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Abstract A new geometric shaping method is proposed, leveraging unsupervised machine learning to
optimize the constellation design. The learned constellation mitigates nonlinear effects with gains up to
0.13 bit/4D when trained with a simplified fiber channel model.

Introduction
Optical transmission systems enabled modern
data traffic applications, yet the future traffic
growth is outpacing the achievable rates provided
by such systems1. Systems with high spectral
efficiency are in demand, but limited by avail-
able signal-to-noise ratio (SNR). For the additive
white Gaussian noise (AWGN) channel, constel-
lation shaping, either geometric or probabilistic,
provide up to 1.53 dB gain in SNR2. Both shap-
ing methods have been applied in fiber optics but
most often optimized under an AWGN channel
assumption2,3. For the fiber optic channel, an
optimal constellation is jointly robust to transmit-
ter imperfections, amplification noise as well as
signal dependent nonlinear effects4. Especially,
the modulation dependent nonlinear effects pose
an intricate problem, since they are conditioned
by the moment of the optimized constellation it-
self5. Constellation optimization for the nonlin-
ear channel is thus non-trivial. Machine learning
is established for learning high dimensional re-
lationships while taking various factors and con-
straints into account6. O’Shea et al.7 have shown
the potential of learning codes by embedding a
channel within an unsupervised machine learn-
ing algorithm, the auto-encoder8. Similar, we pro-
pose, to embed fiber channel models within an
auto-encoder9 and learn geometric constellation
shapes robust to the channel impairments, see
Fig. 1. Thus, this method combines a channel
model, the Gaussian noise (GN)-model10 or the
nonlinear interference noise (NLIN)-model5, with
gradient based optimization from machine learn-
ing. Together, a computational graph is com-
posed with all the information inherit in the chan-
nel model and enough flexibility to optimize for
a geometric constellation shape. Trained on the
GN-model, the learned constellation is optimized
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Fig. 1: Trainable auto-encoder model.

for an AWGN channel with an effective SNR gov-
erned by the launch power, thus nonlinear effects
are not being mitigated. Trained on the NLIN-
model the learned constellation mitigates nonlin-
ear effects by optimizing its moment. The perfor-
mance in mutual information (MI) of the learned
constellations is estimated with the NLIN-model
and simulations using the split-step Fourier (SSF)
method. Up to 0.13 bit/4D of gains are reported
with respect to iterative polar modulation (IPM)-
based geometrically shaped constellations3.

Channel Model and Auto-Encoder
The unsupervised learning method embeds a
channel model within an auto-encoder, as shown
in Fig. 1. The fiber channel is modeled by the
NLIN-model, where the channel impairments only
depend on the amplified spontaneous emission
(ASE) noise, the average channel power P , and
the 4th and 6th order moment (κ and κ3) of the
constellation. The discrete NLIN-model is de-
scribed as follows5:

y = c(x, P 3, κ, κ3)

= x+ nASE + nNLIN,
(1)

where y and x are the received and transmit-
ted symbols, c(·) the channel model, and nASE ∼
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N(0, σ2
ASE) and nNLIN ∼ N(0, σ2

NLIN(P
3, κ, κ3)) are

Gaussian noise samples with variance σ2
ASE and

σ2
NLIN, respectively. For the GN-model the depen-

dence on κ and κ3 is dropped, removing the mod-
ulation dependent nonlinear effect. Wrapping the
channel model with encoder and decoder, both
as neural networks (NN), constructs the trainable
auto-encoder model. NNs operate with vectors of
real numbers, thus the symbols x and y are tran-
scribed into vectors of their real and imaginary
part. The auto-encoder model is defined as fol-
lows:

~x = f(~s),

~y = c(~x, P 3, κ, κ3),

~r = g(~y),

L(~s, ~r = g(c(f(~s)))),

(2)

where f(·) is the encoder NN, g(·) the decoder
NN. The goal is to reproduce the input ~s at the
output ~r through a latent variable ~x (and its im-
paired version ~y). This is achieved by minimizing
a loss function L(·) such that ~s ≈ ~r. An N dimen-
sional constellation is obtained with ~x chosen as
N dimensional vector. A constellation of order M
is enforced by training the auto-encoder with one-
hot encoded vectors ~s ∈ S = {~ei | i = 1..M},
where ~ei is the all zero vector except at row i,
and which implies |S| = M . The model is trained
identical to a traditional auto-encoder. Multiple in-
stances of ~s are uniformly sampled from S and
propagated through the auto-encoder model. The
error obtained through the loss function is then
backpropagated to optimize the NN weights. The
optimization is gradient based and step wise,
which means, the free parameters of the encoder
and decoder are optimized iteratively towards a
state where the input is reproduced at the out-
put. For further illustration N=2 and M=4 are
chosen, see Fig. 1. Thus, an instance of ~x rep-
resents a point as in-phase and quadrature (IQ)
components and ~s is uniformly sampled from one-
hot encoded vectors of length 4. In that sense,
~s represents the source of the system, but does
not determine the actual constellation. The en-
coder learns a bijective projection from ~s to ~x,
thus for every element in S, one point in the IQ
plane is obtained. All points together resembe a
constellation of order 4. After the channel, the
decoder classifies the impaired symbols ~y back
to estimates of one-hot encoded vectors ~r. The
decoder has learned decision boundaries in be-
tween the impaired symbols, at the same time as

the encoder was forced to produce a distinguish-
able set of symbols given the channel impairment.

Numerical Simulation
The auto-encoder method described above is
used to find the optimal constellation for both,
a channel governed by the NLIN-model and the
GN-model. The auto-encoder optimizes the con-
stellation but thereafter only the learned constel-
lation is used, meaning an NN is neither required
at the deployed transmitter nor receiver. The
auto-encoder model is trained for each tested
transmission distance and launch power. The
performance of the learned constellations is vali-
dated using both the NLIN-model and SSF sim-
ulations. The SSF method simulates a dual
polarization WDM system of 5 channels with
50 GHz channel spacing, each channel is root
raised cosine shaped with 0.05 roll-off factor and
32 GHz bandwidth. The propagation is gov-
erned by 0.2 dB/km attenuation, dispersion co-
efficient 16.46 ps/(nm km), nonlinear coefficient
1.3 (W km)−1 , and 20 spans of 100 km length.
The power level is swept from -5 dBm to 5 dBm.
The NLIN-model, which assumes Nyquist shaped
pulses, is used for all other performance estima-
tions with 5 to 55 number of spans. The results
are compared to the performance ofM -QAM con-
stellations and IPM type geometrically shaped
constellations3.

Results and Discussion
The simulation results for a 2000 km transmis-
sion (20 spans) are shown in Fig. 2. The auto-
encoder constellations obtain improved perfor-
mance in MI compared to standard QAM constel-
lations. Further, the optimal launch power for con-
stellations trained on the NLIN-model is shifted to-
wards higher powers compared to the GN-model
and IPM-based constellations. In Fig. 3, at higher
power the gain with respect to standard QAM con-
stellations is larger for the NLIN-model obtained
constellations, and in Fig. 4 (top), the constella-
tions learned with the NLIN-model have a nega-
tive slope in moment. This shows that the auto-
encoder wrapping the NLIN-model, learns con-
stellations causing less nonlinearities by reduc-
ing the moments. At optimal launch power and
transmission distances of 2500 km to 5500 km,
the difference between NLIN-model, GN-model
and IPM-based constellations are marginal, Fig. 4
(bottom). However, at lower transmission dis-
tance the auto-encoder learned constellations
outperform the IPM-based constellations by up
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Fig. 2: Performance in MI with respect to launch power after 2000 km transmission (20 spans) for M=64 (left) and
M=256 (right). Plots denoted as ”M GN” and ”M NLIN” indicate that the constellation was learned using the GN-model and
NLIN-model, respectively. Lines depict performance evaluations using the NLIN-model and markers using the SSF method.

(top-left) Learned M=64 constellation for 2000 km transmission and 1 dBm launch power.
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Fig. 3: Gain compared to the standard M -QAM
constellations with respect to launch power after 2000 km

transmission (20 spans).

to 0.13 bit/4D, since with less accumulated dis-
persion the signal dependent nonlinearities pre-
vail5. The marginal improvement over state of the
art constellations at longer transmission distance
suggests that temporal effects must be taken into
account for larger gains.

Conclusions
An optimization method for geometric constella-
tion shapes is proposed, by the means of an
unsupervised learning method known as auto-
encoder. With a channel model including mod-
ulation dependent nonlinear effects, the deep
learning algorithm yields a constellation mitigat-
ing these, with gains up to 0.13 bit/4D. The
method is used as is without any further analytic
derivations necessary, since the machine learn-
ing optimization method is agnostic to the embed-
ded channel model.
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Fig. 4: (top) 4th and 6th order moment (κ and κ3) of
constellations with M=256 with respect to launch power

optimized for 2000 km transmission distance.
(bottom) Gain compared to the standard M -QAM

constellations at the respective optimal launch power with
respect to number of spans.
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