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Abstract— Mobile robots will play a crucial role in the
transition towards sustainable agriculture. To autonomously
and effectively monitor the state of plants, robots ought to be
equipped with visual perception capabilities that are robust to
the rapid changes that characterise agricultural settings. In
this paper, we focus on the challenging task of segmenting
grape bunches from images collected by mobile robots in
vineyards. In this context, we present the first study that applies
surgical fine-tuning to instance segmentation tasks. We show
how selectively tuning only specific model layers can support
the adaptation of pre-trained Deep Learning models to newly-
collected grape images that introduce visual domain shifts, while
also substantially reducing the number of tuned parameters.

I. INTRODUCTION AND BACKGROUND

The climate change crisis has highlighted the impor-
tance of increasing the sustainability of food production, as
prescribed in the European Commission’s “Farm to Fork”
strategy1. In this regard, digital technologies are playing a
crucial role in reducing the amount of water and chemicals
used in agriculture [1]. One of the key applications of digital
technologies is the deployment of mobile robots, which can
perform a range of tasks such as plant spraying [2], weeding
[3], and harvesting [4]. To carry out these tasks effectively,
robots need the ability to autonomously monitor plant traits
and status, a task also known as plant phenotyping. For
example, in vineyards, a robot must be capable of detecting
plant organs for posing the appropriate cuts during winter
pruning operations [5]. They also ought to accurately identify
the presence of grape bunches, their level of ripeness, and
promptly detect the emergence of any diseases that may
compromise the fruit quality.

Robot’s perception systems deployed in agricultural set-
tings face particular challenges due to the significant weather
and seasonal variations that characterise these environments.
Thus, ensuring the effective reuse of visual patterns and fea-
tures learned under specific environmental conditions (e.g.,
in terms of weather, lighting, and plant diversity) becomes
crucial. This requirement stems from the need to guarantee
accurate plant monitoring, even when the underlying con-
ditions change. For instance, viewpoint changes caused by
different sensor positions and occlusions caused by leaves are
prominent factors that can hinder the accurate monitoring of
fruit [6], [7].
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The widespread application of Deep Learning (DL) meth-
ods has considerably accelerated the progress in various
visual perception tasks, including plant phenotyping [8].
However, supervised DL methods typically require abundant
training data and are susceptible to changes in the data
distribution. Moreover, training all model parameters on new
data is a costly process in terms of computational power
and memory footprint, especially when working on edge
devices and mobile platforms. To address these issues, one
possible approach is to pre-train the model on a large-
scale source domain and fine-tune the parameters on a few
examples from the target domain. The aim of fine-tuning
is to adapt the model to the target domain while retaining
the information learned during pre-training, particularly in
cases where the source and target distributions significantly
overlap despite the shift. This process is commonly known
as transfer learning. A traditional transfer learning practice
known as linear probing involves fine-tuning only the last
few layers of a Deep Neural Network (DNN) while reusing
features from earlier layers. This approach was based on
initial evidence suggesting that representations in earlier
layers may be more transferable to new data and tasks than
the specialised features learned in higher layers [9].

Recent research [10], [11] has explored effective alterna-
tives to this consolidated fine-tuning practice. Indeed, Lee
et al. [10] discovered that selectively tuning only the earlier,
intermediate, or last layers of a DNN can counteract different
types of distribution shifts and often even outperform cases
where all model parameters are tuned. They have named this
approach surgical fine-tuning (SFT). Their study concerned
transfer learning across different image classification bench-
marks, such as CIFAR and ImageNet. However, the authors’
conclusions have yet to be validated on image segmentation
tasks and data gathered in real-world application scenarios,
e.g., from mobile robots.

This paper focuses on the task of grape bunch seg-
mentation, which is a critical prerequisite for autonomous
plant phenotyping and yield forecast in vineyards [12]–
[14]. Our research investigates whether surgical fine-tuning
can support grape bunch segmentation under visual domain
shifts. To address this research question, we extend the study
of surgical fine-tuning from image classification models to
instance segmentation architectures in the specific case of
viticulture. The work in [12] is most closely related to this
study, because it evaluates the utility of linear probing for
grape segmentation. However, the experiments in [12] did
not examine the option of fine-tuning layers other than the
classification head.
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To facilitate the analysis of different types of visual
domain shifts that characterise vineyards, we introduce the
VINEyard Piacenza Image Collections (VINEPICs) [15],
a comprehensive and novel grape image archive. In [14],
Santos et al. presented the Embrapa Wine Grape Instance
Segmentation Dataset (WGISD), which is a large-scale col-
lection of vineyard images displaying high-resolution in-
stances of grape bunches across five different grapevine
varieties. Our dataset was gathered in a distinct geographic
area and it encompasses different grapevine varieties from
those in the WGISD dataset, including wine and table
grapes. Crucially, the proposed VINEPICs dataset contains
additional variations in terms of camera viewpoint, scene
occlusion, and time of data collection. Moreover, we captured
images using a consumer-grade camera mounted on a mobile
robot, which presents additional challenges due to possible
motion blur from the robot’s movement. As such, the con-
tributed dataset more closely resembles realistic setups in
autonomous vineyard phenotyping compared to the WGISD
benchmark.

Our results from applying the widely-adopted Mask R-
CNN model [16]–[18] to challenging robot-collected images
indicate that adopting a surgical fine-tuning strategy can
significantly outperform both linear probing and full param-
eter tuning when novel samples that introduce distribution
shifts are considered. The paper is structured as follows. In
Section II, we present the reference datasets, ablation study,
technical implementation, and evaluation metrics used in our
experiments. We then discuss the experimental results in
Section III. Concluding remarks and future extensions of this
work are left to Section IV.

II. MATERIALS AND METHODS

To test the performance of applying surgical fine-tuning
to instance segmentation models, we ran a set of layered
experiments. Consistently with [10], we set up the training
in two stages. First, we pre-trained on the largest available set
of examples for the grape segmentation task: namely WGISD
in this case [19]. Then, we considered different target sets
that introduce a distribution shift from the source set. The
goal was evaluating the extent to which transfer learning can
be achieved from source to target, with minimal adjustments,
thanks to surgical fine-tuning. Differently from [10], where
the evaluation set was held out from the same data used for
fine-tuning, we ran inferences on a different dataset, collected
one year after the fine-tuning set. This setup resembles
the real-world challenges of viticulture applications. Indeed,
grape images can be collected only at specific times of the
year and adapting learning models from past years to newly-
collected data becomes essential.

A. Datasets

Embrapa WGISD. The Embrapa Wine Grape Instance
Segmentation Dataset (WGISD) [19] comprises 300 high-
resolution images depicting 2,020 grape bunches from five
Vitis vinifera L. grapevine varieties: Chardonnay, Cabernet
Franc, Cabernet Sauvignon, Sauvignon Blanc, and Syrah.

TABLE I: Domain shifts from source to target data.

Dataset Changes introduced Shift types[10] Instances

Source: WGISD - - 2,020

geographic area, natural,
Fine-tuning set: vineyard, feature-level
VINEPICs21 Red Globe input-level 668

camera setup

Target sets:
VINEPICs22R temporal: input-level 100

different years

VINEPICs22RV temporal, input-level 112
camera viewpoint

VINEPICs22RF temporal, input-level 105
foliage occlusion

VINEPICs22C temporal, input-level 138
grape variety feature-level
(Cabernet S.: red)

VINEPICs22O temporal, input-level 135
grape variety feature-level
(Ortrugo: white)

The images were captured at the Guaspari Winery (Espı́rito
Santo do Pinhal, São Paulo, Brazil) in April 2018, with the
exception of images of the Syrah dataset that was collected in
April 2017. Grape bunches were photographed while keeping
the camera principal axis approximately perpendicular to the
vineyard row, using both a Canon EOS REBEL T3i DSLR
camera and a Motorola Z2 Play smartphone and were resized
and stored at a resolution of 2048x1365. At the time of data
collection, no defoliation treatments were applied except for
the routine canopy management for wine production adopted
in the region. In the original data split used in [14], 110
images (accounting for 1612 grape instances) were jointly
devoted to training and validation, whereas 27 images (i.e.,
408 grape instances) were held out for testing. However, the
actual split between training and validation was not provided.
Therefore, we decided to use a 20% validation split stratified
across grape varieties from the original training subset.

VINEPICs. The VINEyard Piacenza Image Collections
(VINEPICs) dataset consists of grape images collected at the
vineyard facility of Università Cattolica del Sacro Cuore in
Piacenza, Italy. The VINEPICs dataset is publicly available
under CC BY 4.0 (Attribution 4.0 International) license and
accessible at this link https://doi.org/10.5281/
zenodo.7866442. The acronym VINEPICs21 refers to
the first collection of images gathered in the summer of
2021 on Red Globe vines (Vitis vinifera L.) grafted on Se-
lection Oppenheim 4 (SO4), i.e., the vine rootstock, growing
outdoors in 25 L pots. This set includes 73 RGB images
captured on three different dates: 26 images of resolution
480x848 were collected at beginning of grape ripening on

https://doi.org/10.5281/zenodo.7866442
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July 27th, 23 images of resolution 720x1280 on August
23rd when berries were fully coloured, and 24 images of
resolution 720x1080 at harvest on September 9th. An Intel
D435i RGB-D camera was used to capture the data, which
was mounted on a SCOUT 2.0 AgileX robotic platform, a
four-wheeled differential steering mobile robot2. The plants
were arranged along two, vertically shoot-positioned, North-
South oriented rows and hedgerow-trained for a canopy wall
extending about 1.3 m above the main wire. Each vine had a
∼1 m cane bearing 10-11 nodes that was raised 80 cm from
the ground. Between fruit-set (BBCH 71) and berry touch
(BBCH 79) [20], the leaves around bunches were gradually
removed for a resulting fully defoliated fruit zone with
reduced incidence of berry sunburns [21]. Before veraison,
eight vines were subjected to crop thinning to control for fruit
occlusions caused by excessive fruit density. Accordingly,
a basal bunch was kept every second shoot for about six
retained bunches/vine; the remaining unthinned vines were
clustered into two groups with about 10 and 4 bunches/vine.
During data collection, the camera principal axis was rotated
to form an angle of approximately 45◦ with the scanned
plant row. The grape bunch regions were annotated using
polygonal masks through the Computer Vision Annotation
Tool (CVAT)3, and the annotations followed the COCO
annotation format4.
A second and more extensive dataset, named VINEPICs22,
was collected at the same vineyard facility of Università
Cattolica del Sacro Cuore in Piacenza, Italy, on two separate
dates in August and September 2022, approximately one
year after the previous set. This dataset comprises 165
annotated images, representative of different types of domain
shifts, including 1464 grape bunch instances. From this
dataset, we extracted subsets of data to control for the
incremental changes we expect from the fine-tuning domain
(VINEPICs21) to the target domain, as detailed in Table
I. Specifically, the VINEPICs22R set includes new images
collected from the same grape variety (Red Globe), by main-
taining the same camera viewpoint, and level of defoliation
as VINEPICs21. VINEPICs22RV introduces a change in the
camera viewpoint (i.e., the camera principal axis is perpen-
dicular to the plant rows), while set VINEPICs22RF was
captured first on non-defoliated canopies. Furthermore, sets
VINEPICs22C and VINEPICs22O maintain the same camera
viewpoint and defoliation level as VINEPICs21 but represent
different grape varieties, namely Cabernet Sauvignon (red
grape) and Ortrugo (white grape), growing in a experimental
vineyard. Table I maps the changes introduced for each
fine-tuning and target set to the taxonomy of shift types
adopted in [10]. The selected target sets cover three shift
types: i) input-level shifts, which occur due to variations
in the visual appearance of the same environment (e.g.,
observing the same vineyard on different days introduces

2The analyses presented in this paper only concern RGB images, but we
also collected depth data to support a wider range of applications, such as,
e.g., estimating the volume of grape bunches.

3https://github.com/opencv/cvat
4https://cocodataset.org/

lighting variations); ii) feature-level shifts, where the source-
target shift is caused by different populations of the same
class, in our case, different grape varieties; and iii) natural
shifts, which are due to collecting the source and target
data in different environments, in our case, different growing
conditions (potted vines vs. experimental vineyard). Output-
level shifts do not concern our use-case, since the target
class (grape bunches) remains unchanged throughout the
experiments detailed in this paper.

B. Surgical fine-tuning for instance segmentation

Given the focus on image classification tasks, the experi-
ments described in [10] consider ResNet architectures [22] as
a reference and utilize surgical fine-tuning to manipulate the
different residual blocks. However, in the context of instance
segmentation tasks, supplementary modules are introduced
for detecting and segmenting object regions. Region-based
segmentation architectures such as the widely utilized Mask
R-CNN model [16] merge CNN feature extraction layers
with a Region Proposal Network (RPN) that extracts Regions
of Interest (ROI) from input images. Predicted object regions
are then fed to three network heads that operate in parallel,
generating predictions for the object class, bounding box,
and polygonal mask (Figure 1). A popular implementation of
this generalized architecture uses a combination of ResNets
and Feature Pyramid Networks (FPN) as a backbone for the
feature extraction step [17], [18].

To assess the efficacy of surgical fine-tuning in the context
of region-based segmentation models, we also ought to ex-
amine the impact of selectively fine-tuning the FPN and RPN
components, along with the residual blocks and classification
heads. Hence, we conduct experiments that compare the
following model ablations:

• Tune All: This configuration fine-tunes all model pa-
rameters.

• Linear Probing: In this classic configuration, only
parameters in the three ROI heads are updated, while
earlier layer parameters remain fixed at values learned
during pre-training.

• Res n: This setup involves fine-tuning only the ResNet
layers, specifically the residual block identified by the
number n. We use the keyword “stem” to refer to the
first residual block, and the notation “res n” for blocks
numbered 2 and higher. This setup follows the rationale
applied in [10].

• Joint SFT: Res Block n + FPN at n: This configuration
is a variation of the previous setup, where the selected
residual blocks are fine-tuned simultaneously with the
related Feature Pyramid Network (FPN) operations.

• RPN: In this setup, we only apply surgical fine-tuning
to the Region Proposal Network (RPN) in the Mask
R-CNN model.

To the best of our knowledge, this is the first study on the
application of surgical fine-tuning to instance segmentation
tasks.

https://github.com/opencv/cvat
https://cocodataset.org/
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Fig. 1: Overview of the Mask R-CNN architecture. The backbone of the architecture is based on ResNet50, and features
from blocks 2 to 5 are extracted and passed through a Feature Pyramid Network (FPN). The Region Proposal Network
(RPN) generates region proposals, which are then combined with the upsampled features and input to three model heads,
which predict object class, bounding box, and polygonal mask in parallel.

TABLE II: Inference results from pre-training baseline instance segmentation models on the WGISD dataset.

Baseline AP0.3−0.9 P0.3−0.9 R0.3−0.9 F10.3−0.9

Mask R-CNN ResNet101 (results from [14]) 0.540 0.683 0.649 0.665
Mask R-CNN ResNet101 [18] 0.550 0.789 0.588 0.674
Mask R-CNN ResNet50 [18] 0.571 0.806 0.607 0.693
Mask R-CNN ResNet50 [17] 0.623 0.796 0.663 0.724

TABLE III: Number of fine-tuned parameters in the evalu-
ated ablations.

Ablation Parameters

tune all ∼ 45.3M
linear probing ∼ 17.8M
stem ∼ 9.5K
res2 ∼ 215K
res2 + FPN ∼ 872K
res3 ∼ 1.22M
res3 + FPN ∼ 1.94M
res4 ∼ 7.1M
res4 + FPN ∼ 7.95M
res5 ∼ 14.9M
res5 + FPN ∼ 16.1M
RPN ∼ 594K

C. Implementation details

To apply surgical fine-tuning as described in the previ-
ous section, we customised the Detectron25 implementation
of the Mask R-CNN architecture. The code for reproduc-
ing these trials is available at https://github.com/
AIRLab-POLIMI/SFT_grape_segmentation.

We augmented our training examples by applying vari-
ous transformations such as Gaussian blur, additive Gaus-
sian noise, random brightness, contrast, and saturation,
pixel dropout, and random flipping transformations. During
pre-training on the source domain, we utilized ResNet50
and ResNet101 backbones employing Group Normalization

5https://github.com/facebookresearch/detectron2

(GN). We experimented with different weight initializations
following the Detectron2 Mask R-CNN baselines for the
COCO instance segmentation task. In the first configuration,
we used the weights obtained from the method introduced
in [18], where the model was trained from scratch on
COCO with an extended training schedule and an augmented
jittering scale. In the second configuration, we initialized
the model with the weights from the method presented in
[17], where Mask R-CNN was trained on COCO instances
from scratch, i.e., with random weight initialization, rather
than reusing initialization values derived from ImageNet.
All models were trained with a batch size of 2 images,
and we used an early stopping criterion if the validation
loss did not improve for 30 consecutive evaluation checks,
with one evaluation check every 220 minibatch iterations.
We optimized model parameters using stochastic gradient
descent, with a constant learning rate set to 0.01.

D. Evaluation metrics

We evaluate the instance segmentation performance by
measuring the Average Precision (AP) of predicted object
regions, as well as the standard Precision (P), Recall (R),
and F1 score of predicted object instances. The metrics were
averaged over Intersection over Union (IoU) values ranging
from 0.3 to 0.9, to allow for comparison with the results
presented in [14]. Consistently with [14], only predictions
with confidence greater than 0.9 for the grape class are
considered in the evaluation. We prioritize improvements in
terms of F1 over individual P and R scores, as detecting

https://github.com/AIRLab-POLIMI/SFT_grape_segmentation
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all true positives is as important as minimizing the false
positives in the target use-case.

III. RESULTS AND DISCUSSION

Before conducting the ablation study, we pre-trained three
Mask R-CNN models on the WGISD dataset. Table II
demonstrates that on our task, ResNet50 backbones gen-
erally delivered better results than ResNet101 backbones.
Furthermore, initializing the model with weights obtained
after training from scratch on the COCO dataset [17] yielded
the best combination of segmented object region quality (in
terms of AP) and grape class prediction quality (in terms
of F1), compared to using weights from longer training
schedules and large-scale jittering [18]. Therefore, we have
chosen the “Mask R-CNN ResNet50 [17]” model as the
baseline for fine-tuning on VINEPICs21.

During the fine-tuning stage, we applied the different
ablations presented in Section II-B and evaluated the results
on the five target sets selected from VINEPICs22. The top-
performing methods in each set of trials, together with the
“linear probing” and “tune all” alternatives, are summarised
in Table IV. The complete evaluation results can be found
in the appendix of this paper (Table V). We also report the
number of parameters tuned in each configuration in Table
III.

Results on the VINEPICs22R sets approximate scenarios
where the only change introduced is the date and time of
data collection, while considering the same grape variety
(Red Globe), camera viewpoint, and defoliation level as the
fine-tuning set. In this case, fine-tuning the first four CNN
layers individually, excluding the stem, ensured a higher AP
than the scenario when all model parameters are tuned. In
particular, tuning the third ResNet block led to the highest
AP and F1 scores, outperforming linear probing.

Changing camera viewpoint, in VINEPICs22RV, led to
generally higher scores than the previous set of trials. No-
tably, the AP scores are even higher than the AP achieved on
the VINEPICs21 test set, for the majority of tested ablations.
This result may be due to the fact that a perpendicular camera
viewpoint is more similar to the setup adopted in the WGISD
set, i.e., the source set. Moreover, it is worth noting that the
VINEPICs21 test split comprises nearly twice as many grape
instances as the VINEPICs22RV set. As a result, the average
scores in the VINEPICs21 case provide more conservative
performance figures than VINEPICs22, which accounts for
approximately 100 instances for each subset (Table I). In
this case, tuning the third and fourth ResNet blocks led to the
most marked improvement over the the “tune all” and “linear
probing” performance. In particular, tuning the fourth ResNet
block in combination with its FPN layers led to the highest
results with respect to the AP of region predictions, Recall
and F1 of instance predictions. Interestingly, the top precision
was achieved when tuning the Region Proposal Network in
isolation, albeit generating a higher number of false positives,
as indicated by the lower recall scores.

We then considered grape images captured in the presence
of occluding foliage (VINEPICs22RF), under temporal and

viewpoint conditions that are comparable to the tuning set.
Similarly to the case of the temporal shifts introduced in
VINEPICs22R, the top performance was achieved by tuning
the third ResNet block. However, in this case, while the
highest AP score was achieved in the “res3” configuration,
the highest F1 was reached by jointly tuning res3 with FPN.

When we shift the target domain towards different grape
varieties, the drop in performance from the fine-tuning set to
the target sets is significant. Indeed, although the source set
(WGISD) already included examples of both red and white
grape bunches, the VINEPICs22C and VINEPICs22O sets
are drastically more challenging than previously examined
sets. First, the number of instances to be detected in each
frame is significantly higher in this case, as exemplified
in Figure 2. Moreover, images in these sets were captured
at a lower resolution than WGISD and in lower lighting
conditions than both the WGISD and the VINEPICs21
sets. Thus, this setup complicates not only the learning
but also the manual annotation of grape instances. Under
these challenging conditions, selectively tuning the stem
and RPN was ineffective and prevented the model from
providing any grape predictions (Table V). Conversely, ap-
plying surgical fine-tuning to intermediate layers resulted
in a significant improvement over the near-zero baseline
performance. In the case of the Cabernet Sauvignon variety
(VINEPICs22C) tuning only the parameters in the fourth
ResNet block improved the AP by 10% and the F1 by
12%, compared to “linear probing”. In the case of the
Ortrugo variety (VINEPICs22O), jointly tuning res4 with
FPN outperformed “linear probing” by 8%, in terms of AP,
and by 14%, in terms of F1.

Overall, results from these experiments support the view
that selecting intermediate network layers can outperform
the common practice of only re-training the classification
head of the model, when visual domain shifts are introduced.
In particular, we found that selecting the third block for
fine-tuning best supported temporal changes, as well as
changes in the level of plant defoliation. Selecting the fourth
ResNet block, instead, contributed to mitigating the impact
of viewpoint and grape variety shifts. Importantly, adopting
a surgical fine-tuning approach allowed us to substantially
reduce the number of parameter updates, compared to the
costly alternative of re-training the complete model from
scratch: from over 45M total parameters to nearly 1M and
7M in the res3 and res4 cases (Table III).

IV. CONCLUSIONS

To effectively deploy mobile robots for agricultural ap-
plications, improving the adaptability of visual perception
methods based on Deep Learning to rapidly-changing en-
vironments is essential. In particular, we have considered
the task of autonomously segmenting grape instances from
images collected in real vineyards. In this context, we showed
that pre-training on large-scale, high-resolution training ex-
amples and fine-tuning only selected layers on more chal-
lenging robot-collected data can support knowledge transfer



(a)
VINEPICs21

(b)
VINEPICs22R

(c)
VINEPICs22RV

(d)
VINEPICs22RF

(e)
VINEPICs22C

(f)
VINEPICs22O

Fig. 2: Image examples from the VINEPICs sets. Examples from the WGIS set are available in [19].

TABLE IV: Inference results on test sets, after applying surgical fine-tuning on VINEPICs21.

Test set Ablations AP0.3−0.9 P0.3−0.9 R0.3−0.9 F10.3−0.9

VINEPICs21 test tune all 0.374 0.767 0.404 0.529

VINEPICs22R
tune all 0.254 0.682 0.273 0.390
linear probing 0.226 0.689 0.234 0.350
res3 0.395 0.602 0.421 0.496

VINEPICs22RV
tune all 0.387 0.634 0.436 0.517
linear probing 0.409 0.660 0.454 0.538
res4 + FPN 0.463 0.595 0.515 0.552
RPN 0.305 0.687 0.325 0.442

VINEPICs22RF
tune all 0.342 0.696 0.371 0.484
linear probing 0.290 0.711 0.305 0.426
res3 0.469 0.577 0.512 0.542
res3 + FPN 0.461 0.607 0.503 0.550

VINEPICs22C
tune all 0.007 0.571 0.004 0.008
linear probing 0.003 0.286 0.002 0.004
res2 0.013 0.643 0.009 0.018
res4 0.068 0.534 0.073 0.129
res4 + FPN 0.068 0.548 0.071 0.126

VINEPICs22O
tune all 0.022 0.762 0.017 0.033
linear probing 0.021 0.449 0.023 0.044
res4 + FPN 0.102 0.625 0.111 0.189

to newly-collected grape images that introduce changes in the
camera viewpoint, foliage occlusion level, and grape variety.

Notably, tuning intermediate network layers improves the
robustness of the model to input-level and feature-level
shifts. These findings complement the evidence gathered in
[10] on image classification benchmarks, where input-level
shifts were best supported by tuning the initial network
layers. These results also withstand the popular practice
of only tuning the last layers on a new target domain.
Even in challenging scenarios where images of novel grape
varieties are introduced at test time, surgical fine-tuning on
intermediate network blocks allowed us to bootstrap the
grape segmentation performance, while drastically reducing
the number of parameters required for fine-tuning.

Our evaluation of the utility of surgical fine-tuning to
support grape segmentation has been limited to methods
derived from the widely-applied Mask R-CNN architecture.
Thus, future research directions include the study of instance
segmentation models that are based on Transformers, such
as [23], for instance. Another transfer learning approach
that we have not yet explored concerns the combination
of linear probing with the selection of useful features from

different layers, as proposed in [11]. The availability of the
VINEPICs resource can facilitate the progress in tackling
these unexplored research directions.

APPENDIX

Table V reports the complete evaluation results for the
VINEPICs22 target sets.
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TABLE V: Inference results on test sets, after applying surgical fine-tuning on VINEPICs21.

Test set Ablations AP0.3−0.9 P0.3−0.9 R0.3−0.9 F10.3−0.9

VINEPICs21 test tune all 0.374 0.767 0.404 0.529

VINEPICs22R

tune all 0.254 0.682 0.273 0.390
linear probing 0.226 0.689 0.234 0.350
stem 0.101 0.579 0.104 0.177
res2 0.296 0.626 0.313 0.417
res2 + FPN 0.347 0.638 0.37 0.468
res3 0.395 0.602 0.421 0.496
res3 + FPN 0.389 0.607 0.407 0.488
res4 0.277 0.613 0.294 0.398
res4 + FPN 0.338 0.571 0.36 0.442
res5 0.226 0.619 0.241 0.347
res5 + FPN 0.222 0.624 0.237 0.343
RPN 0.009 0.185 0.031 0.053

VINEPICs22RV

tune all 0.387 0.634 0.436 0.517
linear probing 0.409 0.660 0.454 0.538
stem 0.391 0.681 0.420 0.519
res2 0.392 0.615 0.450 0.520
res2 + FPN 0.447 0.621 0.493 0.550
res3 0.440 0.555 0.510 0.531
res3 + FPN 0.437 0.567 0.511 0.538
res4 0.430 0.584 0.475 0.524
res4 + FPN 0.463 0.595 0.515 0.552
res5 0.412 0.604 0.448 0.514
res5 + FPN 0.391 0.625 0.430 0.510
RPN 0.305 0.687 0.325 0.442

VINEPICs22RF

tune all 0.342 0.696 0.371 0.484
linear probing 0.290 0.711 0.305 0.426
stem 0.220 0.694 0.231 0.347
res2 0.405 0.688 0.432 0.531
res2 + FPN 0.415 0.626 0.453 0.525
res3 0.469 0.577 0.512 0.542
res3 + FPN 0.461 0.607 0.503 0.550
res4 0.391 0.556 0.434 0.487
res4 + FPN 0.423 0.566 0.475 0.516
res5 0.332 0.563 0.375 0.450
res5 + FPN 0.299 0.626 0.328 0.430
RPN 0.041 0.295 0.045 0.078

VINEPICs22C

tune all 0.007 0.571 0.004 0.008
linear probing 0.003 0.286 0.002 0.004
stem no predictions from model
res2 0.013 0.643 0.009 0.018
res2 + FPN 0.016 0.500 0.014 0.028
res3 0.040 0.543 0.039 0.073
res3 + FPN 0.066 0.442 0.070 0.121
res4 0.068 0.534 0.073 0.129
res4 + FPN 0.068 0.548 0.071 0.126
res5 0.039 0.543 0.039 0.073
res5 + FPN 0.029 0.571 0.029 0.055
RPN no predictions from model

VINEPICs22O

tune all 0.022 0.762 0.017 0.033
linear probing 0.021 0.449 0.023 0.044
stem no predictions from model
res2 0.017 0.428 0.013 0.025
res2 + FPN 0.045 0.614 0.045 0.085
res3 0.047 0.527 0.051 0.093
res3 + FPN 0.071 0.571 0.076 0.134
res4 0.070 0.676 0.075 0.135
res4 + FPN 0.102 0.625 0.111 0.189
res5 0.059 0.458 0.064 0.113
res5 + FPN 0.077 0.661 0.078 0.140
RPN no predictions from model
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