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Abstract— Aerial pixel-wise scene perception of the surround-
ing environment is an important task for UAVs (Unmanned
Aerial Vehicles). Previous research works mainly adopt conven-
tional pinhole cameras or fisheye cameras as the imaging device.
However, these imaging systems cannot achieve large Field of
View (FoV), small size, and lightweight at the same time. To this
end, we design a UAV system with a Panoramic Annular Lens
(PAL), which has the characteristics of small size, low weight,
and a 360◦ annular FoV. A lightweight panoramic annular
semantic segmentation neural network model is designed to
achieve high-accuracy and real-time scene parsing. In addition,
we present the first drone-perspective panoramic scene segmen-
tation dataset Aerial-PASS, with annotated labels of track, field,
and others. A comprehensive variety of experiments shows that
the designed system performs satisfactorily in aerial panoramic
scene parsing. In particular, our proposed model strikes an
excellent trade-off between segmentation performance and
inference speed suitable, validated on both public street-scene
and our established aerial-scene datasets.

I. INTRODUCTION

In the last years, UAV (Unmanned Aerial Vehicle) systems
have become relevant for applications in military recognition,
civil engineering, environmental surveillance, rice paddy
remote sensing, and spraying, etc. [1], [2]. Compared with
classic aerial photography and ground photography, the UAV
system is more flexible, small in size, low-cost, and suitable
for a wider range of application scenarios. Environment
perception algorithms based on UAV system needs to be light
and efficient enough for the application in mobile computing
devices like portable embedded GPU processors.

However, most optical lens of the UAV systems have
a small field of view, and often rely on a complex servo
structure to control the pitch of the lens, and post-stitch
the collected images to obtain a 360◦ panoramic image [2].
The expansion of the field of view is essential for real-time
monitoring with UAVs. In traditional methods, the control
system of UAV is usually very complicated. Since the drone
takes images during flight, the post-stitching algorithm is
highly computation-demanding, and the images have parallax
and exposure differences, which renders the reliability of
image stitching rather low. To address this problem, we
have designed a lightweight Panoramic Annular Lens (PAL)
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Fig. 1. Overview of our Aerial-PASS system. Panoramic images captured
from the UAV with a PAL camera are unfolded, and with the designed
semantic segmentation model, field and track classes are predicted at the
pixel level.

especially suitable for UAV systems. The system does not
require a complicated servo system to control the attitude of
the lens. The optical axis of the lens is placed vertically
on the ground, and the cylindrical field of view can be
horizontally upward by 10◦ and downward by 60◦ (Fig. 1).

To support fast on-board remote sensing, we further pro-
pose a lightweight real-time semantic segmentation network
for panoramic image segmentation. The network has an effi-
cient up-sampling module and a multi-scale pooling module
for learning objects of different scales in the panoramic
images. To facilitate credible evaluation, we collect with
our PAL-UAV system and present the first drone-perspective
panoramic scene segmentation benchmark Aerial-PASS with
annotated labels of critical field sensing categories. We find
a superior balance between accuracy and inference speed for
the network towards efficient aerial image segmentation and
it also achieves the state-of-the-art real-time segmentation
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performance on the popular Cityscapes dataset [3].
The contributions of this paper are summarized as follows:
• The designed PAL lens has the advantages of 4K high

resolution, large field of view, miniaturization design,
and real-time imaging capabilities, etc. It can be applied
to UAV survey and identification, autonomous driving,
security monitoring, and other fields.

• An efficient real-time semantic segmentation network
is proposed for panoramic images and it achieves a
state-of-the-art accuracy-speed trade-off on Cityscapes.
A set of comparison experiments is conducted on the
panoramic images collected by our PAL-UAV system.

• An annotated Aerial Panoramic dataset is presented for
the first time, which is conducive to the rapid and robust
segmentation of target objects in a large field of view
from UAV perspectives. Particularly, this work focuses
on pixel-wise segmentation of track and field objects.

II. RELATED WORKS

A. Panoramic Annular Imaging

The optical lens in the drone provides an indispensable
visual aid for target recognition and detection. A single large
field of view lens can bring a wider field of view to the drone.
The current ultra wide-angle optical systems include fisheye
lenses [4], catadioptric optical systems [5], and Panoramic
Annular Lens (PAL) imaging systems [6]. The structure of
the PAL is simpler, smaller in size, easy to carry, and better
in imaging quality. These advantages make the PAL become
the research focus of large field of view optical systems.

The PAL imaging system was proposed by Greguss in
1986 [7]. In 1994, Powell designed the infrared band large
field of view PAL imaging system, and showed that the
spherical surface type can be used to obtain better imaging
quality [8]. A cluster of scientific research teams has also
made great research progress, designing PAL optical systems
with longer focal length [9], larger field of view [10],
higher resolution [11], and better imaging quality [12]. The
PAL designed in this work is small in size, easy to carry,
and it has a field of view of (30◦ − 100◦)× 360◦ and a
4K high resolution, which can realize real-time large field
of view high-resolution single sensor imaging. Thereby, it
is perfectly suitable for UAV survey, unmanned driving,
security monitoring, and other application fields [13], [14].

B. Panoramic Scene Segmentation

Beginning with the success of Fully Convolutional Net-
works (FCNs) [15], semantic segmentation can be achieved
in an end-to-end fashion. Subsequent composite architectures
like PSPNet [16] and DeepLab [17] have attained remarkable
parsing performance. Yet, due to the use of large back-
bones like ResNet-101 [18], top-accuracy networks come
with prohibitively high computational complexity, which
are not suitable for mobile applications such as driving-
and aerial-scene segmentation in autonomous vehicles or
drone videos. Plenty of light-weight networks emerge such
as SwiftNet [19], AttaNet [20], and DDRNet [21], both
seeking a fast and precise segmentation. In our previous

works, we have leveraged efficient networks for road scene
parsing applications like nighttime scene segmentation [22]
and unexpected obstacle detection [23].

Driving and aerial scene segmentation clearly benefit
from expanded FoV, and standard semantic segmentation on
pinhole images has been extended to operate on fisheye im-
ages [24], omnidirectional images [25], and panoramic annu-
lar images [26]. The latest progress include omni-supervised
learning [27] and omni-range context modeling [28] to
promote efficient 360◦ driving scene understanding. In par-
ticular, Yang et al. [26] proposed a generic framework by
using a panoramic annular lens system, which intertwines
a network adaptation method by re-using models learned
on standard semantic segmentation datasets. Compared to
driving scene segmentation, aerial image segmentation is
still predominantly based on pinhole images [29]–[32]. In
this paper, we lift 360◦ panoramic segmentation to drone
videos and propose an Aerial-PASS system to explore the
superiority of the ultra-wide FoV for security applications.

III. PROPOSED SYSTEM

The proposed system consists of the hardware part and
the algorithm part. In the hardware part, we have equipped
the UAV with our designed PAL camera and use it to
collect panoramic image data. To efficiently parse panoramic
images, we have designed a lightweight semantic segmenta-
tion model with a novel multi-scale receptive field pyramid
pooling module for learning a robust feature representation
required for 360◦ image segmentation.

A. UAV with PAL Camera

The PAL system designed and used in this work has
the characteristics of large field of view and lightweight
structure, which can realize real-time, single-sensor imaging
on drones. The PAL system follows the imaging principle of
Flat Cylindrical Perspective (FCP), which can reflect light
by the panoramic block from the lateral field of view around
the optical axis 360◦, and then enter the subsequent lens
group and image on the two-dimensional image surface. The
field of view of the PAL system is generally greater than
180◦, which is no longer applicable to the classic principle of
object-image similarity. At this point, we introduce negative
distortion in the optical design to control the height of
the image surface, and the commonly used characterization
method is F-Theta distortion.

The PAL system designed in this work is composed of 10
standard spherical lenses, and the glass materials are all from
the CDGM company. The PAL block is composed of two
glass materials glued together. By coating the transmission
film and reflection film on its surface, the light path can be
folded. Its structure diagram is shown in Fig. 2.

We have chosen the Inspire 2 series drone module devel-
oped by DJI to be equipped with a PAL, which is placed
vertically downward to cover a wider field of view on the
ground and to avoid the stray light problem caused by direct
sunlight. The drone system is flying around 100m above the
track and field to collect image data from multiple directions.



Fig. 2. Shaded model of the designed PAL imaging system. It consists of
6 groups of 10 lenses. Different colors represent light in different field of
view.

Fig. 3. The schematic diagram of the drone system. The green area
represents the imaging area and the FoV is (30◦ ∼ 100◦)×360◦. The yellow
area represents the blind area.

The schematic diagram of the experiment is shown in Fig. 3.
The lateral field of view of the PAL system involved in
imaging is 10◦ horizontally upward and 60◦ horizontally
downward, and the overall field of view is 360◦×70◦.

B. Aerial Scene Segmentation Model

For our segmentation method, there are three require-
ments. The model must be light enough to meet the real-
time inference speed demand for future migration to portable
computing devices. In addition, The model needs to parse
the image with a high accuracy. Further, the model should
have multi-scale receptive fields for panoramic images with a
ultra-wide angle. Inspired by SwfitNet [19] and RFNet [23],

we have designed a lightweight novel U-Net like model with
multi-scale receptive fields.

1) Model Architecture: The proposed network architec-
ture is shown in Fig. 4. We adopt ResNet-18 [18] as our back-
bone, which is a mainstream light-weight feature extraction
network. With ImageNet [33] pre-trained weights, we can
benefit from regularization induced by transfer learning and
small operation footprint for real-time prediction. The feature
maps after each layer of ResNet is fused with the feature
maps in the upsampling modules through skip connection
with 1× 1 convolution modules. To increase the receptive
field, the feature maps are transmitted to Efficient Deep
Aggregation Pyramid Pooling module. In the decoder, feature
maps are added with lateral features from an earlier layer
of the encoder element-wisely, and after convolution, the
blended feature maps are upsampled by bilinear interpola-
tion. Through skip connections, high-resolution feature maps
full of detail information are blended with low-resolution
feature maps with rich semantic information.

Fig. 4. The architecture of the proposed segmentation model.

2) Efficient Deep Aggregation Pyramid Pooling: For
aerial panoramic images, many objects are rather small
and only take up little ratio of pixels. Receptive field is
extremely important in the task for a fine-grain segmentation.
Inspired by the context extraction module in DDRNet [21],
we develop an Efficient Deep Aggregation Pyramid Pooling
(EDAPP) module. Fig. 5 shows the architecture of EDAPP.
First, we perform average pooling with kernel size of 5, 9,
17, and global pooling respectively. Single 3× 3 or 1× 1
convolutions in Spatial Pyramid Pooling (SPP) [34] is not
enough, so after 1× 1 convolution upsampling to the same
resolution, to efficiently blend the multi-scale contextual
information better, we propose to leverage a combination
of 3×1 convolution and 1×3 convolution. Another stream
consists of only a 1× 1 convolution. Asserting an input x,
the process can be summarized in the following:

yk =

{
C1×1(x), k = 1;
C1×3(C3×1(UP(C1×1(P2k+1,2k−1 (x)))+ yk−1),1 < k < n;
C3×3(UP(C1×1(Pglobal(x)))+ yk−1), k = n.

(1)

Here, C denotes convolution, UP denotes bilinear up-
sample, P and Pglobal denote pooling and global pooling
respectively. i and j of the Pi, j denote the kernel size and
stride of the pooling layer. A pair of 3×1 convolution and



Fig. 5. The architecture of the EDAPP module.

1× 3 convolution have the same receptive field as a single
3×3 kernel, enhanced directional feature extraction, but less
computational complexity and faster inference speed. This
architecture helps extracting and integrating deep information
with different scales by different pooling kernel sizes. All the
features maps are concatenated and blended through a 1×1
convolution. Finally, a 1× 1 convolution compress all the
feature maps and after that we also add a skip connection
with a 1×1 convolution for easier optimization.

IV. EXPERIMENTS

A. Aerial-PASS Dataset

We collected data in 4 different places using the UAV
with a PAL camera, and all the data were under sufficient
illumination conditions. In the height of about 100 meters,
we collected videos with the length of about 3 hours.
Limited to the size of the CMOS in the camera, the image
produced can’t show all the imaging plane of the lens. In the
following deployment phase, the PAL system was calibrated
using the interface provided by the omnidirectional camera
toolbox [35]. Before training, the PAL image was unfolded to
a familiar rectangle image. The unfolded process is depicted
in the following equations:

i =
r− r1

r2 − r1
×height (2)

j =
θ

2π
×width (3)

Here, i and j denote the index of x and y axis of the unfold
image, respectively. r1 and r2 are the internal and external
radii of the PAL image. Width and height are the image size
of the unfolded image. In our experiment, we unfolded the
PAL image to a 2048×512 image. Fig. 6 shows the unfolding
process.

We annotated all 462 images out of the 3-hour-long
video. We created pixel-wise fine labels on the most critical

Fig. 6. The unfolding process of the PAL image. Limited to the size of
CMOS, top and bottom sides of the imaging plane are blocked in the image,
resulting in two scalloped shadows in the unfolded image.

classes relevant to the application of track detection, and we
randomly split out 42 images for the test set. As far as we
know, This is the first aerial panoramic image dataset with
semantic segmentation annotations in the community.

B. Training Details

All the experiments were implemented with PyTorch 1.3
on a single 2080Ti GPU with CUDA10.0, cuDNN 7.6.0. We
chose Adam [36] for optimization with a learning rate of
5× 10−4, where cosine annealing learning rate scheduling
policy [37] is adopted to adjust the learning rate with a
minimum value of 5× 10−4 in the last epoch and weight
decay was set to 1× 10−4. The ResNet-18 [18] backbone
was initialized with pre-trained weights from ImageNet [33]
and the rest part of the model was initialized with the
Kaiming initialization method [38]. We updated the pre-
trained parameters with 4 times smaller learning rate and
weight decay rate. The data augment operations consist of
scaling with random factors between 0.5 and 2, random
horizontal flipping, and random cropping with an output
resolution of 512×512. Models were trained for 100 epochs
with a batch-size of 6. We used the standard “Intersection
over Union (IoU)” metric for the evaluation:

IoU =
T P

T P+FP+FN
(4)

C. Results and Analysis

Based on the Aerial-PASS dataset, we have created a
benchmark to compare our proposed network with other two
competitive real-time semantic segmentation networks: the
single-scale SwiftNet [19] (similar backbone with our net-
work) and ERF-PSPNet [39] (a lightweight network designed
for panoramic segmentation [26]). All the networks were
trained on the training set of Aerial-PASS with the same
training strategy and tested on the testing set of the dataset.
Table I shows the numerical performance comparisons of the
three efficient networks. Our proposed model outperforms



Fig. 7. Qualitative semantic segmentation results. From top to bottom row: RGB input image, ERF-PSPNet, SwiftNet, our method, and ground truth.

TABLE I
PER-CLASS AND MEAN IOU OF OUR METHOD AND OTHER TWO

NETWORKS ON THE TESTING SET OF AERIAL-PASS DATASET.

Network Track Field Others Mean
ERF-PSPNet 64.16% 97.67% 92.02% 84.62%
SwiftNet (single scale) 63.15% 98.76% 91.63% 84.52%
Ours 67.67% 99.06% 92.16% 86.30%

both networks designed for panoramic segmentation (ERF-
PSPNet) and semantic segmentation (SwifNet) by clear gaps.

Fig. 7 shows visualizations of inference labels of our
proposed method and other two models, in which green
denotes the track and red denotes the field. All the input
images are the unfolded PAL images. The labels show the
qualitative result of the proposed method. As we can find
that our method performs well in both large-scale objects
like field and small-scales objects like the boundary of track
and other objects thanks to our EDAPP module designed for
multi-scale feature learning.

D. Comparison with the State of the Art

To further compare with other state-of-the-art network, we
also trained our network on Cityscapes [3], which is a large-
scale RGB dataset that focuses on semantic understanding
of urban street scenes. It contains 2975/500/1525 images
in the training/validation/testing subsets, both with finely
annotated labels on 19 classes. The images cover 50 different

cities with a full resolution of 2048×1024. We trained our
network on the training set of the Cityscapes dataset and
test our network on the validation set. Table II shows the
IoU result of our method and other mainstream real-time
semantic segmentation models. Our method has achieved
an excellent balance between accuracy and inference speed.
Fig. 8 shows some representative inference results of our
proposed method. Overall, the qualitative results verify the
generalization capacity of our proposed network for both
challenging large-FoV aerial image segmentation and high-
resolution driving scene segmentation.

TABLE II
COMPARISON OF SEMANTIC SEGMENTATION METHODS ON THE

VALIDATION SET OF CITYSCAPES.

Network MIoU Speed (FPS)
FCN8s [15] 65.3% 2.0∗
DeepLabV2-CRF [17] 70.4% n/a
ENet [40] 58.3% 76.9∗
ERF-PSPNet [39] 64.1% 20.4
SwiftNet [19] 72% 41.0
Ours 72.8% 39.4
∗ Speed on half resolution images.

V. CONCLUSION

In this study, we propose a lightweight UAV system
Aerial-PASS with a designed Panoramic Annular Lens (PAL)
camera and a real-time semantic segmentation network for



(a) RGB (b) GT (c) Result

Fig. 8. Qualitative results of our method on the Cityscapes dataset.

aerial panoramic image collection and segmentation. The
minimization-dedicated PAL camera equipped in the UAV
can be used for collecting annular panoramic images without
requiring a complicated servo system to control the attitude
of the lens. To classify the track and field in the images at the
pixel wise, we collect and annotate 462 images and propose
an efficient semantic segmentation network. The proposed
network has multi-scale reception fields and an efficient
backbone, which outperforms other competitive networks on
our Aerial-PASS dataset and also has reached the state-of-
the-art performance on the Cityscapes dataset with 39.4 Hz
in full resolution on a single 2080Ti GPU processor. In the
future, we aim to transplant the algorithm to the portable
embedded GPU on the UAV for more field tests.
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