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Abstract We design a new time-delay reservoir computer based on VCSELs with optical injection. It
benefits from the specific VCSEL polarization dynamics in order to process data faster with enhanced
performance.

Introduction

Several thousand gigabits of data are being
exchanged each second on the internet network.
This ever growing amount of data requires both
higher speed and novel processing approach.
Beside the already existing solutions, reservoir
computing is exploring the possibility to build
very efficient, dedicated devices capable of
performing different tasks, such as the one
required by telecommunication systems (header
recognition, channel equalization, etc). Reservoir
computing1 is part of architecture studied in
the field of machine learning. Being inspired by
the architecture of the brain, it aims at drawing
benefits from interconnected nonlinear systems
in order to perform complicated calculation, faster
than what a computer is able to do. Reservoir
computing can also be split into two categories.
One of them is focusing on reservoir composed
of several interconnected physical systems. The
other one is dealing with time-delay reservoir2.
Because it is usually very challenging to exper-
imentally connect a large number of physical
systems, time-delay reservoir computing uses
only one nonlinear system, and then create
virtual neurons, distributed along the delay
line. Several architectures have been tested,
including either electronic2, opto-electronic3,4

or optical5 systems. Here, we propose to study
time-delay reservoir computer using a Vertical
Cavity Surface Emitting Laser (VCSEL) as a
physical system.

VCSELs have several advantages compared
to other coherent light sources6. Their intrinsic
fast modulation bandwidth, low threshold current
and single mode operation make them ideal

sources for telecommunication application. As a
matter of fact, they have replaced edge-emitting
lasers in short-haul telecommunication links.
These and other advantages, such as rich po-
larization dynamics, motivate also their use in
reservoir computing. We therefore use VCSEL
here to design an efficient high-speed reservoir
computer (see Fig. 1).
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Fig. 1: Principle scheme

The unique physical node of our reservoir is
composed of a VCSEL. We are operating a feed-
back loop on this node, along which we spread
the virtual nodes. We can modify the number of
virtual nodes N , which are separated by a time θ,
simply by adjusting the time-delay τ = Nθ. The
feedback strength can also be adjusted. The data
stream modulates the intensity of a second laser
beam which is then optically injected in the VC-
SEL.
Due to the large number of free parameters in the
system, we start by simulating numerically our ar-
chitecture in order to find the best operating point.
This point is chosen in order to allow the reservoir
computer to provide its best performance. Two
criteria are typically used to unveil the best op-
erating point: the computational ability7 and the
memory capacity8. The first one measures the
capacity of a reservoir computer to separate dif-
ferent inputs, and to gather similar ones. This is



one of the most important property a reservoir
should achieve to perform calculation properly.
Fig. 2 shows how computational ability varies as
a function of the delay loop length.
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Fig. 2: Computational ability depending on the total delay
with 400 virtual nodes. The value has been normalised

between 0 and 1. The higher it gets, the better the system is
able to do calculation.

We can notice that a maximum is reached for
short delay (6 10 ns). This is a huge advantage.
Using shorter delay is a way to increase the rate
of data processed with time-delay based reservoir
computing architecture.

The memory capacity measures the ability of
a reservoir computer to remember previous in-
puts. Some tasks require a high memory capacity
because of non-linear transformations, especially
while trying to reconstruct signals9. Performing
such a test with our reservoir allows to get insight
into which tasks can be solved using our VCSEL-
based architecture. Fig. 3 shows results for differ-
ent sets of parameters.
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Fig. 3: Memory capacity depending on the injection power for
different feedback strength: 16 GHz (dashed line), 32 GHz

(dotted line) , and 63 GHz (solid line)

With those parameters, the best reachable
memory depth is around 16. This performance
can be achieved for multiple combinations of pa-
rameters.
Once the reservoir computer is tested, and the
operating point is known, we can operate the
reservoir computer to solve a particular task.
Fig. 4 shows the computational performance on
the prediction task of the chaotic time serie Santa
Fe. The performance metrics used for this task is
the Normalised Mean Square Error (NMSE), de-
fined as follows:

NMSE =
1

N

N∑
i=1

(ŷ(i)− y(i))2, (1)

where N is the number of samples tested, y the
desired output, and ŷ the output of the reservoir
computer. In the following we shall compare the
NMSE performance when accounting or not for
the characteristic VCSEL polarisation dynamics.
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Fig. 4: Santa Fe serie prediction
a) NMSE after prediction for isotropic injection.
b) NMSE after prediction for rotated injection.

c) Example of prediction of chaotic signal: the original signal
(blue) and the predicted signal (red diamond)

With isotropic feedback, our reservoir computer
successfully performs the chaos prediction task
with a NMSE of 5 × 10−3. In that case the VC-
SEL is lasing along its main axis only. We then
performed the same task with feedback having its
polarization rotated. This modification allows to
enhance the performance: NMSE now reaches
2 × 10−3. Rotating the feedback allows to trigger
the two lasing mode of the VCSEL. That seems
to be a key to achieve better computational per-



formance.
We therefore tested other tasks with our device,
such as the nonlinear channel equalization. The
observation is the same: using a rotated feed-
back allows to increase the computational perfor-
mance. We successfully reached an error rate of
2×10−5 with a rotated feedback, compared to one
of 2× 10−4 with isotropic feedback.

Conclusions
VCSELs are interesting devices thanks to their
high speed modulation ability, but also the rich-
ness of their polarization dynamics. It appears
that we can draw benefits from those properties
in reservoir computing to do calculation. The sys-
tem shows indeed good performances not only in
terms of computational ability, but also in terms
of memory. That allows to use it on applied
tasks, and obtain satisfying performances. These
improved properties of reservoir computing have
been tested on different tasks such as chaos time
series prediction or nonlinear channel equaliza-
tion.
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