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Abstract Deployment of Machine Learning (ML) applications require from an Orchestrator to create ML 

functions that are connected as ML pipelines. Orchestrator implementation and demonstration for the 

deployment and reconfiguration of a ML pipeline related to a lightpath is shown. 

Introduction 

Software Defined Networking (SDN) defines a 
centralized control plane architecture with global 
network vision, which, at the optical layer, allows 
the SDN controller to find the optimal routing for 
optical connections (lightpath) at provisioning 
time and during reconfiguration [1]. Besides, a 
distributed computing and storage infrastructure 
has been deployed for virtualizing network 
functions, which is managed by a centralized 
Virtual Infrastructure Orchestrator (VIO) [2]. 

On the other hand, the rise of Machine Learning 
(ML) algorithms for optical network automation [3] 
entails analyzing heterogeneous monitoring data 
collected from monitoring points in network 
devices. Because network entities can be 
reconfigured, e.g., lightpath rerouting, it is of 
paramount importance to link different ML 
functions (i.e., performance data collection, pre-
processing, analysis, storage, visualization, etc.) 
among them to create a ML Pipeline and to the 
related network entity (e.g., a lightpath). 

Based on the definition in [4], in this paper, we 
present the implementation of a ML Function 
Orchestrator (MLFO), as an independent 
orchestrator that manages ML pipelines by 
placing ML functions in different locations in the 
network and connecting them to create a chain. 

ML Pipeline Management 

Let us first focus on the ML Pipeline computation. 
Let us assume that an entity in the data plane 
(e.g., a lightpath) requires deploying a ML 
pipeline with five different ML functions: i) 
collector (Co) in charge of collecting monitoring 
data from activated monitoring points (M); ii) 
aggregator (Ag) that collects measurements from 
a number of different collectors and perform 
some not computationally intensive task, like 
compute some statistics, e.g., max, min, and 
average; iii) processor (Pr), which performs more 
computational intensive task on the received 
data; iv) a time series database (DB); and v) an 
user interface (UI). The relation among those ML 
functions can be specified as a graph T=(N,A) 
(see Fig. 1a).  

Given graph T, the description of the set of nodes 
N, the constraints for the set of arcs A, as well as 
some other constraints, like fixed ML function 

placements, an optimization problem can be 
defined to find the optimal solution that includes 
the placement of the ML functions to create a ML 
pipeline that follows template T and meet the 
constraints, while minimizing some utility function 
(e.g., number and capacity of containers/VMs to 
be deployed, connectivity cost, etc.) subject to 
the state of the resources in the telecom cloud 
infrastructure. We name such problem as ML 
Pipeline Deployment (PLD), and it can formally 
be stated as: 

Given: 

• Pipeline Template: graph T = (V, A), where V =
{<allowed types={type}>}, A = {<maxDelay,
minCapacity>}, and type=<container/VM
descriptor, max_children>.

• Constrained nodes: set N = {<n, F>}, where n
= type ∊ v.”allowed types” | v∊V, and F is a set
of constraints, e.g., a location, and it can be
empty.

• Telecom cloud infrastructure, i.e., edge/cloud
computing and connectivity.

Output: The pipeline P to be deployed, i.e., P = 
(N’, E) ~ T, N’⊇ N and every e ∊ E is an instance 

of a ∊ A that satisfies its constraints. 
Objective: Minimize some utility function. 

To solve the PLD problem, we have developed a 
heuristic algorithm that first places the 
constrained ML functions and finds the shortest 
paths connecting the already placed ML 
functions. During such process, more ML 
functions are added to meet the given constraints 
until graph P following template T is obtained. An 
example of solution is illustrated in Fig. 1b, where 
the location of the collector ML functions have 
been specified to be in the same location as the 
related monitoring point. Once the PLD problem 
is solved, the obtained solution is deployed (Fig. 
2a). 

Because the ML pipeline is linked to an entity in 
the data plane, when that entity is reconfigured, 
its ML pipeline might need to be also 
reconfigured. Therefore, we can define a new 
optimization problem, where we are given the 
template T, the current ML pipeline P and the new 
set of constrained nodes and the objective is to 
reconfigure P with the minimum cost (e.g., 
number of changes in P’ w.r.t. P and the total 
cost, etc.). We name such problem as ML 
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Fig. 1: ML pipeline management. 
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Fig. 2: Example of ML pipelines for a lightpath. 

Pipeline Reconfiguration (PLR) and it can 
formally be stated as: 

Given: 

• The template T, the deployed pipeline P and 
the new set of constrained nodes N. 

• Telecom cloud infrastructure, i.e., edge/cloud 
computing and connectivity. 

Output: The new pipeline P’ to be deployed. 
Objective: Minimize some utility function. 

We have developed a heuristic similar as the one 
for the PLD problem, where the deployed ML 
functions that are not in the new constrained set 
of nodes are first removed, and the nodes that 
need to be migrated are disconnected and 
moved. An example of reconfiguration is 
presented in Fig. 1c, where ML function Co2 is 
not needed for the new ML pipeline, and Co3 and 
Co4 have been added. The resulting 
reconfiguration is shown in Fig. 2b. 

Proposed Architecture and Workflows 

The proposed architecture is depicted in Fig. 3, 
where an external management application 
system triggers ML pipeline deployment. 
Therefore, the MLFO needs to expose a 
Northbound Interface (NBI) to receive the 
description of the ML pipeline, including the 
 

Computing 
Nodes

OVS
Metro DC-1

Metro DC-2

Core DC

VXLAN

VLAN

VLAN

SDN
Controller

MLFO

Config map

Virtual Infrastructure 
Orchestrator

NBI

 
Fig. 3: Architecture of the solution. 
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Fig. 4: Deployment and reconfiguration. 

template, constrained nodes, etc. (collectively 
named ML pipeline descriptor). The MLFO runs 
the PLD and PLR optimization problems to obtain 
the ML pipeline to be deployed (deployment 
plan), and coordinates with the VIO and the 
packet layer SDN controller. A specific VLAN is 
created for each ML pipeline for intra-DC 
communications, whereas we assume that 
connectivity between two DCs is based on pre-
established connections (e.g., VXLAN tunnels). 

Fig. 4 presents the workflows for the initial ML 
pipeline deployment and for any subsequent 
externally-triggered reconfiguration. Let us start 
with the deployment workflow (WF1). The 
management application initiates WF1 by 
sending the deployment plan (message WF1/1 in 
Fig. 4). The descriptor contains a template for the 
ML functions and for the connectivity. Next, the 
deployment is triggered (2) and the MLFO starts 
a series of steps. First, the MLFO solves the PDL 
using the constraints, resulting in a mapping 
between the ML functions and the datacenters, 
and the connectivity and the deployment plan is 
computed. A list of iterations is generated that 
includes the communication of the MLFO with the 
VIO (e.g., Kubernetes) for the deployment of the 
ML functions (e.g., encapsulated into containers 
[5]), and with the SDN controller for managing the 
connectivity among the ML functions. The list 
iterations include: i) the namespace creation (3); 
ii) the configuration of an image repository storing 
the different computing images that are retrieved 
when a new ML function instance is deployed (4); 
iii) the configuration of the ML pipeline network 
that entails creating the VLAN (5) and pairing it  
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Fig. 5: Messages exchanged during WF1. 

{

"namespace": "mla2-v1",

"renderdata": {

"gw": "192.168.30.73",

"name": "ovs-vlan-600",

"subnet": "192.168.30.72/29",

"vlan": 600},

"type": "ovs_network"

}

5

{

"namespace": "mla2-v1",

"renderdata": {

"configs": [{"name": "push-url",

"value":"http://192.168.30.74/reg"}],

"filename": "servers.yaml",

"name": "dynamic-config-2"},

"type": "yamlfileconfig"

}

7

{

"datacenter": "Metro DC-1",

"renderdata": {

"name": "VLAN_600_to_TUNNEL_200",

"tunnelid": 200,

"vlanid": 600},

"type": "vlantotunnel"

}

6

 
Fig. 6: Details of selected messages. 
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Fig. 7: Messages exchanged during WF2. 
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Fig. 8: #Monitoring samples vs time. 

to the VXLAN tunnels (6); iv) the creation of a 
volume for the dynamic configuration of the 
computing instances (7); and v) the deployment 
of the containers (8). Steps 6-8 are followed for 
every ML function to be deployed (block A). A 
reply is eventually sent (9). 

WF2 is triggered when the ML pipeline needs to 
be reconfigured. The management application 
initiates WF2 by sending a new set of constraints 
to the MLFO (message WF2/1 in Fig. 4). The PLR 
problem is then solved considering the received 
configuration. Then, the MLFO finds the changes 
to be performed and prepares a plan with the 
creation of new ML functions (block A) and 
removal of existing ones (block B). Besides, the 
dynamic configs are updated to reflect the 
changes in the system (e.g., changes on the IPs) 
(2). When all the steps are executed, the result is 
sent back to the management application (3). 

Illustrative Results 

We implemented the MLFO in Python 3.8 that 
exposes a REST API NBI. Kubernetes was used 
as VIO and docker as the container technology 
[6]. The MLFO uses the Kubernetes API through 
a python client library. A private image repository 
was hosted in Docker Hub. Multus and Open 
vSwitch (OVS) Container Network Interface 
(CNI) plugins were used for the VLAN 
configuration thorough Kubernetes. Kubernetes 
ConfigMap was used for the dynamic 

configuration files mounted into the containers as 
read-only files. The ingress-nginx controller was 
used for the reverse proxy; the configuration is 
done through the Kubernetes’ ingress resource, 
which exposes a service through a load balancer 
(MetalLB). As for the SDN controller, we used 
OpenDayLight (ODL), which controls intra-DC 
switches through the OpenFlow protocol. VXLAN 
was used as tunneling technology for inter-DC 
tunnels. The MLFO pairs VLANs with VXLANs on 
each of the intra-DC switches that are involved 
on a connection between two containers. 

Fig. 5 shows the messages exchanged during 
WF1 to deploy the ML pipeline in Fig. 2a; the 
number of the messages is that in Fig. 4 for the 
sake of clarity. The details of messages 5-7 are 
presented in Fig. 6. The included information is 
expanded using jinja2 templates to create the 
final message for the VIO or the SDN controller. 
The dynamic config (7) is performed by creating 
a Kubernetes configmap (a series of key-values, 
that are written to a file and mounted in the 
container filesystem) for the dynamic 
configuration of the computing instances. 
Computing instances might have also external 
endpoints that can be accessed through a 
reverse proxy. Containers’ deployment is carried 
out through Kubernetes; information includes: the 
datacenter identifier, the VLAN and the IP 
address, the dynamic configuration name, the 
image, a name, and a list of configurations. Total 
deployment time was about 1 min. 

Fig. 7 shows the exchanged messages during 
WF2 to reconfigure the ML pipeline as in Fig. 2b. 
Just to mention that WF2 follows a make-before-
break approach, i.e., after the creation of new 
containers, the MLFO waits for the container to 
be available before continuing with the next steps 
to avoid losing monitoring samples. Total 
reconfiguration time was 8.5 sec. 

Finally, Fig. 8 shows the number of 
measurements collected in the DB node of the 
ML pipeline to demonstrate ML pipeline 
deployment and its reconfiguration. 
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