2108.08726v1 [cs.RO] 19 Aug 2021

arxXiv

Property-Based Testing in Simulation for Verifying
Robot Action Execution in Tabletop Manipulation

Salman Omar Sohailf, Alex Mitrevski'$, Nico Hochgeschwender', and Paul G. Ploger'

Abstract— An important prerequisite for the reliability and
robustness of a service robot is ensuring the robot’s correct
behavior when it performs various tasks of interest. Extensive
testing is one established approach for ensuring behavioural
correctness; this becomes even more important with the inte-
gration of learning-based methods into robot software archi-
tectures, as there are often no theoretical guarantees about
the performance of such methods in varying scenarios. In
this paper, we aim towards evaluating the correctness of
robot behaviors in tabletop manipulation through automatic
generation of simulated test scenarios in which a robot assesses
its performance using property-based testing. In particular, key
properties of interest for various robot actions are encoded in
an action ontology and are then verified and validated within
a simulated environment. We evaluate our framework with
a Toyota Human Support Robot (HSR) which is tested in a
Gazebo simulation. We show that our framework can correctly
and consistently identify various failed actions in a variety
of randomised tabletop manipulation scenarios, in addition to
providing deeper insights into the type and location of failures
for each designed property.

I. INTRODUCTION

With the integration of autonomous service robots into
industries and households, there is a requirement for in-
creased robot safety and dependability. To fulfill these re-
quirements, robot developers need to validate their systems
extensively before deployment. In principle, validation is a
challenging problem due to factors such as the environment’s
unpredictability, the robot’s lack of knowledge, hardware
and software failures, but also due to the fact that a robot
may utilise learning-based components for which formal
correctness guarantees are difficult to provide.

One common approach for robot verification and valida-
tion is testing directly in the real world, but real-world tests
are often complex to set up and perform to an extent that
would provide sufficient test coverage of a complete robot
system. An alternative to this is simulation-based testing,
which provides multiple attractive features, such as com-
paratively low setup and execution costs, speed, scalability,
robot safety, as well as a possibility to automate tests [1],
at the cost of sacrificing the realism of real-world testing.
Setting up and executing simulated tests can, however, be
a challenging problem on its own. In particular, simulated
scenarios for a robot are often hand-crafted and each scenario

*This work was supported by the b-it foundation and by the European
Union’s Horizon 2020 project SESAME (grant agreement No. 101017258)
TThe authors are with the Autonomous Systems Group, Department of
Computer Science, Hochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany
salman.sohail@smail.inf.h-brs.de,
nico.hochgeschwender, paul.ploeger>@h-brs.de
8Corresponding author

<aleksandar.mitrevski,

{Robot Architecture | //‘{\Simulator \
H Hu itaton

Property Robot
Based *| Middleware

Test Suite |
Test Report

Lo
ol

Action
Ontology

P

Test N
Configuration

Fig. 1: Our proposed simulation-based property-based testing
framework for verifying robot action execution

has to be manually altered when the need arises to test
different scenarios [2].' In addition, exhaustive robot tests
need to cover not only the software aspects of the robot
system, but also the overall behavior and decisions that the
robot makes during task execution [4].

This paper is motivated by these challenges in robot testing
and addresses the question of how to test robot behaviours
so that robot execution failures, which go beyond software
failures, can be systematically analysed. Our proposed frame-
work uses automatic scenario generation for simulation-
based robot testing, namely we generate a set of simulated
scenarios in which a robot performs various actions and
assesses its performance using property-based testing [5].
The framework includes four core components: (i) an action
ontology that relates primitive robot actions to properties
of the world that determine the success or failure when
those actions are performed, (ii) scenario generation based
on which randomised world configurations are created to
mimic situations that a robot might encounter, (iii) property-
based tests that evaluate the performance of a robot in the
generated scenarios, and (iv) report generation that includes
the world properties used in the scenario generation as
well as the results of the executed property tests, both
of which can be used to identify potential reasons for an
execution failure. An overview of our framework is provided
in Fig. 1. We demonstrate the use of the framework using a
Toyota Human Support Robot (HSR) [6] and our software
stack for domestic robots, focusing on functionalities such
as point-based navigation, object perception for subsequent
manipulation, as well as object pickup and placing in various

IFor instance, this has been the case in some of our earlier work [3].

common domestic object manipulation scenarios.

II. RELATED WORK

In the context of pure software systems, various testing
strategies can be used, such as model-based, functional,
mutation, or regression testing [7]; however, as pointed out
by Bihlmaier and Woérn [8], software testing alone cannot
capture the full complexity of robot systems, which interact
with the world and other agents. Robot systems thus require
dedicated testing methodologies that are able to incorporate
physical aspects of the world and take into account the
potential of experiencing execution failures.

In the context of simulation-based testing, the core aspect
is the scenario generation process. Scenario generation has
been studied fairly thoroughly for autonomous driving. Ma-
jumdar et al. [9] present a test specification language called
PARACOSM, which creates realistic environment simula-
tions for testing autonomous driving systems in the Unity
physics engine; the language allows defining object and
environment properties in a test scenario, thereby providing
a declarative way of scenario specification and configuration.
Park et al. [10] propose an approach for simulated scenario
generation based on networks trained with real-world driv-
ing data; the objective here is to generate realistic driving
scenarios that represent multiple vehicle events in a single
video session, which enables learning data generation and
subsequent vehicle testing. In [11], Bayesian Optimisation
is used to generate stimulating adversarial scenarios for an
autonomous vehicle; imitation learning is subsequently used
to acquire corrective actions from an expert while the sce-
nario is being executed in simulation. A similar technique is
proposed by Koren et al. [12], where Adaptive Stress Testing
based on a Markov Decision Process is used to identify
driving scenarios that are likely to lead to a failure. Our
framework draws upon various insights from the above work.
As in [9], we use a specification language to control various
test generation parameters. Similar to [10], our scenarios may
represent multiple events, but we do not rely on available
video data for training a test generator, although it would
be possible to integrate the use of video data through an
appropriate test generation strategy. Finally, methods similar
to [11], [12] could be combined with property-based testing
by learning to focus on challenging test scenarios, which
provides an interesting direction for future work.

In the context of service robots, various testing method-
ologies have been used. In [13], property-based testing is
used for testing robots whose software is based on the Robot
Operating System (ROS), such that tests are based on prop-
erties about the expected input-output relations represented
via the ROS component graph. Araiza et al. [4] compare
two test generation strategies - Belief-Desire-Intention and
model checking of timed automata - which can be used for
testing collaborative service robots. In [14], Estivill-Castro et
al. propose a framework for simulation-based robot testing
that utilises continuous integration; here, tests are centered
around robot behaviours which are modelled by automata,
such that the test complexity is governed by a hierarchical

structure underlying the behaviours. As [13], our work is
based on property-based testing; however, while our robot
software is also embedded in ROS, our general approach
is independent of a communication framework, namely it
allows testing behaviours that do not require a communica-
tion framework to be used during execution. Similar to [4],
our test generation strategy is based on modelled relations
between robot actions and properties of interest, but our
primary focus is on physical interaction with the world and
failures that may occur during action execution with a large
variety of objects. As in [14], our framework allows robot
testing at different levels of complexity, namely we aim to
test both individual robot actions as well as complete tasks.

Robot simulations can also be utilised to guide the robot
execution process at runtime, which can be seen as an online
testing strategy. Kunze et al. [15] propose a simulation-based
methodology to identify suitable parameters for executing a
robot action by recording logs from simulated executions
and analysing those using the event calculus. Similarly,
Mosenlechner and Beetz [16] present a methodology to
identify a set of valid positions and orientations for a mo-
bile robot’s base by considering predictions from simulated
events while picking and placing objects. Our simulated tests
are similar to the scenario executions in [15], [16], but our
framework is only intended to be used for comprehensive
offline testing of a robot’s behavioural components so that
failures can be analysed and improved before a robot is
practically deployed.

III. PROPERTY-BASED TESTING IN SIMULATION

Our proposed framework aims at testing robot actions,
such as pick object or move to, and complete tasks that are
composed of multiple actions, using property-based testing
in simulation, such that the objective is to automate the
test generation and evaluation process so that actions can
be tested under different conditions and with different pa-
rameters. To make this possible, it is necessary to specify
how test scenarios should be generated and which properties
should be tested for each action. In this section, we start
with a description of property-based testing and explain how
we encode and test properties, as well as how tests are
documented for subsequent analysis.

A. Property-Based Robot Testing

Property-based testing is a software testing framework that
verifies whether certain specifications, or properties, are met
in a given software system [5], such that the idea is to feed a
component with varied inputs and check whether it fails with
any given input values.> Property-based testing is a more
general version of unit testing, as a single property-based test
can substitute a collection of manually-specified unit tests; in
other words, property-based testing can be seen as generative
testing that can cover a large amount of the domain space
using parameter generation strategies.

2The mechanism of varied inputs fed into property-based tests is some-
what similar to fuzz testing in which random and possibly invalid data is
passed into a software component to detect failures.

Expected properties of a cup that has been picked-up

Cup

Robot
gripper

2
Table

The cup must have
some movement
along the vertical

direction.

The cup must not
be on the surface
that it has been
picked from.

The final position of
the cup must be in
the robot's gripper.

Fig. 2: Relevant properties for an object grasping action

The general structure for applying property-based testing
consists of (i) modelling the expected behavior of a system in
terms of properties, (ii) determining the range of parameters
that is of interest, (iii) activating an input generator in order to
generate parameters in the specified range, and (iv) verifying
that the test result satisfies the specified properties.

An example of applying property-based testing is given
by the simple scenario shown in Fig. 2, in which we want
to check whether a robot has picked up an object. The
following properties are defined for an object to be picked
up: (i) the object must be elevated from the surface that
it was picked from, (ii) the object must not be on the
surface that it was picked from, and (iii) the object’s final
position must be in the robot’s hand. According to the first
property, we expect that a picked up object will always be
elevated from its original position on the surface; a violation
of this property should result in a failure, as this would
indicate that the object was knocked over while the robot
was attempting to grasp it or the object was never grasped
in the first place. Similarly, the second property identifies
whether a successfully grasped object has slipped from the
gripper back onto the table during or after the pick action.
The third property verifies that the object is in the robot’s
hand. Through a combination of these three property tests,
different types of failures can be identified; for instance, the
success of property one and two and failure of property three
would mean that the robot successfully picked up the object,
but the object did not remain in its hand and fell down on
the floor. Defining more properties for a system increases the
testing mechanism’s ability to identify the point of failure. To
increase the coverage for a given use cases, we utilise input
generators, which pass varied parameters for verifying the
system’s properties. As described later, these generators are
parameterised at test runtime using a minimal configuration.

A more complete definition of relevant properties that we
use for testing an object grasping action is given in Table I;
the testing process itself is illustrated in Fig. 3.

Pick Action Test

Stores information of all
Scenario entities at fixed intervals
i M Configuration = Logs [_
generation ! Sim ’_\

Use €]

€]

—3—— Close object <-4 Receives poses of entities near robot

Send object pose coordinates to robot

Object l

—o—
grasped

Receive result of success or failure

No grasp g
collisions

Receive pose of picked object at the
beginning and end of pick action

€]
—9—— Moved object [« Receive object pose after pick action

Object in £ Receive robot and object poses after
[pick action

gripper

Fig. 3: An implementation example of modelling properties
for a pick object action of a robot.

TABLE I: Defined properties for an object grasping action

Property | Brief Description

Close ob- | Objects should exist within the proximity of the robot

ject before the action

Object The action should report that it has completed its execu-

grasped tion

No grasp | The positions of all objects, with the exception of the

collisions | robot and the object to be grasped, should remain the
same before and after the action

Moved The position of the grasped object should change after

object the action is executed

Object in | The grasped object should be in the robot’s hand at the

gripper end of the action

Similar properties are also encoded for other actions
involved in tabletop manipulation, in particular move fo,
perceive plane, and place object.

B. Action Ontology

We encode the information about which properties to test
for a given action in an ontology O represented in the Web
Ontology Language (OWL).? In the ontology, each action is
represented as an instance of an Action class. Actions are
performed with respect to a predefined coordinate frame and
are associated with multiple properties that need to be tested
for verifying the execution success. Properties are modelled
as instances of a Property class, where each property
depends on parameters that are set in the context of a given
action; each such parameter is represented as an instance of
a PropertyParameter class, such that the values of the
parameters are set at runtime during test generation.

In the ontology, these classes are related to each
other through the object properties shown in Table II.
Here, the performedIn property relates an action to
the coordinate frame in which the action is performed.
successProperty specifies which properties need to
be verified for the execution of an action to be consid-
ered successful. needsParameter and hasParameter
specify which parameters are required by a given property

3https://www.w3.org/OWL/

https://www.w3.org/OWL/

TABLE II: Ontology properties

Object property Domain Range

performedIn Action CoordinateFrame
successProperty Action Property
hasParameter Action PropertyParameter
needsParameter Property PropertyParameter

Algorithm 1 Property-based action testing

1: function TesTAcTION(a, O)
2: P, + getActionParameters(O, a)
3 Pval — {}
for p in P, do
Pual < generateParameter(p)
Pval — Pval U Pual
executeAction(Pya)
Props, < getSuccessProperties(O, a)
9: for pp in Props, do

AN AN

10: PPuval — getPropertyParameters(pp, Pyal)
11: if not pp(ppyq:) then

12: return false

13: return true

and which parameters are set for testing a given action,
respectively. To indicate that the values of property param-
eters are assigned at runtime, we represent each instance
of PropertyParameter by a designator, similar to [17].
An example ontology model of a pick object action, which
illustrates what is encoded for each action, is shown below.*

s A
Listing 1: OWL-based property model of an object grasping action

<owl:NamedIndividual rdf:about="http://actions#Pick">
<rdf:type rdf:resource="http://actions#Action"/>

<action:performedIn rdf:resource="http://actions#BaseLink"/>
<action:successProperty rdf:resource="http://actions#MovedAlongY"/>

<action:successProperty rdf:resource="http://actions#OnSurface"/>
<action:successProperty rdf:resource="http://actions#InHand"/>

<action:hasParameter rdf:resource="http://actions#objectLocation"/>

<action:hasParameter rdf:resource="http://actions#objectSurface"/>

<action:hasParameter rdf:resource="http://actions#pickOject"/>

<action:hasParameter rdf:resource="http://actions#surfaceObjects"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://actions#OnSurface">
<rdf:type rdf:resource="http://actions#Property"/>
<action:needsParameter rdf:resource="http://actions#objectSurface"/>
<action:needsParameter rdf:resource="http://actions#pickObject"/>
</owl:NamedIndividual>

- /

Automatic testing of properties is possible by implement-
ing each property pp as a parameterisable function, such that
the properties Props, that need to be tested for a given
action a are dynamically invoked. Alg. 1 provides a high-
level summary of the property testing procedure.

C. Test Scenario Generation

Similar to [18], we define a test scenario as a combination
of an environment configuration and an objective that a
robot needs to achieve. The scenario generation process
thus requires to (i) set up an environment and (ii) assign
a task to the robot being tested. Our scenario generation
component serves as a parameterisable input generator which
creates scenarios by placing objects in different positions and

“The ontology is available at https://github.com/b-it-bots/
action-execution/

orientations in a given environment. The generator uses a
similar approach to [19]; in particular, to generate diverse and
dynamic scenarios, we use custom 3D models of different
household objects, such that scenarios are generated by
placing the models in randomised poses.’ In this paper,
we focus on tabletop manipulation scenarios, so objects are
generated on surfaces where the robot can manipulate them.
To allow for controlled test coverage, the scenario gener-
ation is configured through the parameters in Table III.

TABLE III: Scenario configuration parameters

Parameter
tests

Description

List of tests to execute; each test is
specified as a list of actions

Number of times to run each test
Path to a launch file that starts all
components required by the tests
Path to a directory of 3D models used
in the tests

test_count

test_launcher

model_dir

worlds List of possible environments in
which a test scenario can take place
model_list Object models that can be used for

manipulation

Object models that can be placed as
navigation obstacles

Number of navigation obstacles to
place in the environment

Names of locations to which the robot
can navigate

List of surfaces on which objects can
be placed for manipulation

List of possible surfaces to which
objects can be brought

nav.obstacle_list

nav.obstacle_count

location_list

object_surfaces

place_object_surfaces

These parameters are passed to the scenario generator
through a TOMLS configuration file. It should be noted that
some of the configuration parameters are used to assign the
values of property parameters specified in the ontology. This
connection is established through TOML tables, where the
header specifies the name of the property parameter that
should be set and the corresponding configuration parameter
defines the list of possible values. The format of the scenario
configuration file for a pick action test is shown below.

4 7
Listing 2: Scenario generation configuration

tests = [["Pick"]]
test_count = int
test_launcher = str
model_dir = str
nav_obstacle_list = List[str]
nav_obstacle_count = int

[world]
worlds List[str]

[objectLocation]
location_list = List[stz]

[objectSurface]
object_surfaces = List[str]

[pickObject]
model_list = List[str]

[surfaceObjects]
model_list = List[str]

- /

5To avoid models from spawning on top of each other due to the
randomised nature of the placement, we apply 3D collision prevention using
axis-aligned bounding boxes (AABB).

Shttps://github.com/toml-lang/toml

https://github.com/b-it-bots/action-execution/
https://github.com/b-it-bots/action-execution/
https://github.com/toml-lang/toml

& =1|-°) test destination_verification

Overview History Retries

CUCEH 14/12/2020 at 20:47:52

AssertionError: assert 0 <= (-0.8109999999999999 + 0.45)

CUCEH 14/12/2020 at 20:47:07

AssertionError: assert [0, -2] <= (-0.8109999999999999 + 0.45)
14/12/2020 at 20:46:04

IndexError: list index out of range

CUCEH 14/12/2020 at 20:44:22

AssertionError: assert 5 <= (-0.8109999999999999 + 0.45)

+ where 5 = <tests.nav_test.TestNavigation instance at

0x7f9065159c8>. coord_x
Fig. 4: A generated test report for four failed point-to-point
navigation runs. In three of these, the navigation goal could
not be reached due to a blocking obstacle, while one run
failed due to a software error. Overview shows information
about the overall performance of a test over multiple runs,
History information about the number of runs of a test, and
Retries details about the retries of a failed or broken test.

D. Test Report Generation

For each test, we generate an automatic test report, which
is an HTML file created using the allure library’ in con-
junction with Hypothesis [20] for property-based testing.
The report is generated from json files that are created after
each test run, such that it stores information about the test
description and duration, world properties and parameters
used for the tests, the test consistency and history, as well
as the success rate and points of failure of the tests. Test
behavior is described by the success rate and consistency
of a test over multiple runs; in particular, for each test, the
time taken is recorded, such that if the test is inconsistent
over multiple runs, the test is considered unstable. Fig. 4
illustrates a test report for failed navigation tests.

E. Test Suite Evaluation

We evaluate a test suite, which consists of multiple test
runs, through the number of satisfied properties for each
involved action over all runs. Let 7" be a test suite in which
[different actions need to be tested. Actions are tested in m
randomly generated scenarios Si,1 < k < m with different
test parameters; each action A¥ 1 < i < has n properties
ppj», 1 < j < n that are evaluated by an indicator function I.
The evaluation of a test suite is thus measured through the
normalised success of the individual scenarios:

1 m

where each scenario is evaluated through the involved actions
1<
Sk(A’f,..-,Aé“)ﬁ;Af @)

Thttps://docs.qgameta.io/allure/

(a) Scenario (b) Moving to-
generation wards the ob-
ject

(c) Object ap-
proach

(d) Knocking
object over

Fig. 5: Failed grasp execution from a coffee table

and each action is evaluated through its associated properties:
1 n
j=1

IV. EXPERIMENTS

To verify our property-based testing approach, we test
the Toyota HSR and use Gazebo [21] as a simulation
environment since it is directly supported for the HSR.}
We use ROS [22] as the underlying middleware, such that
the tests are targeted at the components in our ROS-based
domestic robotics stack.” ROS is thus used both for inter-
component communication as well as for extracting informa-
tion necessary for executing the property-based tests (such as
object poses from Gazebo). We execute all tests on a laptop
with an i5-6300HQ CPU at 2.30GHz and 8GB RAM running
Ubuntu 16.04 and ROS Kinetic Kame. We present results for
two use cases: testing an object grasping action and an object
pick-and-place test. For both cases, we report the number of
property successes and failures and include cases in which a
test run could not be completed due to ROS communication
issues'® during the execution of an action (the latter are
referred to as de-synced messages in the figures).

A. Use Case 1: Object Grasping Action

Our first use case is that of verifying our pick object action.
Each pick action test scenario follows four main steps, which
are illustrated in Fig. 5 in the case of a failed grasp. During
scenario generation, an object platform is spawned along
with an object on it. For consistency, we performed this test
with a small coffee table as an object platform and a glass as
the object to be grasped. Once the test scenario is generated,
the action is invoked and executed; this is followed by a
verification of the properties in Table I. Movelt'! is used for
trajectory planning and execution in simulation.

B. Use Case 2: Complex Scenario

The second use case involves a complete object pick-
and-place scenario, in which the robot navigates to a table,
performs object detection on the table, picks an object, and

8The Gazebo setup for the HSR is available at https://github.
com/hsr-project

9The central component of our domestic robotics stack can be found at
https://github.com/b-it-bots/mas_domestic_robotics

10This particularly refers to action triggering messages that were not
received by an action execution component, in which case the robot is
waiting for a message indefinitely and thus remains stuck.

https://moveit.ros.org

https://docs.qameta.io/allure/
https://github.com/hsr-project
https://github.com/hsr-project
https://github.com/b-it-bots/mas_domestic_robotics
https://moveit.ros.org

(a) Scenario genera- (b) Turning towards (c) Table and object
tion the tablf; detectionA

(d) Cup grasping (e) Placing cup (f) Arm retrieval

Fig. 6: A successful pick-and-place run. Both grasping and
placing are performed on the same table.

mEm Property test passed
N Property test failed
13 1 De-synced ROS messages

Number of scenario runs

Close object Object grasped No grasp collision Moved object

Result of 15 pick-action scenario runs

Object in gripper

Fig. 7: Results of the pick action tests

places it back at a different location on the same table, as
illustrated in Fig. 6. The objective of this use case is to
validate the robot’s behavior when performing a complete
task that involves the actions move to, perceive plane, pick
object, and place object, as the overall success in this
task is determined by the sequential success of individual
actions, namely task failures are likely to occur due to
interdependencies between the actions.

C. Results

Fig. 7 shows the results of 15 runs of the grasping action.
As the results show, the action was fully successful only
a few times. Most failures were caused by collisions with
the object to be grasped while the approach trajectory was
executed; as a result of these collisions, the object was
displaced or knocked down and could not be successfully
grasped. In some of the runs, the test could not be completed
due to lost ROS messages between the components.

The results of 15 runs of the pick-and-place task are shown
in Fig. 8. In this case, the majority of the tests failed due to
lost communication messages, particularly during execution
of the pick and place actions. Some of the tests failed while
the robot was moving towards the object surface, which was
caused by obstacles lying on the designated navigation goal;
during execution of the pick and place actions, a collision
was the most common failure cause, just as in the pick
action test. For completeness, a detailed breakdown of the
quantitative evaluation using Eq. 1-3 is provided in Table IV.

B Property test passed
B Property test failed
13 [0 De-synced ROS messages

9
8
7
6
5
a
3
2
1

Navigation Properties

Number of scenario runs

Plane Perception Properties Pick Properties Place Properties

Fig. 8: Results of the pick-and-place scenario tests. Properties
corresponding to different actions are separated into groups.

TABLE IV: Quantitative evaluation of 15 runs of the pick-
and-place scenario. A;-A4 represent the actions move to,
perceive plane, pick object, and place object, respectively.

Run | Ak Ab Ak Ab Sk
i 1.0 1.0 0.4 0.25 0.67
2 1.0 0.67 0.0 0.0 042
3 0.6 0.33 0.6 0.25 045
4 0.0 0.0 0.0 0.0 0.0
5 1.0 1.0 0.0 0.0 0.5
6 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0
8 1.0 1.0 0.4 0.25 0.67
9 1.0 1.0 0.4 0.25 0.67
10 0.0 0.0 0.0 0.0 0.0
11 1.0 1.0 0.4 0.25 0.67
12 1.0 1.0 1.0 0.75 0.94
3 0.0 0.0 0.0 0.0 0.0
4 1.0 1.0 0.0 0.0 0.5
15 0.0 0.0 0.0 0.0 0.0
T | 037

It should be mentioned that the objective of the ex-
periments is evaluating the effectiveness of our proposed
approach rather than our components as such.'> From this
point of view, configurable property-based testing is able to
consistently identify failed actions and generates useful in-
formation for finding the likely causes of execution failures.

V. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a framework for property-based
testing of robots in simulation, with a particular focus on
tabletop manipulation for a domestic robot. The framework
utilises (i) a simulator that allows scenario randomisation and
has information about the absolute state of the world, (ii)
an ontology for encoding information about relevant action
properties and parameters associated with those, and (iii) a
configurable scenario generation component. The combina-
tion of these components allows testing robot actions, as well
as action sequences, in diverse world configurations, which
results in test reports that can be used to identify common
failure patterns. In experiments with an object grasping
action and a pick-and-place task, we showed that property-
based testing in simulation is a promising approach that can

12particularly since some of the components that we use on the real robot
have not been adapted to the simulation.

potentially increase the transparency of service robots and
provides insights about the reliability of tested components.

The work in this paper is only a preliminary step towards
the use of property-based tests in simulation for regular robot
testing. As can be seen from the experimental results, a
considerable number of tests failed due to unsuccessful com-
ponent communication through ROS; we have pinpointed
this issue to limitations of the hardware used for running
the tests, namely the resource-intensiveness of the simulation
was negatively affecting the performance of the complete
system, which means that more powerful hardware should
be used for running tests so that they are more representative
of the real system’s behaviour. The Gazebo simulator, which
we used for running the tests, was another frequent cause of
failures; in particular, Gazebo crashes prevented several test
runs from completing successfully, so it would be worthwhile
to consider using alternative simulators instead [23]. Another
limitation of our current approach is that some of the
components that we use in simulation, such as the trajectory
execution component, are modified versions of those used
on the real robot due to minor discrepancies between the
available interfaces on the real robot and in simulation; for
the tests to correspond to the real system more closely, the
interfaces in simulation and on the robot should be made
as close as possible to each other. The realism of the tests
is another potential concern for the proposed approach; this
is particularly the case in the context of object interaction
[24], although that would not be a significant problem if the
simulated tests are only used as a preliminary step before
running more critical tests on a real system and, depending
on the tested policies, direct transfer to the real world may
be possible in certain cases, as for instance shown in [25].

Future work will focus on testing execution policies that
have been learned with real-world data, particularly those
in [26], in diverse scenarios. Another aspect that should
be addressed is that of improving the scenario generation
and expanding the framework so that scenarios other than
tabletop manipulation can be tested; this includes incorpo-
rating tests in which action sequences are generated by a task
planner rather than being predefined during scenario gener-
ation. Adding additional scenario configuration parameters,
particularly ones that control the physical properties of the
objects used in the scenarios, would also contribute to the
extensiveness and realism of the tests. Finally, it would also
be useful to investigate post-processing of the generated test
results so that the data can be utilised for simulation-based
learning and policy improvement.

REFERENCES

[1] T. Sotiropoulos, H. Waeselynck, J. Guiochet, and F. Ingrand, “Can
robot navigation bugs be found in simulation? An exploratory study,”
in Proc. IEEE Int. Conf. Software Quality, Reliability and Security
(ORS), July 2017, pp. 150-159.

[2] A. Hentout, A. Mustapha, A. Maoudj, and I. Akli, “Key challenges and
open issues of industrial collaborative robotics,” in RO-MAN Workshop
on Human-Robot Interaction: From Service to Industry, Aug. 2018.

[31 A. Mitrevski, A. Kuestenmacher, S. Thoduka, and P. G. Ploger,
“Improving the reliability of service robots in the presence of external
faults by learning action execution models,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2017, pp. 4256-4263.

[4]

[5

[t

[6]

[7

—

[8]

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Araiza-Illan, A. G. Pipe, and K. Eder, “Model-based Test Gener-
ation for Robotic Software: Automata versus Belief-Desire-Intention
Agents,” arXiv preprint arXiv:1609.08439, 2016.

F. George and B. Matt, “Property-Based Testing: A New Approach to
Testing for Assurance,” ACM SIGSOFT Software Engineering Notes,
vol. 22, no. 4, pp. 74-80, 1997.

T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and
K. Murase, “Development of Human Support Robot as the research
platform of a domestic mobile manipulator,” ROBOMECH Journal,
vol. 6, pp. 1-15, 2019.

P. Arora and R. Bhatia, “A Systematic Review of Agent-Based Test
Case Generation for Regression Testing,” Arabian Journal for Science
and Engineering, vol. 43, pp. 1-24, Aug. 2017.

A. Bihlmaier and H. Worn, “Robot unit testing,” in Proc. 4th Int. Conf.
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), vol. 8810, 2014, pp. 255-266.

R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey,
“Paracosm: A Test Framework for Autonomous Driving Simulations,”
in Proc. 24th Int. Conf. Fundamental Approaches to Software Engi-
neering (FASE), Feb. 2021, pp. 172-195.

J. Park, M. Wen, Y. Sung, and K. Cho, “Multiple Event-Based
Simulation Scenario Generation Approach for Autonomous Vehicle
Smart Sensors and Devices,” Sensors, vol. 19, no. 20, p. 4456, Oct.
2019.

Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating
Adversarial Driving Scenarios in High-Fidelity Simulators,” in Proc.
Int. Conf. Robotics and Automation (ICRA), 2019, pp. 8271-8277.
M. Koren and M. Kochenderfer, “Efficient Autonomy Validation in
Simulation with Adaptive Stress Testing,” in Proc. IEEE Intelligent
Transportation Systems Conference (ITSC), Oct. 2019, pp. 4178-4183.
A. Santos, A. Cunha, and N. Macedo, “Property-based testing for the
robot operating system,” in Proc. 9th ACM SIGSOFT Int. Workshop
Automating Test Case Design, Selection, and Evaluation (A-TEST),
2018, pp. 56-62.

V. Estivill-Castro, R. Hexel, and C. Lusty, “Continuous integration for
testing full robotic behaviours in a GUI-stripped simulation,” in Proc.
CEUR Workshop, vol. 2245, 2018, pp. 453-464.

L. Kunze, M. E. Dolha, E. Guzman, and M. Beetz, “Simulation-
Based Temporal Projection of Everyday Robot Object Manipulation,”
in Proc. 10th Int. Conf. Autonomous Agents and Multiagent Systems
(AAMAS), 2011, pp. 107-114.

L. Mosenlechner and M. Beetz, “Fast temporal projection using
accurate physics-based geometric reasoning,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2013, pp. 1821-1827.

J. Winkler, M. Tenorth, A. K. Bozcuoglu, and M. Beetz, “CRAMm -
Memories for Robots Performing Everyday Manipulation Activities,”
Advances in Cognitive Systems, vol. 3, pp. 47-66, 2014.

M. Wen, J. Park, and K. Cho, “A scenario generation pipeline
for autonomous vehicle simulators,” Human-centric Computing and
Information Sciences, vol. 10, no. 1, June 2020.

J. Arnold and R. Alexander, “Testing autonomous robot control
software using procedural content generation,” in Proc. 32nd Int. Conf.
Computer Safety, Reliability, and Security (SAFECOMP), vol. 8153,
2013, pp. 33-44.

D. Maclver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis:
A new approach to property-based testing,” Journal of Open Source
Software, vol. 4, no. 43, p. 1891, Nov. 2019.

N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2004, pp. 2149-2154.

M. Quigley et al., “ROS: an open-source Robot Operating System,”
in ICRA Workshop on Open Source Robotics, May 2009.

J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A Review of
Physics Simulators for Robotic Applications,” IEEE Access, vol. 9,
pp. 51416-51431, 2021.

J. Collins, D. Howard, and J. Leitner, “Quantifying the Reality Gap in
Robotic Manipulation Tasks,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2019, pp. 6706-6712.

L. Hermann et al., “Adaptive Curriculum Generation from Demonstra-
tions for Sim-to-Real Visuomotor Control,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2020, pp. 6498—6505.

A. Mitrevski, P. G. Ploger, and G. Lakemeyer, “Representation and
Experience-Based Learning of Explainable Models for Robot Action
Execution,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS), 2020, pp. 5641-5647.

	I INTRODUCTION
	II RELATED WORK
	III PROPERTY-BASED TESTING IN SIMULATION
	III-A Property-Based Robot Testing
	III-B Action Ontology
	III-C Test Scenario Generation
	III-D Test Report Generation
	III-E Test Suite Evaluation

	IV EXPERIMENTS
	IV-A Use Case 1: Object Grasping Action
	IV-B Use Case 2: Complex Scenario
	IV-C Results

	V DISCUSSION AND CONCLUSIONS
	References

