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Abstract We propose a Transport PCE architecture to deploy a Transport PCE by means of Network 
Function Virtualization. Virtual PCEs are deployed on demand, but they are perceived as a single 
Virtualized Network Function. We present the benefits by experimental validation. 

Introduction 

Network Functions Virtualization (NFV) aims at 
using IT virtualization techniques to virtualize 
entire classes of network node functions. A 
Virtualized Network Function (VNF) consists of a 
network function running as software on several 
virtual machines instead of having custom 
hardware appliances for the proposed network 
function1.  

A transport Path Computation Element (PCE) is 
a transport network function, which is able to 
perform constrained path computation on a graph 
representing a network (Traffic Engineering 
Database - TED)2. The PCE global architecture 
and communication protocol (PCEP) have been 
standardized by IETF. The PCE can be run as an 
application on top of Commercial Off-The-Shelf 
(COTS) equipment3. The initial driver for the 
deployment of PCEs was the increasing 
complexity of path computation. The PCE 
architecture has been extended to support 
scalability constraints with the introduction of the 
hierarchical PCE. Using hierarchical PCE 
architecture, each PCE is considered as a single 
network function.   

In this paper, we propose the adoption of the NFV 
architecture to deploy a PCE dedicated to path 
computation of a transport network as a VNF. 
Although the NFV architecture has successfully 
been demonstrated for mobile networks, there 
have been only few attempts to introduce this 
architecture to core networks. A PCE NFV 
orchestrator is introduced, so that the proposed 
transport PCE NFV is be able to handle intense 
peak loads of path computation requests. The 
NFV orchestrator dynamically deploys virtual 
PCEs (vPCEs) on demand to keep the quality of 
the VNF (e.g., in terms of latency, request 
processing time, dedicated algorithms, etc.). A 
vPCE is a PCE instance, which is run as a 
software application on a cloud computing 
environment (e.g., a virtual machine).  

We also introduce a PCE DNS4 in order to offer 

the deployed vPCEs as a single VNF perceived 
by the different Path Computation Clients (PCC).  

Finally, a PCE front-end/back-end architecture is 
proposed to bypass the limitations of the 
presented approach. 

Proposed Architecture 

In this section, the proposed transport PCE NFV 
architecture is described (Fig. 1.a). A PCE NFV 
Orchestrator is the entity responsible for the 
deployment of the PCE as a VNF. The PCE NFV 
Orchestrator consists of three separated 
modules: PCE VNF provider, Virtual IT resources 
and PCE computation load monitoring. 

The PCE VNF provider implements the 
necessary logic for deploying the necessary 
vPCE in order to guarantee the quality of the 
VNF. In order to guarantee the quality, the PCE 
VNF provider interacts with the PCE computation 
load monitoring module in order to obtain the 
necessary data to decide to deploy a new 
instance of a vPCE or to delete one, via the virtual 
IT resources module. Thus, the PCE VNF is the 
responsible for deploying the logic of the 
orchestrator. 

The Virtual IT resources module is responsible 
for managing a cloud infrastructure (e.g., 
OpenStack). The cloud infrastructure shall allow 
the dynamic deployment and release of virtual 
machines with custom images running vPCE as 
an application. The cloud infrastructure must 
assign to the vPCE a new IP address from a set 
of available ones. This IP address is parsed and 
the PCE DNS is notified with the new IP address 
for a new available vPCE. 

Finally, the PCE computation load monitoring 
module is the responsible for monitoring the 
quality of the VNF. The monitored parameters are 
a set of the PCE monitoring parameters defined 
in 5, which are exposed by the vPCEs, by means 
of an HTTP server. One of these parameters is 
the mean path processing time. If the mean path 
processing time exceeds a certain threshold, the 



PCE VNF could deploy a new vPCE to reduce the 
peak request load in the PCE VNF. 

As a PCE discovery mechanism, a PCE DNS is 
proposed. DNS is a query-response based 
mechanism. A Path Computation Client (a PCC) 
can use DNS to discover a PCE only when it 
needs to compute a path and does not require 
any other node in the network to be involved. In 
case of an intermittent PCEP session, which are 
systematically opened and closed for each PCEP 
request, a DNS-based query-response 
mechanism is suitable. Moreover, DNS supports 
load balancing where multiple vPCEs (with 
different IP addresses) are known in the DNS for 
a single PCE server name and are seen for the 
PCC as a single resource. Requests are load-
balanced among vPCEs without any complexity 
at the PCC. 

The messages exchanged between the different 
elements of the proposed architecture are 
displayed in Fig. 1.b. It can be observed, that the 
PCE NFV Orchestrator is the responsible for 
checking the different quality parameters to the 
deployed vPCEs. Once these quality parameters 
are received, the PCE VNF provider module 
within the PCE NFV Orchestrator is the 
responsible to determine whether a new vPCE is 
required.  

If a vPCE is selected to be deployed, the Virtual 
IT resources module will deploy a new virtual 
machine with the vPCE image, will assign a new 
IP address to the vPCE and once the vPCE is 
started, the Virtual IT resources module will notify 
the new vPCE IP address to the PCE DNS. 

Once a PCC requires a new path computation, 
first will issue a DNS query to the PCE DNS. The 
PCE DNS is responsible to load balance the 

different vPCEs, so returns a single IP address 
corresponding to one of the vPCEs. Finally, the 
PCC establishes a path computation session with 
the corresponding vPCE. 
 
Experimental Performance 

The experimental performance of the proposed 
Transport PCE NFV architecture has been 
evaluated in the Cloud Computing Platform of the 
ADRENALINE Testbed at CTTC. An OpenStack6 
cloud has been deployed on top of a Custom 
Server using an Asus Z9NA-D6 board with 2 Intel 
Xeon E5-2410 processors and 32 Gb RAM. 

The proposed NFV orchestrator has been 
developed in Python, and the PCE has been 
described in 2. The PCE DNS server has been 
setup using bind9, which is the standard linux 
DNS server. All the deployed vPCE where 
sharing a static network view of a typical Spanish 
14-node 44-link Flexi-grid DWDM network. In the 
future, BGP-LS could be used in order to 
dynamically synchronize the TED of the different 
vPCEs. 

The deployed vPCEs allows the measurement of 
the rolling mean (we use a 10 request window) 
processing time of a request (time between a 
request is received and responded) via HTTP 
through an XML response. 

Every new instance of vPCE is deployed by 
means of the OpenStack nova API, which is 
responsible for virtual machines management on 
an OpenStack cloud. All deployed virtual 
machines share a common file repository for 
ease of synchronization. We have prepared a 
vPCE snapshot, which is able to easily run a 
vPCE. 

The OpenStack neutron API, responsible for 

 

 
Fig. 1: (left) Proposed Transport PCE NFV architecture, (right) PCE NFV Orchestrator message exchange 

  



network configuration, assigns to the vPCE an IP 
address, which is later added as a possible 
resolution for pce.lab.cttc.es to the PCE DNS.  

The PCC is responsible for issuing a DNS query, 
when a new path computation request is issued. 
When the PCE DNS receives a DNS query, it 
applies a simple load balancing algorithm by 
returning a different vPCE IP address for each 
query. Finally, the PCC establishes a PCEP 
session to the assigned vPCE. Fig. 2.a. shows 
the standard PCEP session including OPEN, 
KEEPALIVE, PCRequest, PCReply and CLOSE 
messages. 

In order to stress the proposed architecture, a 
PCC requests 500 requests per second. Each 
path computation request is randomly selected 
between two endpoints of the described flexi-grid 
network. The mean request processing time 
(Tproc) is measured as a mean of the previously 
defined request processing time of the current 
vPCEs.  

We have requested 10000 Path Computation 
Requests for each measurement. When a single 
vPCE (acting as a PCE) was deployed the Tproc 
was 279 microseconds. It can be observed that 
when more vPCEs have been deployed the 
measured Tproc is reduced. For example, for 6 
vPCEs deployed, Tproc is 248 us (Fig. 2.b). 

Fig. 2.c shows the mean measured CPU load at 
a single vPCE, when different vPCE have been 
deployed. The measured CPU load tends to be 
balanced by the different vPCEs, when 2 vPCE 
are deployed the mean CPU load is of 7.2 %. If 
there are 6 vPCEs deployed the CPU load is of 
3.1%. It can be observed, that if more vPCEs are 
deployed, the computational load is balanced 
between them, allowing a faster mean request 
processing time. 
 

Conclusions 

We have presented a transport PCE NFV 
architecture, which is able to guarantee a mean 
request processing time within a detected peak 
of path computation requests. The proposed 
architecture exploits the benefits of NFV. We 
have experimentally evaluated the mean request 
processing time, demonstrating the benefits of 
the presented approach. 

Further research shall be done on request peak 
detection, the usage of pre-deployed vPCEs and 
finally the introduction of the front-end/back-end 
PCE architecture to bypass the need for a PCE 
DNS, so that dedicated vPCEs and more 
complex request allocation algorithms can be 
exploited. 
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Fig. 2: a) Wireshark of different PCEP sessions established to different vPCEs. b)  Mean request processing time (microseconds).  

c) Mean vPCE CPU load (%) 


