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Abstract Two different detectors that account for the nonlinear signal–noise interaction in a single-
channel coherent optical link are compared. The results indicate that accounting for the correlation
between the samples leads to improved performance over stochastic digital backpropagation.

Introduction
Fiber nonlinear effects is a major limiting factor
in fiber-optic communication systems. An accu-
rate channel model is necessary to optimally de-
tect the transmitted data in the presence of non-
linear effects. However, the absence of an ana-
lytical closed-form solution of the Manakov equa-
tion, except for some specific cases, makes it
hard to develop an optimal detector. Lineariza-
tion of the Manakov equation is often used to
find approximate analytical solutions, commonly
known as perturbation-based techniques1 (PBT).
Besides these linearization techniques, the split-
step Fourier method (SSFM) is often used to sim-
ulate the signal propagation in optical fibers.

Digital backpropagation2,3 (DBP) is a technique
based on the SSFM used for jointly compensat-
ing for linear and nonlinear impairments. How-
ever, two different contributions4,5 pointed out that
while DBP is able to fully compensate for non-
linear ISI (if performed for all spans), it is not
the optimal strategy in the presence of signal–
noise interaction. The first detector is based on
the Viterbi algorithm (VA) with two different met-
rics, which are derived by identifying the signal
statistics from a PBT. The second detector, known
as stochastic DBP (SDBP)5 and based on the
SSFM, represents the uncertainty in the variables
through distributions. In this paper, a direct com-
parison is carried out between these two detec-
tors for the first time, considering the same sce-
nario. By taking advantages of each of these de-
tectors, in future work, we aim to develop opti-
mal receivers that can be of practical use for both
dispersion-managed (DM) (with inline dispersion-
compensating fiber) and non-DM (NDM) links.

System Model
The system model is shown in Fig. 1, which
comprises a dual-polarization transmitter, an N -
span fiber-optic link with each span consisting of
a standard single-mode fiber (SMF) (or a low-
dispersion fiber (LDF) for DM links), a dispersion-
compensating fiber (DCF) for DM links, and am-
plifiers. In the transmitter, a binary information se-
quence is mapped to a sequence of K indepen-
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Fig. 1: System model with a fiber-optical link consist-
ing of N spans.
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Fig. 2: Rx block of Fig. 1 consisting of a receive filter
HRx(f) and detection algorithms DBP, VA, SDBP.

dent and identically distributed (i.i.d.) symbols,
s = (s1, s2, ..., sK)T , drawn from an Mc-ary con-
stellation, which are mapped by a linear modu-
lator. Each sk is a complex length-2 vector con-
sisting data from both polarizations. This signal is
passed through the channel.

At the receiver, coherent detection is used to
convert the optical bandpass signal into an elec-
trical lowpass signal, r(t), as shown in Fig. 2. The
signal, r(t), is filtered with HRx(f) with a band-
width MR/2 and sampled at every kT/M , where
T is the symbol duration, and R is the symbol
rate of the system. The in-phase and quadra-
ture components of these samples are collected
in a complex vector r = (r1, r2, · · · , rMK)T ∈
C

MK . We assume that r is a sufficient statis-
tic and an optimal detector would process this
signal using a maximum a posteriori (MAP) rule:
ŝ = argmaxs p(s|r), where p(s|r) is the posterior
distribution of s. With an equiprobable symbol
distribution, MAP reduces to the maximum like-
lihood (ML) rule, and the probability distribution
that determines the decision will be p(r|s). The
detector that uses the ML rule is known as the
ML sequence detector (MLSD). Both the detec-
tors compared in this paper try to apply this MLSD
using different tools and techniques, explained in
the next section.



Detectors
The goal of the detectors under study is to ap-
ply the MLSD rule by maximizing p(r|s) with re-
spect to s. The received samples r are sent to
these detectors, as shown in Fig. 2. In the first de-
tector, based on the VA, DBP is applied followed
by a filter HM (f). Then the signal is downsam-
pled by a factor of M/η, where η is the number of
samples per symbol needed for processing in the
VA. In the second detector, the received samples
are passed through the SDBP algorithm and de-
cisions are taken after further processing, as will
be explained in later sections. The improvements
of these two detectors are compared with a de-
tector based on DBP followed by a filter matched
to the transmitter pulse shape, followed by down-
sampling by a factor of M , followed by a ’Dec’
block. In this block, the additional phase rota-
tion due to the average nonlinear phase noise in-
duced by signal–noise interaction is compensated
for and symbol-based decisions are made using a
minimal Euclidean distance rule.

VA with Cartesian and Polar Gaussian Metric
In this detector, the VA with two different branch
metrics is considered based on two different
channel models. The first metric, Cartesian
Gaussian (CG), is derived according to the lin-
earized regular perturbation model. In this model,
the output signal is affected by nonlinear ISI and
colored Gaussian noise. Thus, conditional on the
transmitted symbols s, the in-phase and quadra-
ture components of the output samples r can be
modeled as correlated Gaussian variables. The
second metric, polar Gaussian (PG), is based
on a more accurate model1 and obtained by
accounting for the presence of nonlinear phase
noise. In particular, conditional on the transmit-
ted symbols s, the amplitude and phase of the
received samples are correlated Gaussian vari-
ables. In this detector, irrespective of what metric
is used to factorize p(r|s), it was assumed that
i) conditional on s, signal samples spaced more
than ν sampling times are uncorrelated and ii)
conditional on the previous ν samples, the chan-
nel memory is limited to Lc symbols. It was
shown4 that ν is an important parameter to take
into account the correlation between samples due
to the interplay between the Kerr nonlinearity and
dispersion, with a correlation time that increases
with link dispersion. The MLSD rule can be im-
plemented by a VA (with CG or a PG metric), by
using a suitable training sequence in order to es-
timate and store in a look-up table the required
conditional expectations and covariance matrices
for each transition of the trellis diagram. The com-
plexity of this detector depends on the channel
memory, Lc, and on the number of correlation
samples, ν. Since dual polarization is considered,

Tab. 1: Channel parameters
SMF LDF DCF

D (ps/nm/km) 16.6 4.4 –100
γ (1/W/km) 1.3 1.3 5.2
α (dB/km) 0.2 0.2 0.6

two independent VA detectors, one per polariza-
tion, are employed. In this scenario, nonlinear
ISI can involve a large number of symbols and
thereby requires a huge number of states in the
VA algorithm. For this reason, DBP is applied to
reduce the nonlinear ISI followed by VA to combat
the signal–noise interaction, and hence named as
DBP-CG and DBP-PG depending on what metric
is used.

Stochastic Digital Backpropagation
In the second detector, called SDBP, p(s|r), or
equivalently p(r|s) for equiprobable symbols, is
obtained by doing a marginalization of the joint
distribution of s, all intermediate variables in the
channel, and the received signal r. As the fiber in
the channel is simulated using the SSFM, the in-
termediate variables include signals after the lin-
ear and nonlinear steps of each segment of each
span of the SSFM. The signals after the EDFAs in
Fig. 1 are also included as intermediate variables.
The main idea of SDBP is to describe these in-
termediate variables statistically, ending up with
a description of p(s|r). This description is based
on “particles” and becomes more accurate with a
higher number of particle waveforms. Once p(s|r)
is obtained, decisions are taken symbol-based in-
stead of sequence-based to avoid further com-
plexity. All these particle waveforms are passed
through a filter matched to the pulse shape, fol-
lowed by a symbol-rate sampler, leading to a
set of particles corresponding to each transmit-
ted symbol. To take a decision, the set of parti-
cles corresponding to a particular symbol are ap-
proximated with a bivariate Gaussian distribution
and this distribution is evaluated at each of the
constellation points, which leads to the symbol-
based decision. These two assumptions, namely
symbol-based processing and approximating a
set of particles with a bivariate Gaussian distri-
bution which make SDBP a sub-optimal detector.

Numerical Simulations
The system model of Fig. 1 is simulated to com-
pare the detectors discussed above. For DM
links, LDF is used and for NDM links, SMF is used
for transmission. The noise figure for each EDFA
is 5.5 dB.

The SSFM is applied with a segment length6 of
Δ = (εLNL

2
D)

1/3, where ε = 10−4, LN = 1/(γP )
is the nonlinear length, LD = T 22πc/(|D|λ2) is
the dispersion length, D is the dispersion param-
eter of the fiber, λ is the wavelength, c is the
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Fig. 3: 32 Gbaud DM link with QPSK modulation
format with LLDF = 120 km and N = 25.
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Fig. 4: 16 Gbaud NDM link with QPSK modulation
format with LSMF = 120 km and N = 120.

speed of light, and P is the input power to each
fiber span. The number of segments per span is
M = �Lx/Δ�, where �p� is the smallest integer
not less than p, and Lx is the length of the fibers
with x ∈ {SMF, LDF,DCF}. We used the same
segment length in the backward and forward sys-
tem as step size optimization (and complexity re-
duction) was not of concern here. The launch
power into the DCF is 4 dB below that of the trans-
mission fiber. The parameters used for SMF, LDF,
and DCF are given in Table 1. The span length
for the SMF and LDF is 120 km. The length of
the DCF is calculated assuming a perfect inline
dispersion compensation.

For SDBP, and VA for NDM links (which need
η = 1), the transmit pulse shape and HM (t) are
both root raised cosine. For DM links, due to the
spectral broadening introduced by nonlinearites,
DBP-CG and DBP-PG need η = 2 for processing
and a raised cosine pulse is used at the trans-
mitter and a rectangular filter with twice the band-
width is used for HM (t). The receiver signal is
passed through a filter HRx(f), which is an ideal
low-pass filter with bandwidth MR/2, and sam-
pled at M (= 4) samples per symbol. The receiver
is assumed to have perfect knowledge of the po-
larization state, as well as the carrier phase and
the symbol timing. The number of particles used
for the SDBP simulation is 500.

Fig. 3 (Fig. 4) shows the symbol error rate

(SER) as a function of the input power for 32
(16) Gbaud for DM (NDM) links. We observe that
SDBP, DBP-CG, and DBP-PG outperform DBP
for DM links. Using detectors based on SDBP
and the VA, a different optimal power is obtained
and also for a given input power, lower SER is ob-
tained. The system is more tolerant to nonlinear
effects and therefore we can use higher launch
power. The gains for NDM links are smaller than
for DM links, as nonlinear ISI is the dominant ef-
fect and the proposed detectors, compared with
DBP, account for the signal–noise interactions,
which are less dominant for NDM links. It can
be seen in Fig. 3 that by taking the correlation of
the samples at the receiver into account, better
gains are observed. In DBP-CG (DBP-PG), when
ν = 2 (1) and η = 2 (1), a correlation of two (one)
samples spaced half (one) symbol period apart is
taken into account. As can be seen from Fig. 3,
SDBP, DBP-CG, and DBP-PG achieve the best
performance for different input powers. Hence,
no method is uniformly optimal.

Conclusions
In this initial study, we observed through simula-
tions that the two compared detectors achieve the
best performance for different input powers and
no method is uniformly optimal. The VA can be
improved by computing joint detection for both po-
larizations while SDBP can be improved by ac-
counting for correlations among samples. The
VA has exponential complexity with respect to
the modulation order, whereas, the complexity for
SDBP is essentially independent of the modula-
tion format used, and results for SDBP using 16-
QAM were presented in an earlier work5. This
study suggests that the correlation of the samples
is an important aspect when accounting for the
nonlinear signal–noise interactions. As reported
in earlier works, the improvement over DBP is
very small for NDM links.
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