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Abstract— Agricultural robots have the potential to increase
production yields and reduce costs by performing repetitive and
time-consuming tasks. However, for robots to be effective, they
must be able to navigate autonomously in fields or orchards
without human intervention. In this paper, we introduce a navi-
gation system that utilizes LiDAR and wheel encoder sensors for
in-row, turn, and end-row navigation in row structured agricul-
tural environments, such as vineyards. Our approach exploits
the simple and precise geometrical structure of plants organized
in parallel rows. We tested our system in both simulated and
real environments, and the results demonstrate the effectiveness
of our approach in achieving accurate and robust navigation.
Our navigation system achieves mean displacement errors from
the center line of 0.049m and 0.372m for in-row navigation in
the simulated and real environments, respectively. In addition,
we developed an end-row points detection that allows end-row
navigation in vineyards, a task often ignored by most works.

I. INTRODUCTION

The increasing demand for food in the current climate-
changing environment introduces new challenges, such as
the necessity of increasing production and the sustainability
of crop management while reducing costs [1]. Agricultural
robots can help achieve these goals by performing repetitive
and time-consuming tasks, allowing farmers to improve pro-
duction yields. At the same time, for robots to be effective,
they must be able to navigate autonomously in fields or
orchards without human intervention. Navigation approaches
can be broadly divided into two categories: those with
or without a map of the environment. While map-based
approaches can be helpful in unstructured environments, they
require a more expensive sensor suite and incur increased
computational effort. Additionally, localization on a pre-built
map can fail due to the constantly changing nature of agricul-
tural environments. Nevertheless, agricultural environments
typically have a simple and precise geometrical structure,
with crops organized in parallel rows. This structure can be
exploited for navigation without the need for a map.

Autonomous navigation in agriculture often utilizes GNSS
information for pre-planned routes or as supplementary infor-
mation. Additionally, Differential GNSS technology provides
higher localization accuracy of up to centimeters. However,
the GNSS signal is not always available, especially for
those cultivations with high plants and abundant vegetation.
LiDAR and camera sensors are also utilized for navigation.
LiDARs can be either 2D or 3D sensors, with the latter
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Fig. 1. Our robotic platform navigating a real vineyard.

characterized by multiple scanning planes. LiDAR sensors
provide a geometrical view of the environment, work at a
reasonable frequency (over 10 Hz), and are precise. Cameras,
such as RGB, stereo, or RGB-D, provide a more complex
semantic interpretation of the environment, which is helpful
for tasks like obstacle avoidance. Stereo and RGB-D cam-
eras can also produce 3D renderings of the environment.
Although LiDARs only provide geometrical data, they are
less susceptible to lighting conditions than cameras, which is
essential in agricultural environments where strong sunlight
and shadows are typical.

The VINBOT project [2] has developed a vineyard naviga-
tion system combining a line detection algorithm and GNSS
navigation for in-row navigation. Two lines representing
vineyard rows were identified using a 2D laser and RANSAC
algorithm. The robot changed the corridor by rotating around
one of two points representing the plant’s end. Localization
relied on IMU, GPS, and wheel odometry data, but tests have
shown that plant holes should be manually managed to avoid
misinterpretation.

The VineSLAM algorithm, described in [3], employed
laser rangefinder data and known parameters to identify
trunks and masts as landmarks for 2D SLAM. RFID tags
were utilized to mark the corridor boundaries for topological
mapping. However, the algorithm’s accuracy relied on the
detection of trunks and masts, and external factors such as
grass and wind introduced substantial noise, compromising
navigation reliability.20
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Fig. 2. The general navigation software architecture.

Bernad et al. [4] proposed three straightforward in-row
navigation approaches using only 2D LiDAR data. The most
effective algorithm involved calculating the average distance
from both sides of the crop row and estimating an orientation
correction based on the offset. They achieved an accuracy of
0.041m±0.034m from the center line when testing outdoors
with potted maize plants.

Rovira-Más et al. [5] presented a multi-sensor navigation
approach for inside-row guidance. The authors used a so-
called Augmented Perception Obstacle Map (APOM) to store
and evaluate readings from a 3D stereo camera, LiDAR, and
ultrasonic sensors. The map is then analyzed to find specific
situations representing the status of row detection. The next
navigation target point is only computed if one or both rows
are found.

Mengoli et al. [6], [7] proposed Hough Transform-based
methods for orchard navigation, including in-row and row-
change maneuvers. The authors enhanced robustness by
incorporating vineyard geometry conditions and using GPS
to identify corridor ends. The detected pivot point in row-
change maneuvers had an RMSE of 0.3429 m in the x
direction and 0.5840 m in the y direction.

Aghi et al. [8] introduced a vineyard in-row navigation
algorithm with two components. The first component uses
an RGB-D camera’s depth map to detect the end of the
row by fitting a rectangular area to the farthest pixels. In
case of failure, a backup algorithm takes over, utilizing a
neural network to identify and correct the robot’s orientation
if needed.

The Field Robot Event (FRE)1 is a robotics compe-
tition that focuses on autonomous navigation in agricul-
tural environments. We drew inspiration from the in-row
navigation approach used by the Kamaro team [9] in the
2021 FRE competition for maize fields and adapted it for
vineyard navigation. Our navigation system utilizes a single
LiDAR and wheel encoders to reduce sensor requirements
and costs. Additionally, we developed an end-row naviga-
tion algorithm to facilitate autonomous row changes. We
proposed a straightforward evaluation benchmark for in-
row navigation and end-row point detection, eliminating
the need for external devices like laser tracking or Dif-
ferential GNSS systems. The system was tested in both
real vineyard (see Figure 1) and simulated environments.
The complete algorithm code is available at this GitHub

1https://fieldrobot.nl/event

repository: https://github.com/AIRLab-POLIMI/
MFLB-vineyard-navigation.

II. MATERIALS AND METHODS

We developed our navigation algorithm for a skid-steering
mobile robot, although the general structure can also be
adapted to other types of kinematics. The navigation software
was implemented using the Robot Operating System (ROS)
library, specifically the Melodic version on Ubuntu 18.04
LTS. The software architecture is presented in Figure 2.

Initially, the robot is assumed to reach the beginning of a
row; the In-row navigation module guides the robot to follow
the row until the end is detected. Then, the robot performs an
open-loop turn managed by the End-Row navigation module,
which guides the robot along the border of the vineyard until
it reaches a specified row to turn into, where the In-row
navigation module is reactivated. The following gives a more
detailed description of each algorithm component.

A. Input Data

Our algorithm needs very few input data, namely, an
odometry source and 2D laser scans. Since we used a robot
with a skid-steering kinematic, we computed its odometry
with the model presented in [10]. The kinematic relation is
expressed as follows:vx

vy
ωz

 = A ·
(
Vl

Vr

)
(1)

where v = (vx, vy) is the vehicle’s translational velocity with
respect to its local frame, ωz is its angular velocity, Vl and
Vr are the left and right linear tread velocities, and matrix
A is defined by Equation (2). Following the experiments
presented in [10] we have calibrated the matrix A that, in the
case of an ideal symmetrical kinematic, takes the following
form:

A =
α

2xICR
·

 0 0
xICR xICR

−1 1

 (2)

where, xICR is the x−axis component of the Instantaneous
Center of Rotation (ICR), and α is a correction factor to
account for mechanical issues such as tire inflation conditions
or the transmission belt tension. Both these parameters have
been empirically estimated following the directions provided
in [10].
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Fig. 3. In-row navigation algorithm.

Beyond odometry, our navigation system expects 2D laser
scans to perceive the environment. We transformed LiDAR
messages from an Ouster OS1 3D LiDAR sensor into 2D
laser scans through the pointcloud to laserscan ROS pack-
age2. We set the sensor at 10 Hz and 1024 points for each
of its 64 planes. We then filtered the laser scan messages
to reduce their size. We first applied radius filtering to
remove points outside a circle centered on the sensor and
then downsampling to reduce the density of points. We also
applied outlier filtering to remove noise from data.

B. In-row navigation

In the in-row navigation stage, the navigation system
makes the robot traverse a corridor created by two lines of
plants by maintaining an equal distance from them as much
as possible. The approach we used for the in-row navigation
has been adapted from that of the Kamaro team3 which
participated in the 2021 FRE competition.

The functioning of the In-row navigation module is graph-
ically illustrated in Figure 3. The find cone method analyzes
the laser scan messages to find an obstacle-free cone in front
of the robot. To do so, a cone centered on the moving robot
direction is gradually grown by enlarging the apex angle
until a certain number of points fall inside the cone. The
two cone sides are moved independently, and they have a
configurable length. Once the cone is found, we compute an
angular offset between the cone center line and the robot
center line. This angular offset is increased by an additional
offset proportional to the distance between the robot and
corridor center. The latter distance is computed by growing
two rectangles on the side of the robot until a certain number
of points fall into them. A graphical representation of the
cone and rectangles is shown in Figure 4.

The final angular offset defines a new line pointing toward
the steering direction. We use a PID controller to steer toward
the point on this line that is 1m in front of the robot. The
linear speed is set to a constant value, and it is reduced if an
object in front of the robot is detected. The algorithm uses

2https://github.com/ros-perception/pointcloud_to_
laserscan

3https://github.com/Kamaro-Engineering/fre21_row_
crawl

Fig. 4. The robot navigating inside a row in the simulated environment.
The two thick red lines represent the sides of the cone, while the red square
on the center line represents the new navigation point to follow. The light
green rectangles are used to compute the distances from both sides. The
semi-transparent rectangle in front of the robot is used to check if the end of
the row is reached by counting the number of points inside it. The rectangle
placed in the middle-front part of the robot is used to check an obstacle’s
distance and reduce speed accordingly.

a rectangle in front of the robot to calculate the target speed
based on the distance between the robot and any obstacles.

At each linear and angular speed update, the In-row
module checks if the end of the row has been reached. This
procedure involves a rectangular area (colored light green in
Figure 4) placed in front of the robot, spanning the entire
corridor and part of both row sides. The corridor is over
when the number of points in the rectangle approaches zero.
The last step is to exit the row by a fixed distance measured
through the robot odometry. Since the latter distance is
usually of about 1m, the odometry guarantees a reasonable
accuracy.

Once the robot has exited a row, it performs an in-place
rotation by a fixed angle (usually 90◦). The user needs to
set the direction of the first rotation, left or right. During the
rotation, the odometry is monitored to halt the robot when the
required angle has been performed. Note here that we expect
the robot to skid, and because of this, the effective rotation
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Fig. 5. End-row navigation algorithm.

might differ from 90◦. However, the algorithm overcomes
this problem by selecting two end points—one positioned in
front and the other at the back of the robot. Subsequently,
it rotates the robot to align its moving direction parallel
to the line segment connecting these two points. It’s also
important to note that the robot does not need to be perfectly
aligned with the row direction when it begins navigating at
the beginning of the row. In both scenarios, the algorithm
compensates for an incomplete rotation up to a specific
angle. The maximum angle that can be recovered depends
on factors such as the width of the row, the robot’s distance
from the row’s starting point, and algorithm parameters like
the length of the cone sides. Once the turn is completed, the
navigation system activates the End-row navigation module.

C. End-row navigation

After completing the turn, the navigation system initiates
the End-row algorithm. A schematic representation of the
End-row navigation algorithm is presented in Figure 5. The
primary objective of this algorithm is to enable the robot
to travel perpendicularly to the field rows until it reaches
the next corridor. The algorithm is specifically designed to
leverage row ends, which typically consist of wooden support
poles in vineyards. We employed the Euclidean Cluster
Extraction technique [11] to identify row ends from the 2D
point cloud data. This simple algorithm is highly effective
in vineyards because the rows are widely separated by open
areas to allow for human operations. Each obtained cluster
represents a row end.

The subsequent task selects a point for each recognized
cluster, representing the row end. We evaluated two policies
to select such end point. The first policy, termed Nearest,
involves selecting the nearest cluster point to the robot center,
which is surrounded by a minimum number of points at
a threshold distance. Therefore, the circular neighborhood’s
radius and the minimum number of points are parameters
that need to be configured. The second policy, called Line
fitting, involves a first step in which the end point is selected
with the Nearest policy, then a line is fitted to the cluster
of points, and finally, the end point is projected onto that
line. We implemented line fitting using the random sample
consensus (RANSAC) algorithm, finding that 100 iterations
and a distance threshold of 0.1m offer a good balance
between speed and accuracy.

After detecting the points representing row ends, we use
them to construct segments that indicate the navigation di-

Fig. 6. A screenshot of the simulation environment with the clustered row
ends. Each cluster is represented with a different color. With red squares
are shown the selected end points according to the Nearest policy. The red
line represents the segments the robot follows to navigate perpendicularly
to row ends.

rection. Indeed, the navigation system keeps a fixed distance
from row ends by maintaining a moving direction parallel
to such fitted segments. Figure 6 displays the clustered row
ends in various colors and the identified end points through
the Nearest policy with red squares. Additionally, the current
direction segment is shown with a red line. Figure 7 shows
the clusters and end points obtained through the Line fitting
policy.

While the robot navigates parallel to end rows, it keeps
track of the number of passed row ends and stops in the
middle of the next corridor to enter. Then it will perform a
90◦ in-place rotation, and the system will activate the In-row
navigation module again.

III. RESULTS

We conducted experimental tests in both simulated and
real environments. The simulation has been performed on the
Gazebo simulator with vineyard models at different vegeta-
tive stages taken from the BACCHUS project repository4 (see
Figure 8). We also performed tests in a real vineyard located
on the Piacenza (Italy) campus of the Università Cattolica del
Sacro Cuore. The simulated environment consisted of three
vineyard corridors approximately 36m long and approxi-
mately 2m large, characterized by three different vegetative
stages: low, medium, and high. The results reported for

4https://github.com/LCAS/bacchus_lcas

Authorized licensed use limited to: Politecnico di Milano. Downloaded on February 21,2024 at 13:54:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. A screenshot of the simulation environment when the robot is
performing end-row navigation. End row points are clustered, and a line is
fitted for each cluster (green lines). Then, each end point (red squares) is
projected onto the line model of its cluster.

Fig. 8. A screenshot that depicts a portion of the simulated vineyard.

the simulated environment are thus an average over the
three vegetative stages. The real environment was a single
vineyard corridor with a length of approximately 40m and
a width of approximately 2.5m, which is one of the typical
settings in Italy. The vegetative stage of the real vineyard
was comparable to the high vegetative stage of the simulated
one. During the tests, we reached a maximum linear speed
of 2m s−1 in the simulated environment and 1m s−1 in the
real environment for both in-row and end-row navigation. We
mounted the Ouster OS1 LiDAR sensor at an approximate
height of 1m from the ground.

The navigation system ran on an onboard Shuttle XPC
(model DS81L15) equipped with an Intel(R) Core(TM) i7-
4790S CPU and 8 GB of RAM. The LiDAR sensors pro-
duced messages at a frequency of 10Hz, and the odometry
was published at 50Hz. All the ROS nodes were capable
of keeping up with the 10Hz frequency of the LiDAR,

except for the nodes responsible for clustering and end point
detection, which proved to be the bottleneck of the system.
Specifically, the node performing clustering with the Nearest
end point picking policy operated at a minimum frequency
of 9Hz, while the one using the Line fitting policy ran at
a minimum frequency of 5Hz. Nevertheless, the bottleneck
only affected the end-row navigation, which represents a
small part of the total path traversed in a vineyard.

A. In-Row Navigation Evaluation

To evaluate the precision of the In-row navigation module,
we measured the robot’s displacement from the central row
line. This displacement was determined by calculating the
absolute distance between the robot’s center and the central
line of the row. In the simulated environment, we had access
to the true robot position, whereas in the real-world test,
we relied on the side distance measurements of the In-row
algorithm performed via the LiDAR (which has a precision
of ±0.01m). Evaluating navigation accuracy in real agricul-
tural environments is a challenging and ambiguous task cur-
rently addressed by agricultural robotics competitions such
as that described in [12]. Alternatively, one could utilize an
expensive yet highly accurate laser position tracking system,
although determining the optimal target trajectory remains a
nontrivial problem. In our case, we defined a perfectly row-
centered trajectory as the optimal one. However, in both the
simulation and the real vineyard, protruding vegetation and
branches caused the robot to deviate from the central line,
resulting in some average deviation from the center. Table I
presents the outcomes of in-row navigation tests performed
in simulation across three rows at varying vegetation stages
and in two real vineyard rows.

Measurements Simulation Real

Mean center displacement 0.049m 0.372m
Max center displacement 0.167m 1.183m
Mean corridor width 1.373m 2.142m
Max corridor width 2.300m 2.620m
Min corridor width 0.740m 1.600m

TABLE I
IN-ROW NAVIGATION EVALUATION RESULTS.

The mean displacement from the central line was 0.049m
in the simulated environment, whereas in the real vineyard,
we observed a mean displacement of 0.372m. In both
scenarios, the robot successfully avoided protruding branches
and never collided with the row sides. Table I also presents
the row width measurements computed from LiDAR scans.
The measurements indicate that protruding vegetation causes
row width variations, impacting robot centering. In the real
scenario, the minimum measurable row width of 1.6m was
reached, as our LiDAR has a minimum scanning distance of
0.8m.

B. Row Ends Detection Evaluation

To estimate the accuracy of the row ends detection, we
computed the Euclidean distance between the true center

Authorized licensed use limited to: Politecnico di Milano. Downloaded on February 21,2024 at 13:54:06 UTC from IEEE Xplore.  Restrictions apply. 



Pole distance Simulation Real

error Nearest Line fitting Nearest Line fitting

Mean 0.205m 0.155m 0.23m 0.26m
Max 0.540m 0.363m 0.30m 0.32m
Min 0.038m 0.013m 0.15m 0.20m

TABLE II
ROW END POINTS DETECTION EVALUATION.

of row support poles and those detected by our row ends
detection system. It is important to note that the assumption
that the pole center is always the true row end point is not
always valid, as vegetation can cover the pole and protrude
outward. In the simulated environment, we computed the
instantaneous Euclidean distance from the real pole center to
the end point detected by our system during a full turn from
one row to the next. We performed measurements for three
different vegetative stages. In the real environment, obtaining
multiple measurements of the real displacement of the pole
center from the robot is laborious and time-consuming. Fur-
thermore, without any absolute positioning system available,
the only way to measure it was manually, which introduced
measurement errors in the order of centimeters. Therefore,
we statically positioned the robot in the middle of a row to
detect the two side end points and compared them to manual
measurements.

In both the simulated and real scenarios, we compared
the two policies explained in section II-C: Nearest and Line
fitting. Table II shows the mean, max, and min distances
between the true center poles coordinates and those detected
by our system. In the simulated scenario, the Line fitting
policy was more accurate with a mean of 0.155m. The
Nearest policy also showed an acceptable mean distance of
0.205m while being less computationally intensive. In the
real scenario, the accuracy of both policies was comparable
since the difference in the order of centimeters could be at-
tributable to the error of manual measurements. Nonetheless,
our row ends detection system performed accurately in both
scenarios.

IV. CONCLUSIONS

In this paper, we have presented a simple and efficient
map-free LiDAR-based navigation system designed for vine-
yard applications. Our approach relies on the geometrical
structure of the environment and does not require a pre-
built map or GNSS measurements. The navigation system is
capable of in-row, turn, and end-row navigation and has been
tested in both simulated and real vineyards. The results of
our experiments indicate that the proposed navigation system
achieves accurate and reliable navigation performance, even
under challenging vineyard conditions with variations in row
spacing and vegetative stages. The system can effectively
detect protruding vegetation and adjust the trajectory ac-
cordingly, potentially reducing crop damage. The proposed
navigation system is simple and cost-effective, relying only
on odometry and LiDAR as sources of information, requiring

low computational effort. Future work can explore testing
with a 2D LiDAR to compare the navigation precision and
extend the system’s evaluation to other types of line-arranged
crops. Additionally, the system could be integrated with a
robust semantic obstacle detection algorithm to enhance the
navigation system’s safety.
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