth 60.32 61.14 3.84
Overall 136.48 140.29 31.76

TABLE III: Spread of system run-time over test sequences
from the Eigen split of the KITTI odometry dataset

to filter out dynamic objects from Velodyne point clouds.

C. KITTI - Depth Estimation

We use the depth estimation setting on the KITTI Eigen
split [32] and report results in Table IV. In our previous
work, UnRectDepthNet [30], we outperformed all the pre-
vious monocular self-supervised methods. Following best
practices, we cap depths at 80 m. We evaluate using the Im-
proved [45] ground truth depth maps. We further improve the
performance by incorporating additional losses1 discussed

1The loss function improvements will be presented in contemporary work
to be published at ICRA 2021.

Method Absrel Sqrel RMSE RMSElog

UnRectDepthNet [30] 0.081 0.414 3.412 0.117
+ additional loss terms [46] 0.071 0.334 3.218 0.101
+ improved scale estimation 0.057 0.298 2.95 0.091

TABLE IV: Evaluation of depth estimation on the Im-
proved KITTI Eigen split [45].

in Section II-A. Scale estimation improvements provide an
additional improvement in quantitative score, enabling the
SLAM pipeline to estimate accurate metric reconstructions.

D. System Resource Usage

In Figure 5 we show a breakdown of the frame processing
time for sequence 09 in the KITTI odometry benchmark [11].
Mapping time (blue) goes up in accordance with the number
of surfels (purple) as reported in [3]. The system operates
between 8 − 9hz. The spike at the end of the sequence is
due to a global loop closure. Table III shows the distribution
of run-time performance over the test set of the Eigen split
of the KITTI odometry dataset.

IV. CONCLUSIONS

We presented a hybrid SLAM system that combines dense
depth prediction with sparse feature tracking and dense surfel
fusion techniques. The system permits live-dense metric
reconstructions of outdoor scenes using a monocular camera
in automotive scenarios. Sparse tracking provides camera
pose estimation capable of operating robustly at vehicle
speeds. The resulting poses are used within the dense fu-
sion tracking step to initialize a whole image alignment
refinement process. Global consistency in the model is
maintained through visual place recognition and pose to pose
constraints from the sparse system, which again are passed
to the dense fusion algorithm where they are integrated
with a deformation graph-based map correction step. Our
results show competitive performance with SOTA techniques
while providing dense fused surface models. We believe
our system to be the first dense monocular fusion-based
visual SLAM system quantitatively evaluated on automotive
scenarios. Although the focus of this paper is automotive,
the system could easily be adapted to other scenarios by
retraining the depth prediction network.
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