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Discrete Darboux based Fast Inverse Nonlinear Fourier
Transform Algorithm for Multi-solitons

Shrinivas Chimmalgi(1), Sander Wahls(1)

(1) Delft Center for Systems and Control, TU Delft, The Netherlands, s.chimmalgi@student.tudelft.nl

Abstract A fast algorithm for constructing multi-solitons with linear complexity in the number of samples
and eigenvalues is introduced. The algorithm is shown to be significantly faster than the conventional
Darboux transform in a numerical example, with acceptable error.

Introduction

The nonlinear Fourier transform (NFT) for the
nonlinear Schrödinger equation (NSE),

i∂xq = ∂2t q + 2|q|2q, (t, x) ∈ R× R+, (1)

was first studied by Zakharov and Shabat1. Here,
q(x, t) is the slowly varying complex envelope of
the electric field, x is the real spatial coordinate
along the fiber and t is retarded time. The NSE
is commonly used to model propagation of op-
tical field in a loss-less single mode fiber under
Kerr-type focusing nonlinearity1. The nonlinear
Fourier spectrum corresponding to a given initial
field q(0, t) consists of the continuous spectrum
q̂(ξ) = b(ξ)/a(ξ), ξ ∈ R and the discrete part
{ζk, q̃k} ∈ C2 given by a(ζk) = 0, =(ζk) ≥ 0,
q̃k = b(ζk)/∂ζa(ζk). The discrete spectrum con-
sists of the ordered pairs of eigenvalues ζk and
spectral amplitudes q̃k (The precise definitions
can be found in1). It corresponds to the solitonic
component of the potential. A signal q(x, t) hav-
ing only solitonic components (i.e., the continu-
ous spectrum is null) is known as a multi-soliton.
The eigenvalues ζk do not change as the signal
q(0, t) travels through the fiber and the norming
constants are simply multiplied by a factor e−4ζ

2
kL

at x = L. Such a simple relationship negates
the need for back-propagation, making the use
of discrete spectrum interesting for information
transmission. Currently there is lot of interest in
communications systems based on NFT, many of
which specifically use multi-solitons2 3 4 10. The
goal of this paper is to introduce an inverse NFT
algorithm for multi-solitons which is faster than the
classical solution already for relatively low num-
ber of eigenvalues and also has a better asymp-
totic complexity compared to algorithms available
in literature11.
Generation of multi-solitons
Given a discrete spectrum {ζk, bk}, we need to

compute the corresponding multi-soliton poten-
tial. This problem can be approached in several
ways. The classical Darboux transform (CDT)5

is the standard algorithm for generation of multi-
solitons. The CDT has an overall complexity
of O(K2N) floating point operations (FLOPS),
where K is the number of eigenvalues and N is
the number of samples. This means that the al-
gorithm slows down significantly for high numbers
of eigenvalues. A few fast algorithms have been
published6 or are under research11. The fastest
algorithm found in literature6 has a complexity of
O(N log2N) but does not offer complete control
over the norming constants, while the algorithm
in11 has a complexity of O(N(K + log2N)). The
existing solution11 uses a mixed framework of
continuous and discrete algorithms which slows it
down. In this paper we work completely in the dis-
crete domain allowing for development of faster
algorithm.

New Fast Inverse NFT for Multi-Solitons
We start by outlining the discrete version of the
CDT, which will be the basis for the new algorithm.
Ablowitz and Ladik7 proposed the following gen-
eral discrete scattering problem,

Vn+1 =

[
z +RnSn Qn + z−1Sn
Rn + zTn z−1 +QnTn

]
Vn, (2)

where z = e−iζh is the transformed eigenvalue
and h is the step-size. The discrete-time po-
tential Qn is related to the continuous-time po-
tential as q(nh) = h−1Qn + O(h2). The choice
RN = ±Q∗n and Sn = Tn = 0 leads to a dis-
crete version of the Zakharov-Shabat problem.
The two-dimensional eigenfunction is given by
Vn(z). The compatibility condition of the discrete
eigenvalue problem with the corresponding time-
evolution equation gives us the discrete NSE. The
dependence on z and t of the terms is omitted
for sake of brevity. It has been shown7 that the
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discrete system in Eq. 2 can be solved with a
discrete NFT, which again consists of a contin-
uous spectrum q̂D(ξ) = bD(ξ)/aD(ξ), |ξ| = 1,
and a discrete spectrum {zk, q̃Dk}, aD(zk) = 0,
q̃Dk = bD(zk)/∂za

D(zk) analogous to the contin-
uous system. Xianguo8 derived a discrete Dar-
boux approach for adding/removing eigenvalues
using the Ablowitz-Ladik eigenvalue problem in
Eq. 2 analogous to CDT5. Other discretization
schemes of the Zakharov-Shabat problem can be
found in literature11. In this paper, we use the
Split-Magnus (SM) discretization,

Vn+1 = LnVn, Ln =

(
z−1 Qn+1/2

Rn+1/2 z

)
. (3)

Taking a hint from the structure of the discrete
Darboux matrix used in9, we make the ansatz

V ′n =MnVn, Mn =

[
An Bn
Cn Dn

]
(4)

An = z−k +
∑

j={−k+2,−k+4,...,k}

ajnz
j ,

Bn =
∑

j={−k+1,−k+3,...,k−1}

bjnz
j ,

Cn =
∑

j={−k+1,−k+3,...,k−1}

cjnz
j ,

Dn = zk +
∑

j={−k,−k+2,...,k−2}

djnz
j .

(5)

The discrete Darboux matrix Mn has degree k.
The ’ over the terms denotes the terms after the
Darboux update. The initial solution of the system
in Eq. 3 for Qn+1/2 = Rn+1/2 = 0 is

Vn =

[
z−n 0

0 zn

]
. (6)

Following a procedure similar to the one given in8

we can compute all the coefficients in Mn. The
details are skipped due to space limitations. Then
the potential at a point n can be computed from
these Darboux coefficients. To arrive at the exact
relation we start with the discretization in Eq. 3
after an update, which satisfies V ′n+1 = L′nV

′
n. But

V ′n+1 can also be found by, V ′n+1 = Mn+1Vn+1,
where Mn+1 is the discrete Darboux matrix at n+
1. We can hence write

Mn+1Vn+1 = L′nMnVn. (7)

Equating the coefficients of different powers of z,

Q′n+1/2 =
−b(−k+1)

n

d
(−k)
n

, R′n+1/2 =
−c(k−1)n

a
(k)
n

(8)

Q′n+1/2 = b
(k−1)
n+1 , R′n+1/2 = c

(−k+1)
n+1 . (9)

Starting with Eq. 9 to compute the potential at
n+1/2 from the Darboux coefficients at n+1, we
can then use the relation,

V ′n = L
′−1
n V ′n+1, (10)

to compute the Darboux coefficients at n. By it-
erating between the steps of computing the po-
tential and updating the Darboux coefficients, we
can compute the potential at all the staggered grid
points xn = (n+1/2)h starting from n+1 to −∞.
Similarly, using Eq. 8 and

V ′n+1 = L′nV
′
n, (11)

the potential at all the staggered grid points start-
ing from n to∞ can be computed.
For the numerical implementation we start
with a grid of 2N+1 points from -N to
N. The computation of the Darboux coeffi-
cients is typically well conditioned at n = 0

and hence is chosen as the starting point.

Algorithm
Input: {ζk, bk}, h, N
Output: Qn+1/2 = hq((n+ 1/2)h) +O(h3)

• Transform the eigenvalues (zk = eiζkh).
• Use Eq. 4 to find the polynomial representa-

tion of the eigenfunctions Vn at n = 0.
• For n = 0, · · · , N using Eq. 8 do:

– Q′n+1/2 = −b(−k+1)
n /d

(−k)
n

– R′n+1/2 = −Q′∗
n+1/2

– V ′n+1 = L′nV
′
n

• For n = 0, · · · ,−N using Eq. 9 do:
– Q′n+1/2 = b

(k−1)
n+1

– R′n−1/2 = −Q′∗
n−1/2

– V ′n−1 = L
′−1
n V ′n

We note that this algorithm also works for the
trapezoidal discretization11.

Complexity Analysis
The performance of the fast algorithm was com-
pared against an efficient implementation of clas-
sical Darboux transform (Algorithm 2 in12) in MAT-
LAB. Through manual counting, for K eigenval-
ues and N samples, the CDT algorithm requires
NK(15 + 11K)/2 FLOPS while the fast algorithm
requires (81K2)/2 + (20N + 37/2)K + 15N − 36



FLOPS. For communication problems K < N

and hence the fast algorithm has a computational
complexity of O(KN) while CDT has O(K2N).

Numerical Example
As a practical example, the discrete spectrum
from the experiment conducted in10 was chosen
for some arbitrary 14 bits (K = 7) of data. The
multi-soliton solution was constructed on the
approximately 14π support [-22 22]. Based on
width of the signal and speed of the DAC in10 a
step-size of 0.08 was chosen (N = 551). The
complexity analysis suggests that the runtime tf
of the new algorithm should be around half as
large as tCDT . When comparing the runtimes
of actual MATLAB implementations, we found
that tCDT /tf = 1.2. The spectrum mentioned
in10 is extended to 11 eigenvalues (ζk = [−1 +

0.45i,−0.8+0.3i,−0.6+0.45i,−0.4+0.30i,−0.2+
0.45i, 0.0 + 0.30i, 0.2 + 0.45i, 0.4 + 0.30i, 0.6 +

0.45i, 0.8 + 0.30i, 1.0 + 0.45i]) with the indepen-
dently modulated spectral amplitudes (ln(|q̃k|) =

[11.85, 7.06, 7.69, 7.69, 5, 3.81, 5, 1.93, 1.93,−0.62,
−5.43]) for some arbitrary 22 bits of data. The
new algorithm is two times faster than CDT, i.e.
tCDT /tf = 2, for the extended discrete spectrum.
The error in the generated potentials, which
arises because the new algorithm works in a
discretized model, was low as shown in Fig. 1.
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Fig. 1: The error in the potential constructed by the fast
algorithm.

Conclusions
A fast inverse nonlinear Fourier transform algo-
rithm for multi-solitons was introduced based on
a fully discrete framework. The algorithm can
construct the multi-soliton potentials with accept-
able errors faster than CDT even if the number
of eigenvalues is small, which was demonstrated
with a practical example10 and has a FLOPS

complexity of O(KN). The stated algorithm can
be extended to different discretizations of the
Zakahrov-Shabat problem. In further experiments
not reported here, it was observed that the nu-
merical precision of the floating point operations
needs to increased in the limit h → 0 in order to
avoid the break down of the new algorithm. This
behaviour is under study.
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