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Abstract— This paper presents a novel visual-LiDAR odom-
etry and mapping method with low-drift characteristics. The
proposed method is based on two popular approaches, ORB-
SLAM and A-LOAM, with monocular scale correction and
visual-bootstrapped LiDAR poses initialization modifications.
The scale corrector calculates the proportion between the depth
of image keypoints recovered by triangulation and that provided
by LiDAR, using an outlier rejection process for accuracy
improvement. Concerning LiDAR poses initialization, the visual
odometry approach gives the initial guesses of LiDAR motions
for better performance. This methodology is not only applicable
to high-resolution LiDAR but can also adapt to low-resolution
LiDAR. To evaluate the proposed SLAM system’s robustness
and accuracy, we conducted experiments on the KITTI Odom-
etry and S3E datasets. Experimental results illustrate that
our method significantly outperforms standalone ORB-SLAM2
and A-LOAM. Furthermore, regarding the accuracy of visual
odometry with scale correction, our method performs similarly
to the stereo-mode ORB-SLAM2.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
irreplaceable technique for mobile robots and autonomous
vehicles, providing reliable surrounding environment infor-
mation and real-time positions. According to the use of
sensors, this technique can be divided into two categories:
visual-based and LiDAR-based. Over the past two decades,
visual SLAM has made significant strides, resulting in
commercially available frameworks. Modern visual SLAM
algorithms develop into two branches: feature-based and
direct methods. Feature-based methods [1], [2] reduce the
reprojection error of matched feature points (keypoints)
through bundle adjustment (BA) [3]. On the other hand,
direct methods normally optimize the photometric error of
sparse keypoints without corresponding matchings [4], [5].
The advantage of visual SLAM is rich semantic information,
low cost and small size, which is an indispensable part of
the field of automatic driving and AR.

In most cases, LiDAR SLAM usually outperforms visual
SLAM. Most recent pure LiDAR SLAM methods are de-
veloped based on LOAM [6], a milestone LiDAR SLAM
framework combined with SCAN-to-SCAN and SCAN-to-
MAP registration modes. These LOAM-based techniques
yield superior performance compared to the baseline LOAM,
with improvements in efficiency [7], robust registration [8],
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motion compensation [9] and local optimization [10]. In ad-
dition, LiDAR-based loop closure detection techniques [11],
[12] have been widely employed for place recognition and
graph optimization to reduce the accumulated error of Li-
DAR SLAM further.

Nonetheless, standalone visual or LiDAR SLAM either
has intractable drawbacks. Visual SLAM systems are prone
to localization failure [1] in fast motions. On the other hand,
for LiDAR SLAM, motion distortion [6], [9] is still a tricky
problem for spinning LiDAR, and its loop closure detection
is more complicated and challenging due to lack of stable
features [12]. It has been a noticeable trend to fuse visual
and LiDAR SLAM to enhance the overall performance.

According to the fusion techniques, LiDAR-camera fused
SLAM can be divided into three categories: LiDAR-assisted
visual SLAM, vision-assisted LiDAR SLAM, and vision-
LiDAR coupled SLAM. The first two means rely mainly on
LiDAR or camera, and the other sensor takes the assistance
role. Moreover, the last type generally utilizes both visual
and LiDAR odometry in the system.

The first category tends to focus on image depth enhance-
ment [13] or combines with direct methods without estimat-
ing the depth of feature points [14]. The second category
has few related studies, and it often uses visual information
to help LiDAR SLAM perform loop closure detection or
render map texture [15]–[17]. Since this category is not the
research content of this paper, we will not describe it in
detail. The third category is the hot field of current research,
which can be subdivided into loosely coupling and tightly
coupling. Loosely coupling is to cascade the two or filter the
results of the two [18], [19]. Tightly coupling [20] focuses on
constructing a joint optimization problem, including vision
and LiDAR factors for state estimation.

Our work is deeply related to depth enhancement. Whereas
the error of depth enhancement is significant when the point
cloud is sparse, and the feature points with enhanced depth
may not be successfully tracked. Directly tracking projected
points with high gradients is a solution, but such points
cannot be tracked accurately and stably. In this study, we
combine the powerful tracking ability of the feature-based
method with optical flow and propose a novel scale correc-
tion method to address the monocular scale drift problem.
Moreover, considering the LOAM algorithm depends on the
constant velocity model, it is prone to failure in scenes with
excessive acceleration or degradation. Using the results of
the visual odometry to initialize the LiDAR odometry’s pose
can increase the LOAM performance.

The contributions of this paper are as follows:
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1) A visual-LiDAR loosely coupled odometry. Solve the
problem that LOAM fails in degradative scenarios, and
increase the performance.

2) A novel scale correction algorithm is proposed that
does not need to enhance the depth of the visual
feature point. It guarantees that the output of the visual
odometry will not have a significant drift.

3) Implement our system on a large-scale dataset and
verify its effectiveness.

This paper is organized as follows. Section II presents
studies related to our work. Section III introduces the
proposed loosely coupled system and our scale correction
algorithm. Section IV shows the experimental datasets and
results. Finally, Section V demonstrates our conclusion and
possible extensions to our work.

II. RELATED WORK

LiDAR-camera SLAM can be broadly classified into three
categories: LiDAR-assisted visual SLAM, vision-assisted
LiDAR SLAM, and vision-LiDAR coupled SLAM. Note that
vision-assisted LiDAR SLAM systems [16] are not compre-
hensively reviewed in this paper because this system usually
hinges on semantic information, which requires knowledge
of image recognition that is out of our scope.

A. LiDAR-assisted Visual SLAM

LiDAR-assisted visual SLAM generally aims to utilize
LiDAR’s point cloud data to obtain more accurate depth
information for image feature points. A typical method in
this category is LIMO, where LiDAR data is directly applied
to estimate the depth of feature points [13]. Yuewen et
al. proposed CamVox, an RGBD SLAM system combined
with Livox LiDAR [21]. The performance of outdoor RGBD
cameras is improved by depth enhancement, and the depth of
many enhanced feature points reaches 100 meters. Another
approach to using LiDAR data in visual SLAM is by pro-
jecting point clouds onto images and performing the direct
method on projected points [14]. Reproject the projected
points to the next frame image and then minimize the photo-
metric error to solve the pose. This method does not have the
error caused by depth enhancement, but it requires accurate
extrinsic parameters between the camera and LiDAR. LiDAR
points are too sparse compared to image pixels, and the
above methods can obtain the depth of a small number of
points. In order to increase the number of pixels with depth,
Varuna et al. used the Gaussian process regression on the
projected points from LiDAR to the image to improve the
depth estimation [22]. Within a local image patch, they use
the enhanced depth pixels as a priori to predict the depth
of the remaining pixels in the image patch. In addition to
depth enhancement, LiDAR can also improve the robustness
of visual SLAM to illumination, which is also reflected in
CamVox [21]. Jiawei Mo et al. proposed a method that
uses LiDAR’s descriptor to address the issue that visual
loop closure detection is heavily affected by illumination
changes [23]. They calculate the LiDAR point cloud into
three descriptors and store them. The stereo SLAM map

is also calculated as three descriptors and matched with
the LiDAR descriptors. This method only relies on three-
dimensional points to complete visual loop closure detection.

To summarize, depth enhancement is the most popular
technique in LiDAR-assisted visual SLAM. In this paper, we
propose a novel approach that can apply to the low-resolution
LiDAR case, where the density of LiDAR point clouds is
much lower than that of the camera images.

B. Vision-LiDAR Coupled SLAM

In contrast to LiDAR-assisted visual SLAM, vision-
LiDAR coupled SLAM integrates both visual and LiDAR
odometry modules to enhance the system’s accuracy. V-
LOAM is a loosely coupled system that combines visual
and LiDAR odometry modules [24]. In this study, visual
odometry recovers the depth of feature points from sur-
rounding projected LiDAR points, while LiDAR odometry
leverages high-frequency camera poses to mitigate drift.
However, V-LOAM still faces two significant issues: inef-
fective depth enhancement and non-negligible drift error on
the z-axis (also remains in its baseline [6]). Zikang Yuan
et al. proposed SDV-LOAM [19]. It tracks the high-gradient
projected LiDAR points as visual odometry and employs an
adaptive scan-to-map optimization method to constrain pose
in all six dimensions well. By contrast, TVL-SLAM [20]
does not enhance the visual odometry’s depth estimation nor
utilize the motion estimation from visual odometry as the
LiDAR odometry’s initial guess. Instead, it establishes a joint
optimization problem of visual and LiDAR features, thereby
establishing a tightly coupled system.

The advantage of loose coupling is that the system struc-
ture is simple and the precision is high, but the robustness
is not strong due to the influence of each module. Tight
coupling is generally more robust due to joint state estimation
but requires more computation.

Fig. 1. Overview of our method.

III. METHODOLOGY

A. System Overview

The overview figure of our method is shown in Fig. 1,
and the definitions of primary notations are present in Table
I. Our system synchronizes the camera and LiDAR data at
10Hz. During the first stage, a local vision map is generated
using the mono camera initialization or tracking. Subse-
quently, we utilize LiDAR data to estimate the monocular
scale factor that represents the ratio between the correspond-
ing vision local map and laser scan. However, due to the scale
drift of the monocular odometry, we correct the scale factor
periodically during the trajectory using the proposed scale
corrector. Following scale correction, the LiDAR odometry



Fig. 2. Pipeline of the Scale Corrector.

TABLE I
NOMENCLATURE

Notations Description

Ci ith frame of image keyframe
Li ith frame of point cloud

{xi
j} keypoints projected from Li onto Ci

{x̂i
j} reserved keypoints of {xi

j} after optical flow tracking

{xi
j} reserved keypoints of{x̂i

j} after keypoint culling

TB
A transformation of A with respect to B

Pi
w coordinates of ith map point with respect to the world

K camera intrinsic matrix

dij measured depth of the jth projected point onto Ci

vij visual depth of the jth projected point onto Ci

pi
j LiDAR point corresponding to xi

j

generates the final pose with the initial guess from the visual
odometry (we call it visual bootstrapping), resulting in a
final localization frequency of 10 Hz. The visual odometry
and LiDAR odometry are implemented based on ORB-
SLAM2 [1] and A-LOAM [6], respectively, so we focus
on performance comparison with the two baselines in our
experiments part (Section IV).

The remaining parts (Section III-B and Section III-C)
jointly introduce the implementation of the proposed scale
corrector. The pipeline of our scale corrector is displayed
in Fig. 2. To start with, we project the last frame of point
cloud Li−1 onto the corresponding image Ci−1 and select
keypoints {xi−1

j } among the projected points. Subsequently,
the optical flow algorithm is employed to track each xi−1

j in
the current image Ci and thus get {x̂i−1

j } and {x̂i
j} simul-

taneously. Moreover, to guarantee the accuracy of keypoint
correspondence, we also design two criteria for keypoints
culling based on epipolar lines, which are further introduced
in (3) and (4). Based on this keypoint matching, we can
conduct triangulation between matched {xi−1

j } and {xi
j} to

recover their depth in the local map. Finally, scale correction
is performed between the local map and the corresponding
laser scan periodically throughout the trajectory.

B. Scale Corrector: Keypoint Extraction

1) Projection and Matching: As outlined in Section III-A,
the content of this section includes the projection, matching
and culling steps of keypoints. For clarity, we did not take
image distortion into account. Then, the process of projection
between Ci−1 and Li−1 can be formulated in (1).

xi−1
j =

1

di−1
j

KTC
Lp

i−1
j (1)

where pi−1
j is the jth point of Li−1, TC

L is the extrinsic pa-
rameter between camera and LiDAR. Imprecise extrinsic will
cause a significant error, and the corresponding calibration
method is shown in our previous work [25].

Further, the following criteria are applied to filter out
distinctive {xi−1

j } through neighbouring image information.
a) xi−1

j should meet the requirements of the FAST-9 [26]
corner.

b) The image gradient at xi−1
j should be large enough.

Fig. 3. FAST-12 pre-testing process. The red point is the keypoint to be
tested. The blue points are domain image points.

However, the first criterion is not applicable to low-
resolution LiDAR due to the scarcity of projected points.
To resolve this issue, we lower the requirement to obtain
{xi−1

j } as shown in Fig. 3. We adopt the FAST-12 pre-testing
process. Calculate the difference in the pixel values between
the keypoint and the surrounding four points, and if more
than three meet the threshold, our requirements are met. In



addition, we employ non-maximum suppression to ensure a
uniform distribution of keypoints.

Regarding keypoint matching, we employ the Lucas-
Kanade [27] optical flow with the input of {xi−1

j } from the
last image to track corresponding points {x̂i

j} in the current
image.

(a) Epipolar line (b) Error directions

Fig. 4. (a): The projection keypoint will theoretically lie on the epipolar
line. (b): The error between the tracked keypoint(black) and the theoretical
point(orange) is divided into tangential and normal errors.

2) Culling: Since many keypoints are not Fast corners,
tracking these keypoints by optical flow will cause significant
uncertainty. To further improve the accuracy of keypoint
matching, we conduct keypoint culling based on the epipolar
lines. Fig. 4(a) shows the conception of the epipolar line.
According to epipolar geometry, the keypoint x̂i

j should be
located on the epipolar line. For one, it should be discarded
when its distance to the epipolar line is too large. For another,
in some special cases, the keypoint still should be culled
when its pixel gradient is perpendicular to the epipolar line
even though it is near the epipolar line. The reason is that
other points distributed along the pixel gradient direction are
also likely to be extracted to match this epipolar line, thereby
increasing the uncertainty of its distance to the epipolar line.
To cull the keypoints under the above circumstances, we
propose two errors indicated in Fig. 4(b), denoted as normal
error ϵn and tangential error ϵt. We will formulate them in
the following parts of this section.

According to the theory of epipolar line, x̂i−1
j and x̂i

j can
theoretically be constrained by (2).

(x̂i
j)

TK−T (tCi

Ci−1
)×R

Ci

Ci−1
K−1x̂i−1

j = 0 (2)

where RCi

Ci−1
and tCi

Ci−1
are the rotation and transla-

tion parts of TCi

Ci−1
respectively, and (·)× represents an

antisymmetric matrix. More obviously, from the formula
(2), the equation of the epipolar line can be obtained as
Ax+By + C = 0.

Based on this definition, the quality of tracking points
can be evaluated quantitatively. As displayed in Fig. 4(b),
we propose two evaluation metrics of different directions.
Intuitively, as formulated in (3), the normal error ϵn is
evaluated through the distance between x̂i

j and epipolar line.

Fig. 5. Two extreme cases of pixel gradient and epipolar line directions. The
yellow line is the epipolar line, and the red is the pixel gradient. Left: The
two are perpendicular; many similar pixels are on the epipolar line. Thus,
the matching uncertainty on the epipolar line is significant. Right: The two
are parallel; the boundary pixels have a higher degree of discrimination
than other pixels on the epipolar line. Thus, the matching uncertainty on
the epipolar line is small.

We also set a threshold (0.5) to filter out fine points subject
to this condition.

ϵn =
|Ax̂i

j.x +Bx̂i
j.y + C|

√
A2 +B2

< 0.5 (3)

where x̂i
j.x & x̂i

j.y are the x & y coordinates of x̂i
j ,

respectively.
Before explaining the tangential error, it is necessary to

introduce optical flow again. Optical flow relies on pixel
gradient to track the keypoint, usually using an image patch
around the keypoint to increase accuracy. The same trick
is used in the epipolar search [4]. Therefore, we can refer
to the epipolar search to give a qualitative description of
the tangential error. Inspired by [28], the angle between
the epipolar line direction and the pixel gradient can be
used to describe the matching uncertainty along the epipolar
tangential direction. Fig. 5 shows two extreme cases. The
larger the angle between the pixel gradient and the epipolar
line, the more considerable the uncertainty along the epipolar
tangential direction.

Consequently, for a keypoint x̂i
j tracked by optical flow,

we denote
−−→
epi and

−→
dI as the epipolar line direction vector

and pixel gradient vector, respectively, as shown in Fig. 4(b).
Then, we can define the | cos θ| and its threshold in (4).

| cos θ| =

∣∣∣∣∣
−−→
epi ·

−→
dI

∥
−−→
epi∥ · ∥

−→
dI∥

∣∣∣∣∣ > 0.5 (4)

Where θ is the angle between
−−→
epi and

−→
dI . The tangential

error ϵt may be more significant if | cos θ| is smaller than
the threshold according to the matching uncertainty from the
previous analysis.

At the end of keypoint culling, the points not subject to
(3) and (4) are discarded, thereby reserving reliable matched
points {xi

j} and {xi−1
j }.

3) Scale Calculation: With matched keypoints {xi
j} and

{xi−1
j }, we can restore the depth of each point xi−1

j by
triangulation and calculate the scale factor si−1

j through
being dividing by the measured depth di−1

j , which is the
distance of LiDAR point pi

j previously projected to Ci in
(1).

si−1
j =

di−1
j

vi−1
j

(5)



Note that there are probably a considerable proportion of
outliers among {si−1

j }, so we introduce RANSAC [29] for
outlier rejection and output the mean of inliers as the final
scale factor.

C. Scale Corrector: Scale Correction

In this section, we detail how to apply scale correction
to the whole SLAM system. As mentioned in Section III-
A, our visual odometry is implemented based on ORB-
SLAM2 [1]. We remove the loop closing thread and employ
scale correction during local mapping process. Without loop
detection and closure, the scale of local map is unstable, and
thus we periodically correct the scale of local map throughout
the trajectory.

At the first stage, denote {TC0
w ,TC1

w ,TC2
w . . .TCm

w }
as the poses of keyframes in the local map and
{P0

w,P
1
w,P

2
w . . .Pn

w} as the constituent map points of the
local map. Note that these values are all with respect to
the world coordinate system. Therefore, we transform poses
and map points to reference frame C0 using (TC0

w )−1.
Subsequently, in the local map coordinate system, we can
correct the scale of the local map after local bundle adjust-
ment. Finally, the local map is transformed into the world
coordinate system again for the sake of compatibility with
ORB-SLAM2.

Notably, we do not frequently correct the scale, as this
can interfere with the local mapping thread and cause a loss
of efficiency. Instead, the scale correction is only triggered
when |scale− 1| ≥ 2%, where scale is the final scale factor
calculated by the scale corrector.

IV. EXPERIMENTS

We evaluate the performance of the proposed system on
KITTI Odometry and S3E datasets. They both incorporate
data collected from visual and LiDAR sensors. Four chal-
lenging sequences with long distances are selected for eval-
uation. Regarding data setting, KITTI Odometry uses HDL-
64E LiDAR and FL2-14S3M-C cameras, while S3E uses
VLP-16 LiDAR and HikRobot MV-CS050-10GC cameras,
which is more challenging for scale correction due to the
vertical sparsity of reprojected LiDAR points. Note that we
have presented a solution to the sparsity issue in Section III-
B.1.

Given that our method is developed based on ORB-
SLAM2 [1] and A-LOAM [6], we focus on comparing
the localization performance of our system to that of these
two baselines. In addition, we also compared with SDV-
LOAM [19], one of the state-of-the-art algorithms introduced
in Section II-B. All SLAM systems are performed on a laptop
with a single-core AMD 6800H @3.2GHz.

A. Effectiveness of Scale Corrector

To verify the effectiveness of the proposed scale corrector,
we compare the absolute rotation and translation error (ATE
& ARE) between our visual odometry and the stereo-mode
ORB-SLAM2. The formulation and implementation of the
two metrics can be found in evo [30] tool.
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Fig. 6. Trajectories estimated by visual odometry. Other legends are
consistent with (a). In S3E, the pose of some frames cannot be estimated
due to monocular initialization.

It should be noted that the ground-truth poses of the S3E
dataset are provided by RTK without orientation (ARE is
not evaluated for S3E), which worked at a much lower
rate than the camera. In addition, the extrinsic calibration
between RTK and camera (left) is not given. To solve
these problems, we interpolate the trajectory of the visual
odometry using timestamps to synchronize the predicted
poses to the ground truth values using evo and meanwhile
employ Umeyama [31] alignment between the predicted
and ground-truth trajectories. Quantitative results on five
representative sequences are shown in Table II while cor-
responding qualitative results are drawn in Fig 6. When
loop closure is banned for both, our visual odometry yields
better performance than stereo-mode ORB-SLAM2 in most
cases, indicating the effectiveness of our scale correction
module. Regarding underlying reasoning, we assume that our
method is more capable of correcting the depth of distant
keypoints due to the assistance of scale corrector, which is
challenging for stereo vision as the parallax is not sufficient
enough in this case. Moreover, we change the reference
coordinate system during local optimization to the earliest
keyframe in the local map, which reduce the value during
optimization compared to the original solution and bring a
slight performance improvement.



TABLE II
TRAJECTORY ERRORS OF SLAM METHODS

Sequence / Length Ours VO ORB-SLAM2(Stereo) Ours VLO A-LOAM SDV-LOAM

KITTI 00 / 3724m ATE(m) 5.631 8.946 translationl RMSE(%) 1.182 1.655 0.9836
ARE(deg) 1.791 1.920 rotational error(deg/m) 0.0061 0.0078 0.0041

KITTI 02 / 5067m ATE(m) 13.53 17.20 translationl RMSE(%) 3.263 11.26 0.8022
ARE(deg) 1.821 3.300 rotational error(deg/m) 0.0103 0.0307 0.0024

KITTI 05 / 2205m ATE(m) 5.096 4.460 translationl RMSE(%) 1.4496 4.7189 0.7036
ARE(deg) 0.6319 1.100 rotational error(deg/m) 0.0065 0.0155 0.0030

KITTI 08 / 3222m ATE(m) 13.98 12.47 translationl RMSE(%) 1.895 5.100 1.1031
ARE(deg) 1.803 1.824 rotational error(deg/m) 0.0075 0.0187 0.0037

1S3E College / 920m ATE(m) 1.673 5.374 ATE(m) 3.097 5.505 2FailedARE(deg) – – ARE(deg) – –

1 The ground truth of the S3E dataset has only the translation part, and the rotation part is the unit quaternion.
2 SDV-LOAM fails on S3E College.

(a) GT (b) A-LOAM (c) Ours

Fig. 7. Performance of degraded scenes. On a big detour with a degraded scene, A-LOAM makes wrong pose estimates, while ours works well.

B. Effectiveness of Visual Bootstrapping

As for the verification of the effectiveness of Visual
Bootstrapping for the LiDAR odometry, we compare it with
the baseline A-LOAM [6] and SDV-LOAM [19] on the same
datasets shown in Section IV-A. However, there is a slight
difference in evaluation. For the KITTI dataset, we replace
the evo tool with the official KITTI evaluation tool [32] for
localization evaluation since it better demonstrates the drift
degree in a long distance. Table II illustrates that our system
achieves significantly lower translation drift and slightly
lower rotation drift than the A-LOAM. In the KITTI dataset,
our performance is not as good as SDV-LOAM, but SDV-
LOAM does not adapt to the VLP-16 LiDAR and thus fails
on the S3E dataset.

For qualitative results, we present a partial view of LiDAR
map in Fig 7, which is part of a curved road with only trees
around. In this case, A-LOAM suffers degradation while our
LiDAR odometry works well. Therefore, both qualitatively
and quantitatively, our method outperforms A-LOAM. As
for the reasons, A-LOAM lacks constraints on the z-axis,
and the loss function easily falls into a minimum value in
a degraded scene. Using the results of visual odometry to
compensate for the initial value of A-LOAM can reduce the
number of iterations and avoid the problem that the loss
function falls into a minimum value due to the significant
difference between the initial value and the actual value.

V. CONCLUSION AND FUTURE WORK

In this study, we propose a loosely coupled monocular-
LiDAR SLAM technique with a novel scale corrector. Its
pose prediction derives from monocular odometry with scale
correction and LiDAR odometry with visual bootstrapping.
Concerning localization performance, our visual odometry
achieves better performance than stereo-mode ORB-SLAM2
when loop closure for neither is available, while our LiDAR
odometry significantly outperforms baseline A-LOAM [6].
It is illustrated by quantitative results that the whole system
yields markedly lower translation drift and moderately lower
rotation drift. Qualitative results also show that our system
is more robust than A-LOAM [6] in degraded scenes. On
the other hand, as for limitations, the proposed system relies
heavily on the stability of visual odometry. In other words,
a severe drift of visual odometry can cause a great loss
of performance to our system, which deserves our deeper
investigation.

In our future study, we are expected to refine the proposed
framework, including enhancing the robustness of visual
odometry through back-end optimization, adding trouble-
detection and troubleshooting tragedies for visual odometry
failure and involving LiDAR points in constructing visual
map.
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