
Implementing a Machine Learning Function Orchestration

Axel Wassington1, Luis Velasco1*, Lluis Gifre2, and Marc Ruiz1

1 Optical Communications Group, Universitat Politècnica de Catalunya, Spain, *luis.velasco@upc.edu
2 Nokia Bell Labs, Nozay, France

Abstract Deployment of Machine Learning (ML) applications require from an Orchestrator to create ML

functions that are connected as ML pipelines. Orchestrator implementation and demonstration for the

deployment and reconfiguration of a ML pipeline related to a lightpath is shown.

Introduction

Software Defined Networking (SDN) defines a
centralized control plane architecture with global
network vision, which, at the optical layer, allows
the SDN controller to find the optimal routing for
optical connections (lightpath) at provisioning
time and during reconfiguration [1]. Besides, a
distributed computing and storage infrastructure
has been deployed for virtualizing network
functions, which is managed by a centralized
Virtual Infrastructure Orchestrator (VIO) [2].

On the other hand, the rise of Machine Learning
(ML) algorithms for optical network automation [3]
entails analyzing heterogeneous monitoring data
collected from monitoring points in network
devices. Because network entities can be
reconfigured, e.g., lightpath rerouting, it is of
paramount importance to link different ML
functions (i.e., performance data collection, pre-
processing, analysis, storage, visualization, etc.)
among them to create a ML Pipeline and to the
related network entity (e.g., a lightpath).

Based on the definition in [4], in this paper, we
present the implementation of a ML Function
Orchestrator (MLFO), as an independent
orchestrator that manages ML pipelines by
placing ML functions in different locations in the
network and connecting them to create a chain.

ML Pipeline Management

Let us first focus on the ML Pipeline computation.
Let us assume that an entity in the data plane
(e.g., a lightpath) requires deploying a ML
pipeline with five different ML functions: i)
collector (Co) in charge of collecting monitoring
data from activated monitoring points (M); ii)
aggregator (Ag) that collects measurements from
a number of different collectors and perform
some not computationally intensive task, like
compute some statistics, e.g., max, min, and
average; iii) processor (Pr), which performs more
computational intensive task on the received
data; iv) a time series database (DB); and v) an
user interface (UI). The relation among those ML
functions can be specified as a graph T=(N,A)
(see Fig. 1a).

Given graph T, the description of the set of nodes
N, the constraints for the set of arcs A, as well as
some other constraints, like fixed ML function

placements, an optimization problem can be
defined to find the optimal solution that includes
the placement of the ML functions to create a ML
pipeline that follows template T and meet the
constraints, while minimizing some utility function
(e.g., number and capacity of containers/VMs to
be deployed, connectivity cost, etc.) subject to
the state of the resources in the telecom cloud
infrastructure. We name such problem as ML
Pipeline Deployment (PLD), and it can formally
be stated as:

Given:

• Pipeline Template: graph T = (V, A), where V =
{<allowed types={type}>}, A = {<maxDelay,
minCapacity>}, and type=<container/VM
descriptor, max_children>.

• Constrained nodes: set N = {<n, F>}, where n
= type ∊ v.”allowed types” | v∊V, and F is a set
of constraints, e.g., a location, and it can be
empty.

• Telecom cloud infrastructure, i.e., edge/cloud
computing and connectivity.

Output: The pipeline P to be deployed, i.e., P =
(N’, E) ~ T, N’⊇ N and every e ∊ E is an instance

of a ∊ A that satisfies its constraints.
Objective: Minimize some utility function.

To solve the PLD problem, we have developed a
heuristic algorithm that first places the
constrained ML functions and finds the shortest
paths connecting the already placed ML
functions. During such process, more ML
functions are added to meet the given constraints
until graph P following template T is obtained. An
example of solution is illustrated in Fig. 1b, where
the location of the collector ML functions have
been specified to be in the same location as the
related monitoring point. Once the PLD problem
is solved, the obtained solution is deployed (Fig.
2a).

Because the ML pipeline is linked to an entity in
the data plane, when that entity is reconfigured,
its ML pipeline might need to be also
reconfigured. Therefore, we can define a new
optimization problem, where we are given the
template T, the current ML pipeline P and the new
set of constrained nodes and the objective is to
reconfigure P with the minimum cost (e.g.,
number of changes in P’ w.r.t. P and the total
cost, etc.). We name such problem as ML

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/ECOC52684.2021.9605907

DB

Ag1 Ag2

CoA Co1 CoZ

UI

Pr

Co4Co3

DB

Ag1 Ag2

CoA Co1 CoZ

UI

Pr

Co2

(b) (c)

Ag

Co

Pr

DB

UI
M

L
Pi

p
el

in
e

Te
m

p
la

te
(a)

0..n

M
L

Pi
p

el
in

e
D

ep
lo

ym
en

t

M
L

Pi
p

el
in

e
R

ec
o

n
fi

gu
ra

ti
o

n

M MA M1 M2 MZ MA M1 M4 MZM3

Fig. 1: ML pipeline management.

CoA Co1

VLAN

OSA

Co2

OSA

CoZ Ag2

VLAN

Ag1

M
M

M

M

Pr DB

VLAN

UI

VLAN

CoA Co1

VLAN

OSA

Co3

VLAN

OSA

CoZ Ag2

VLAN

Ag1

M
M

M

M

P DB

VLAN

UI

Co4

VLAN

(a) ML Pipeline at
lightpath setup

(b) ML Pipeline after
lightpath rerouting

Location A Location Z

Location 2

Location 3
Location 4

Location A Location Z

OSA
M

Fig. 2: Example of ML pipelines for a lightpath.

Pipeline Reconfiguration (PLR) and it can
formally be stated as:

Given:

• The template T, the deployed pipeline P and
the new set of constrained nodes N.

• Telecom cloud infrastructure, i.e., edge/cloud
computing and connectivity.

Output: The new pipeline P’ to be deployed.
Objective: Minimize some utility function.

We have developed a heuristic similar as the one
for the PLD problem, where the deployed ML
functions that are not in the new constrained set
of nodes are first removed, and the nodes that
need to be migrated are disconnected and
moved. An example of reconfiguration is
presented in Fig. 1c, where ML function Co2 is
not needed for the new ML pipeline, and Co3 and
Co4 have been added. The resulting
reconfiguration is shown in Fig. 2b.

Proposed Architecture and Workflows

The proposed architecture is depicted in Fig. 3,
where an external management application
system triggers ML pipeline deployment.
Therefore, the MLFO needs to expose a
Northbound Interface (NBI) to receive the
description of the ML pipeline, including the

Computing
Nodes

OVS
Metro DC-1

Metro DC-2

Core DC

VXLAN

VLAN

VLAN

SDN
Controller

MLFO

Config map

Virtual Infrastructure
Orchestrator

NBI

Fig. 3: Architecture of the solution.

Descriptor
1

Deploy
2 Solve PLD

Create

name space3

4
Image Repo

config

9

F
o
r

e
v
e
ry

 M
L

fu
n
c
ti
o
n

VLAN/VXLAN config
6

5 VLAN config

7

Deploy

Containers
8

Dynamic

config

A

Deploy1 Solve PLR

Container

Deployment

A

Eliminate

Container

B

2
Update

Config

3

W
F

1
 -

M
L

 P
ip

e
li
n

e
 D

e
p

lo
y
m

e
n

t
WF2 - ML Pipeline Reconfig

SDNVIOMLFOMgmt App SDNVIOMLFOMgmt App

Container

Deployment

Fig. 4: Deployment and reconfiguration.

template, constrained nodes, etc. (collectively
named ML pipeline descriptor). The MLFO runs
the PLD and PLR optimization problems to obtain
the ML pipeline to be deployed (deployment
plan), and coordinates with the VIO and the
packet layer SDN controller. A specific VLAN is
created for each ML pipeline for intra-DC
communications, whereas we assume that
connectivity between two DCs is based on pre-
established connections (e.g., VXLAN tunnels).

Fig. 4 presents the workflows for the initial ML
pipeline deployment and for any subsequent
externally-triggered reconfiguration. Let us start
with the deployment workflow (WF1). The
management application initiates WF1 by
sending the deployment plan (message WF1/1 in
Fig. 4). The descriptor contains a template for the
ML functions and for the connectivity. Next, the
deployment is triggered (2) and the MLFO starts
a series of steps. First, the MLFO solves the PDL
using the constraints, resulting in a mapping
between the ML functions and the datacenters,
and the connectivity and the deployment plan is
computed. A list of iterations is generated that
includes the communication of the MLFO with the
VIO (e.g., Kubernetes) for the deployment of the
ML functions (e.g., encapsulated into containers
[5]), and with the SDN controller for managing the
connectivity among the ML functions. The list
iterations include: i) the namespace creation (3);
ii) the configuration of an image repository storing
the different computing images that are retrieved
when a new ML function instance is deployed (4);
iii) the configuration of the ML pipeline network
that entails creating the VLAN (5) and pairing it

1

2

3

4

5

6

7

8

9
Fig. 5: Messages exchanged during WF1.

{

"namespace": "mla2-v1",

"renderdata": {

"gw": "192.168.30.73",

"name": "ovs-vlan-600",

"subnet": "192.168.30.72/29",

"vlan": 600},

"type": "ovs_network"

}

5

{

"namespace": "mla2-v1",

"renderdata": {

"configs": [{"name": "push-url",

"value":"http://192.168.30.74/reg"}],

"filename": "servers.yaml",

"name": "dynamic-config-2"},

"type": "yamlfileconfig"

}

7

{

"datacenter": "Metro DC-1",

"renderdata": {

"name": "VLAN_600_to_TUNNEL_200",

"tunnelid": 200,

"vlanid": 600},

"type": "vlantotunnel"

}

6

Fig. 6: Details of selected messages.

1

A

B

3

2

Fig. 7: Messages exchanged during WF2.

CoA

Co1

CoZ

Co3

Co4

CoA

Co1

CoZ

Co2

Pipeline
Deployment

Pipeline
Reconfiguration

M

o
n

. s
am

p
le

s

time

Fig. 8: #Monitoring samples vs time.

to the VXLAN tunnels (6); iv) the creation of a
volume for the dynamic configuration of the
computing instances (7); and v) the deployment
of the containers (8). Steps 6-8 are followed for
every ML function to be deployed (block A). A
reply is eventually sent (9).

WF2 is triggered when the ML pipeline needs to
be reconfigured. The management application
initiates WF2 by sending a new set of constraints
to the MLFO (message WF2/1 in Fig. 4). The PLR
problem is then solved considering the received
configuration. Then, the MLFO finds the changes
to be performed and prepares a plan with the
creation of new ML functions (block A) and
removal of existing ones (block B). Besides, the
dynamic configs are updated to reflect the
changes in the system (e.g., changes on the IPs)
(2). When all the steps are executed, the result is
sent back to the management application (3).

Illustrative Results

We implemented the MLFO in Python 3.8 that
exposes a REST API NBI. Kubernetes was used
as VIO and docker as the container technology
[6]. The MLFO uses the Kubernetes API through
a python client library. A private image repository
was hosted in Docker Hub. Multus and Open
vSwitch (OVS) Container Network Interface
(CNI) plugins were used for the VLAN
configuration thorough Kubernetes. Kubernetes
ConfigMap was used for the dynamic

configuration files mounted into the containers as
read-only files. The ingress-nginx controller was
used for the reverse proxy; the configuration is
done through the Kubernetes’ ingress resource,
which exposes a service through a load balancer
(MetalLB). As for the SDN controller, we used
OpenDayLight (ODL), which controls intra-DC
switches through the OpenFlow protocol. VXLAN
was used as tunneling technology for inter-DC
tunnels. The MLFO pairs VLANs with VXLANs on
each of the intra-DC switches that are involved
on a connection between two containers.

Fig. 5 shows the messages exchanged during
WF1 to deploy the ML pipeline in Fig. 2a; the
number of the messages is that in Fig. 4 for the
sake of clarity. The details of messages 5-7 are
presented in Fig. 6. The included information is
expanded using jinja2 templates to create the
final message for the VIO or the SDN controller.
The dynamic config (7) is performed by creating
a Kubernetes configmap (a series of key-values,
that are written to a file and mounted in the
container filesystem) for the dynamic
configuration of the computing instances.
Computing instances might have also external
endpoints that can be accessed through a
reverse proxy. Containers’ deployment is carried
out through Kubernetes; information includes: the
datacenter identifier, the VLAN and the IP
address, the dynamic configuration name, the
image, a name, and a list of configurations. Total
deployment time was about 1 min.

Fig. 7 shows the exchanged messages during
WF2 to reconfigure the ML pipeline as in Fig. 2b.
Just to mention that WF2 follows a make-before-
break approach, i.e., after the creation of new
containers, the MLFO waits for the container to
be available before continuing with the next steps
to avoid losing monitoring samples. Total
reconfiguration time was 8.5 sec.

Finally, Fig. 8 shows the number of
measurements collected in the DB node of the
ML pipeline to demonstrate ML pipeline
deployment and its reconfiguration.

Acknowledgements
The research leading to these results has received
funding from the Spanish MINECO TWINS project
(TEC2017-90097-R) and from ICREA.

References

[1] L. Velasco et al., “In-Operation Network Planning,” IEEE
Communications Magazine, vol. 52, pp. 52-60, 2014.

[2] M. Bonfim, K. Dias, and S. Fernandes, “Integrated
NFV/SDN Architectures: A Systematic Literature
Review,” ACM Computing Surveys, vol. 51, pp. 1-39,
2019.

[3] D. Rafique and L. Velasco, “Machine Learning for Optical
Network Automation: Overview, Architecture and
Applications,” (Invited Tutorial) IEEE/OSA Journal of
Optical Communications and Networking (JOCN), vol. 10,
pp. D126-D143, 2018.

[4] “Unified architecture for machine learning in 5G and
future networks,” Focus group on Machine Learning for
Future Networks including 5G, ITU-T, 2019.

[5] L. Toka, G. Dobreff, B. Fodor and B. Sonkoly, “Machine
Learning-Based Scaling Management for Kubernetes
Edge Clusters,” IEEE Transactions on Network and
Service Management, vol. 18, pp. 958-972, 2021.

[6] D. Bernstein, “Containers and Cloud: From LXC to
Docker to Kubernetes,” IEEE Cloud Computing, vol. 1,
pp. 81-84, 2014.

