
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-26T13:34:03Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title WWW or What Is Wrong with Web Services

Author(s) Polleres, Axel; Bussler, Christoph; Fensel, Dieter

Publication
Date 2005

Publication
Information

Reto Krummenacher, Martin Hepp, Axel Polleres, Christoph
Bussler, Dieter Fensel "WWW or What Is Wrong with Web
Services", Proceedings of the 2005 IEEE European Conference
on Web Services (IEEE ECOWS 2005), 2005.

Publisher IEEE

Item record http://hdl.handle.net/10379/414

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


WWW
or

What Is Wrong with Web Services

Reto Krummenacher1, Martin Hepp1, Axel Polleres1, Christoph Bussler2 and Dieter Fensel1,2

Digital Enterprise Research Institute
1 University of Innsbruck, Austria

2 National University of Ireland, Galway, Ireland

Abstract

A core paradigm of the Web is information exchange via
persistent publication, i.e., one party publishes a piece of
information on the Web, and any other party who knows
the location of the resource can retrieve and process the in-
formation at any later point in time and without the need
for synchronization with the original publisher. This func-
tionality significantly contributed to the scalability of the
Web, since it reduced the amount of interaction between the
sender and the recipient. Current approaches of extending
the World Wide Web from a collection of human-readable
information, connecting humans, into a network that con-
nects computing devices based on machine-processable se-
mantics of data lack this feature and are instead based on
tightly-coupled message exchange. In this paper, we (1)
show that Web services based on the message-exchange
paradigm are not fully compliant with core paradigms of
the Web itself, (2) outline how the idea of persistent pub-
lication as a communication paradigm can be beneficially
applied to Web services, and (3) propose a minimal archi-
tecture for fully Web-enabled Semantic Web services based
on publication in shared information spaces, which we call
Triple Space Computing.

1. Introduction

TheWorld Wide Webis a tremendous success story, both
in terms of the amount of available information and in terms
of the growth rate of the number of human users. Starting
as a closed network for exchanging scientific information,
it has become a global media used for information dissem-
ination and information access within slightly more than a
decade. In many respects the Web has become the major
means for publishing and accessing information, and it is

Figure 1. The four major stages in the devel-
opment of the Web

expected to connect one billion people in only a few years.
Its scalability, simplicity and the comfort and speed in dis-
seminating information is unique. However, it is solely a
network for humans. Computers do not have access to the
actual meaning of the content and in return only provide
very little support in accessing and processing this informa-
tion. There are two complementary trends that are about to
change this fact and aim at transforming the Web from be-
ing for humans only into a network that involves computers
in order to provide support for human interaction at a much
higher level than possible with current Web technology (see
Fig. 1):

• TheSemantic Webadds machine-processable seman-
tics to data [2].

• Web servicesprovide the platform-neutral integration
of arbitrary applications [1].

Eventually,Semantic Web services(the combination of Se-
mantic Web and Web service technology) promise a fully
automated Web in which functionality can be accessed by
machines, by adding machine-processable data to the de-
scription of Web services. Semantic Web services aim at



allowing mechanized service discovery, service configura-
tion, combination (i.e. realizing complex workflows and
business logics with Web services) and service comparison,
as well as automated negotiation [7].

Currently, the available (non-semantic) Web service
technologies are far from providing the desired state of au-
tomated, seamless integration. The obstacles may eventu-
ally be overcome. It is possible, however, that these un-
solved issues are an indication for a more fundamental prob-
lem with the current direction of Web services technology.
Web services are mainly based on transient message ex-
change and not on persistent publication of data. As a
matter of fact, Web services are far from using the Web
as means for information publication and access. Instead
of following the ’persistently publish and read’ paradigm
of the Web, traditional Web services using WSDL [6] and
SOAP [18] establish a tightly coupled communication cy-
cle, most frequently using a synchronous HTTP transac-
tion to transmit data. URIs, which are meant as unique
and persistent identifiers for resources are used only for the
identification of the participant, whereas the information ex-
changed is hidden in the SOAP message.

In this paper, we address the current misfit between the
fundamental principles of the Web and the current direction
of Web services. First of all, we analyze current Web ser-
vice technology in Section 2 and demonstrate that current
Web services do not have much in common with the Web.
After questioning the term ”Web” in ”Web services”, we
show in Section 3 how true Web services could be imple-
mented based on persistent publication in shared informa-
tion spaces. The foundation is to augment space-based com-
puting with machine-accessible semantics, and to apply this
idea to Semantic Web services. We show how, by adding
semantics directly to this alternative communication par-
adigm, the resulting space-based infrastructure allows for
fully machine-enabled, asynchronous data interchange. In
Section 4 we outline a minimal Internet-scale architecture
for Triple Space Computing. Section 5 sketches how trust
and security issues could be addressed in a Triple Space.
Finally, Section 6 discusses related efforts and Section 7
concludes the paper.

2. Are Web services really Web services?

In this section we argue that, besides their name, Web
services do not have much in common with the Web. Cur-
rent Web service technology is based on tightly coupled
message exchange. This is similar to the situation in the
pre-Web age, where one had to send an e-mail message to
a scientific colleague, asking for a specific paper or piece
of information. In the current Web as an infrastructure for
humans, this pattern of communication has widely been re-
placed by persistent publication and asynchronous retrieval.

We no longer request the biggest share of information in
lengthy, synchronous communication cycles with the orig-
inators, but fetch it from persistent sources, e.g. the sci-
entist’s personal Web page. We argue that this has signifi-
cantly contributed to the success and scalability of the Web,
since it freed the sender from the need to handle individual
requests, and it made resources identifiable and thus refer-
able. Imagine you would have to handle individual requests
from all your scholarly colleagues who visit your Web site.
You might soon become the main bottleneck for the dissem-
ination of your own ideas. The shift from information dis-
semination based on message exchange not only made the
Web scale tremendously, it has also sped up the dissemina-
tion process. When comparing Web services with this im-
portant principle of the Web it becomes very obvious that
Web services are not following the core idea of the Web.
It is true that Web services use the Internet as the trans-
port medium. However, that is more or less all they have in
common with the Web. The idea of publishing data and ac-
cessing it asynchronously is lacking. Instead of publishing
the information based on a global and persistent URI, Web
services establish (1) stateful conversations based on the (2)
hidden content of messages.

The negative effect of such distributed applications that
communicate via message exchange is that they require a
strong coupling in terms of reference and time. This means
that traditional Web services require that the sender and re-
ceiver of data (1) maintain a connection at the very same
time, that they (2) agree on the data format, and (3) know
each other and share a common representation. Therefore,
the communication has to be directed to a particular ser-
vice and is synchronous as long as neither party implements
asynchronous communication (and jointly agree on the spe-
cific way this mechanism is implemented).

The above statement is in alignment with the worries ex-
pressed by the REST community [9]. Their two major crit-
icisms around Web services are about the improper usage
of URIs and the violation of the stateless architecture of the
Web. It is one of the basic design principles of the Web
and REST architecture to not provide stateful protocols and
resources [10], [21].

In practice this means that when sending and receiving
SOAP messages, the content of the information is hidden
in the body and not addressed as an explicit Web resource
with its own URI. Therefore, most Web functionality deal-
ing with caching or security checks is disabled, since us-
ing it would require parsing and understanding all possi-
ble XML schemas that can be used to write a SOAP mes-
sage. Thus, when a stateful conversation is required, this
should be explicitly modelled by different URIs. Moreover,
referring to the content transmitted via an explicit URI in an
HTTP-request would allow the content of a message to be
treated like any other Web resource.



In the next section we will explore how Web services can
be fully based on the very successful ”persistently publish
and read” Web principle and propose means to overcome
the major flaw that recent Web services suffer from.

3. Triple Space computing

In this section we present Triple Space computing (TSC,
[8]) as an approach to address the widely-recognized prob-
lems with Web services. We start with discussing Tuple
Space computing as a paradigm for exchanging data be-
tween processes that is very similar to the paradigms of the
Web. We introduce the concept of semantic self-description
of information which naturally leads us to what we call the
Triple Space.

3.1. Tuple Space computing

Tuple Spaces were introduced in parallel programming
languages such as Linda to implement communication be-
tween parallel processes [12]. Instead of sending messages
back and forth, a simple communication interface is pro-
vided, and processes can write, delete, and read tuples from
a persistent space. A tuple is an ordered set of typed fields,
each of which either contains a value or is undefined, while
the Tuple Space is an abstract space containing tuples and
is visible to all processes. The tuples can be read from the
space by use of templates. A template matches tuples that
have the same internal structure, i.e., the same number and
type of fields. Tuple Space computing has very strong ad-
vantages. It naturally decouples processes along three or-
thogonal dimensions:

• reference. No need to address communication part-
ners directly.

• time. No need for synchronous links between commu-
nication partners.

• space. No need to run in the same computational en-
vironment as long as access to the same space is guar-
anteed.

This decoupling has obvious design advantages for defin-
ing reusable, distributed, heterogeneous, and agile commu-
nicating applications. A communication paradigm based on
Tuple Space computing also resembles a core Web para-
digm: information is persistently written to a globally ac-
cessible space where it can easily be accessed without a cas-
cade of message exchange operations. It is thus quite obvi-
ous that the Web and Tuple Spaces share many underlying
principles. However, [14] report on several shortcomings.
Current Tuple Space models lack support for namespaces,
semantics, and structure in describing the information con-
tent of the tuples. Part of these limitations are addressed by

existing Web technology for resource identification in the
Web:

1. URIs provide a reference mechanism that allows infor-
mation to be distinguished on a world-wide scale.

2. Namespaces provide a separation mechanism that al-
lows different applications to use the same vocabulary
without blurring their communication.

Tuple Spaces provide a flat and simple data model that
does not support any nesting or linking of data. Hence, tu-
ples with the same number of fields and field order but dif-
ferent semantics cannot be distinguished. In the following
we propose to extend Tuple Space computing into what we
call Triple Space computing to enhance the common field
structure and field comparison matching with nested and
interlinked tuples (triples) and semantics-aware matching
rules.

3.2. Triple Space computing

Fortunately, the Resource Description Framework
(RDF,[16]) already provides the fundamentals for a shared
information space that provides some degree of machine-
access. In our opinion, RDF is the natural link from the
space-based computing paradigm into the Semantic Web.
Notice that the Semantic Web will not become obsolete by
the Triple Space paradigm, nor do we assume that mes-
sage exchange will completely disappear as a communi-
cation paradigm for accessing computer functionality re-
motely. Information spaces can help overcome heterogene-
ity in communication and cooperation, however, they do not
provide any answer to data heterogeneity. That remains a
task for the Semantic Web, as it provides standards to rep-
resent machine-processable semantics of data. In RDF, se-
mantic data is described by interlinked triples of the form
<subject,predicate,object>. The subject is the resource
about which the statement is made. The predicate repre-
sents a specific property and the object is either a resource
or a literal defining the property value of the statement. Re-
sources are identified by URIs, while literals are e.g. strings
or numbers. RDF Schema [4] additionally defines classes,
properties, domain and range inferences, and hierarchies of
classes and properties on top of RDF. Therefore, a richer
data model than interlinked triples could also be used to
model and retrieve information. This gets even further ex-
tended by OWL [17], a data modelling language based on
description logic.

The Semantic Web aims at making problems in proto-
col and process heterogeneity transparent by its uniform
and simple means for accessing and retrieving information.
Space-based computing moreover allows complex message
exchanges to be replaced by simple read and write oper-
ations in a globally accessible space. Therefore, Triple



Spaces have the potential to become a global platform for
application and service integration on the Internet just as
Tuple Space computing became a means for the local inte-
gration of parallel processes.

The Triple Space shall offer an infrastructure that scales
conceptually on an Internet level. Like Web servers publish
Web pages for humans to read, Triple Space servers would
provide Triple Spaces to publish machine-interpretable
data. Providers and consumers could publish and consume
triples over a globally accessible infrastructure, i.e., the In-
ternet. Various Triple Space servers could be located at dif-
ferent machines all over the globe and hence every partner
in a communication process can target its preferred space,
as it is the case for Web and FTP servers. This high-
lights many advantages for providers and consumers. The
providers of data can publish it at any point in time (time au-
tonomy), independent of its internal storage (location auton-
omy), independent of the knowledge about potential readers
(reference autonomy), and independent of its internal data
schema (schema autonomy):

• Time autonomy. There is a only minimal time de-
pendency between the data provider and reader, in the
sense that a triple must be written first before it can be
retrieved.

• Location autonomy. The Triple Space as a storage
location is independent of the storage space of the
providers or readers of data. Complete independence
is achieved by ensuring that triples are passed to and
from the Triple Space by value and in the format re-
quired by the Triple Space.

• Reference autonomy. Provider and reader of data
might know about each other, but ex ante knowledge
for purposes of communication through the Triple
Space is not required. In the simplest case, the read-
ing and writing of data is anonymous.

• Data schema autonomy. TSC provides its own
schema (based on triples according to RDF) and the
data written and retrieved from a Triple Space will
follow that data model. This makes the provider and
reader independent of their internal data schemas.

In addition it is worthwhile to state further positive side-
effects of Triple Space computing:

• A Triple Space provides a trustworthy third-party in-
frastructure for data communication. Its involve-
ment can enable secure data exchange and business
processes negotiation and communication (see also
Section 5 and Fig. 4).

• The Triple Space ensures persistent data storage. This
guarantees that data is also available at a later point

Figure 2. Evolution of communication means
for humans and machines

in time and that the data eventually can be read by all
partners involved in the data exchange.

In other words, Triple Spaces introduce an infrastruc-
ture that enables machines to use an equally powerful com-
munication medium as the WWW provides for humans.
Triple Spaces will supplement Web services, but will not
replace current technological approaches. Just as WWW
technology has advanced message-oriented communication
means (e.g. phone or e-mail) for humans (Fig. 2), Triple
Space computing provides a complementary approach for
machine-to-machine interaction.

It is also clear that this is not the end but just the begin-
ning of a long and promising endeavor for a revolutionary
technology. No application can quickly check the entire Se-
mantic Web whether there is a relevant triple. And vice
versa, no application may want to simply publish a triple
and then wait forever until another application is going to
pick it up. Clever middleware is required that provides a
virtual global Triple Space infrastructure without requesting
each application either to download or to search through the
entire Semantic Web. Moreover, the Triple Space needs to
provide security and trust (see Section 5) without neglecting
scalability. However, none of these requirements are really
new. They apply for any application that works at a global
scale.

In the next section we introduce a possible minimal ar-
chitecture primarily based on existing Web technology. The
architecture aims at providing a solution with as little func-
tionality as necessary to implement the idea in a useful way.

4. A Triple Space architecture

A Triple Space is a virtual space that is identified
by an URI. Triples are written and read with this URI
as triple storage location. In that way a Triple Space
must not be associated with a particular implementation
nor with a particular storage system. This means that
one implementation can host many spaces. For exam-



ple, the two Triple Spacests:deri.org/projectBudgetand
ts:deri.org/phoneNumbersare virtual spaces as they store
and manage ’their’ triples. They might both be hosted by
the same implementationts:deri.org/ or however by differ-
ent servers. From a user perspective the location of a Triple
Space is thus completely irrelevant.

The triples themselves are also denoted by unique iden-
tifiers (tID). There is however no required relationship be-
tween the tID of a triple and the URI of the Triple Space
where it is located. In that way every triple is an individual
object and can be addressed as such.

To write and read triples there exists a basic interface [5]
that we abbreviate as follows:

• write(triples)

• read(query)

The read operation is non-destructive, i.e., a copy of the re-
trieved triples is returned (analogous to Web pages that are
not erased when read). The returned triples are not replicas
and changes in the Triple Space do thus not affect the re-
trieved copies. More details on the precise syntax of read
and write operations are given in Section 4.2 in the part
about the Triple Space Transfer Protocol (TSTP).

In the following section, we take a closer look at the
components of our proposed Triple Space architecture and
their interaction. We distinguish primarily three compo-
nents — clients, servers, and spaces — and one interaction
protocol. In Section 4.2 we discuss how the components
could be implemented and how the TSTP protocol could be
applied through a mapping to HTTP.

4.1. Components and component interaction

There exist three main components that interact in Triple
Space computing (Fig.3):

• TSC client. A writer (publisher) is a TSC client and so
is a reader (consumer). They may be distinct entities
or in some cases the same. Clients are therefore not
distinguishable from the viewpoint of a Triple Space,
as every client can generally read and write triples in-
dependently.

• Triple Space. A Triple Space is a virtual entity im-
plemented by Triple Space servers. The spaces within
a Triple Space server are distinguishable so that write
and read operations can be directed to the right space.
In essence, a mapping from the read and write opera-
tion to the correct storage location has to be performed.

• Triple Space server. A server can host any num-
ber of Triple Spaces. TSC clients communicate with
the Triple Spaces via the server by use of TSTP. TSC

Figure 3. TSC System Architecture

clients do however not know about the Triple Space
servers, but only about the virtual Triple Spaces. Con-
sequently, management operations have to be available
on a Triple Space server to create (and possibly delete
or empty) spaces [5]. The Triple Space server im-
plementation can freely chose the storage facility that
shall be installed. For example, one implementation
might decide to implement storage on the file system
and decides to put every triple in a separate file and
every Triple Space in a different directory. Another
implementation might prefer to have only a single file
per Triple Space. Yet another one might decide to rely
on a professional database system and to implement a
Triple Space as a relational database.

As already mentioned, the TSC clients interact with the
Triple Spaces by use of the Triple Space Transfer Protocol
that provides five fundamental methods. A possible syntax
for the write and read operations is

• tstp-write(tsURI,triple):tID

• tstp-write(tsURI,list<triple>):list<tID>

• tstp-read(tsURI,tID):triple

• tstp-read(tsURI,set<tID>):set<triple>

• tstp-read(tsURI,query):set<triple>

where every ’triple’ is defined to be associated with
an unique identifier (tID), as well as the three val-
ues subject, predicate, and object. In consequence
triples are internally handled as quads of the form
<subject,predicate,object,tID>. The ’tsURI’ is the identi-
fier of the Triple Space in question. Triples are either read
by their identifier (tID) or by a ’query’. The queries are
expressed in a RDF query language (e.g., SPARQL [19] or
N3QL [3]). The syntax element ’tstp’ denotes the protocol
indicator. A possible way to implement the TSTP protocol
is to define it in detail and expect all Web servers and appli-
cation server vendors to adopt it. An easier approach is to



map the protocol onto the HTTP protocol. This approach is
proposed and presented in the next section.

4.2. Implementation

In this section we give an example of a minimal Triple
Space implementation based on available technology and
components.

TSC Client: As shortly indicated in the previous section
it is possible to implement the TSTP on top of the HTTP
protocol. This will allow any client that can invoke HTTP to
also invoke the TSTP protocol. For convenience reasons it
is however advantageous to have an implementation that ex-
poses the specific read and write operation of the TSTP pro-
tocol. Thanks to this approach a software engineer would
not have to worry about the TSTP-to-HTTP mapping and
does not have to ensure a correct HTTP syntax.

Triple Space: The suggested Triple Space implementa-
tion is principally based on a layered architecture (Fig. 3):

• Storage component. The storage component is re-
sponsible for the persistent storage of triples. There are
many alternatives, including file systems, relational or
XML databases, RDF stores, persistent queues, etc.

• Triple Space Operations / Application Layer. Above
the storage component is the core of the Triple Space.
The Triple Space operations component implements
the write and read operations for triples and ensures
the appropriate error handling. Moreover it provides
server management operations like creating, deleting,
or emptying a Triple Space.

• TSTP Communication / Presentation Layer. This
component interlinks the transport layer and the Triple
Space operations layer: read and write operations are
coordinated and while doing so, their consistency en-
sured. In particular this means that the TSTP commu-
nication component parses and serializes HTTP mes-
sages and checks the correctness of those.

• HTTP Interface / Transport Layer. As bottom layer
of the Triple Space architecture, the HTTP communi-
cation component receives and sends the HTTP mes-
sages that wrap the TSTP protocol calls.

Triple Space Transfer Protocol (TSTP): The TSTP
protocol is used by TSC clients in order to write or read
triples. In this paper we suggest to layer the TSTP pro-
tocol on top of HTTP. In practical terms this means that
TSTP directives are translated to HTTP. The translations
are simple and the following mapping rules apply. The read
method is shown for the use with a N3QL query and the
write method for the use with a single triple. N3QL was
chosen as it brings along several advantages compared to

other languages: requests and answers use the same nota-
tion (N3), lighter syntax and thus less representation over-
head as for example RDF/XML.

• tstp-read (ts:deri.org/phone,”<> ql:select...”)
becomes

GET /phone/?q=%3C%3E+ql%3Aselect...
HTTP/1.1

Host: deri.org
Accept: application/rdf+n3

and the response will be

HTTP/1.1 200 OK
Content-type: application/rdf+n3
...
@prefix ex: <http://example.org/> .
ex:prof ex:phone "6452" .

• tstp-write (ts:deri.org/phone,<ex:prof,ex:phone,”6452”>)
becomes

POST /phone HTTP/1.1
Host: deri.org
Content-type: application/rdf+n3
...
@prefix ex: <http://example.org> .
ex:prof ex:phone "6452" .

and the response will be

HTTP/1.1 200 OK
Content-type: application/rdf+n3
...

This translation from TSTP to HTTP is simple and basically
only relying on string rewriting. No additional information
lookup and complicated re-serialization efforts are neces-
sary.

In summary the short presentation of possible implemen-
tation aspects for a TSC architecture has shown that a min-
imal infrastructure based on well-known Web technologies
is possible. We are currently working on a more compre-
hensive prototypical implementation.

5. Security and trust in Triple Spaces

One could argue that persistent, shared information
spaces as an alternative communication paradigm create a
wealth of issues with regard to security and trust. In this
section we show that (1) trust issues in Triple Spaces are
very similar to trust issues in communication based on mes-
sage exchange and (2) argue that they can be handled ef-
fectively by reliably attaching the identity of the origin (the



identity of the ”author”) to a triple rather than by mecha-
nisms evaluating the facts stated by a triple. Additionally,
we demonstrate that the combination of (a) reification and
(b) disallowing change and delete operations on triples is
a promising approach to reduce security and trust issues in
Triple Spaces to a reasoning task.

5.1. From truth to trust in Triple Spaces

It is impossible to provide a mechanism that checks a
triple for correctness of its entailed statement prior to adding
the triple to the space. In other words, it is unavoidable
that there will be triples containing ”false” statements. For
example, anybody who has write access to a Triple Space
could add a triple that says ”The world is flat”. However,
this is not as fundamental a problem as it appears, since
human communication in general, the Web, and message
exchange-based communication have all worked well so far,
notwithstanding the fact that people are making and pub-
lishing (intentionally and unintentionally) false statements.
Surprisingly, we have no problem of retrieving ”true” facts
from the Web despite the fact that it is easy for anybody
around the world to publish false ones (and there are of
course actually lots of false statements on the Web). This is
because we have effective means of reasoning over the trust-
worthiness of a statement, and when doing so, often base
this on the identity of the origin of the statement. When
receiving an order from a customer stating ”We need 500
sheets of office paper”, it is not really important to know if
the customer really needs this amount of paper (i.e., whether
the stated fact is true), but rather whether we know the
sender of the order and whether we trust him. Techniques
like digital signatures based on asymmetric cryptography
cover exactly this aspect: They ensure that the identity of
the originator of a statement is reliably attached to the state-
ment. The same approach can be easily applied to Triple
Spaces: Anybody is allowed to add a statement, as long as
it is made sure that the identity of the origin is kept in a
reliable form, and that nobody can delete or forge existing
triples.

5.2. Trustworthy Triples: Endorsing triples by au-
thorship and reification

In the simplest case, the reading and writing of triples to
the Triple Space is anonymous. While this might be accept-
able for read access, it is problematic for write access, since
this detaches a statement from the source of its origin and
makes it impossible to take the origin into account when as-
sessing the credibility of the statement. In brief, anonymous
write access to Triple Spaces should be allowed only if we
assume that statements from all sources are equally trust-
worthy. This can be the case if a Triple Space is used for

integrating systems within one organizational entity, and if
the only actors writing to the space are computer systems
of the same business entity. In the following section, we
outline a very simple yet efficient approach to use Triple
Spaces by a wider, more heterogeneous group of people.

Our approach ”Trustworthy Triples” consists of two sim-
ple steps:

1. For each write access, we require authentication of the
origin using standard methods (e.g. log-in based on
username and password).

2. We translate each triple<my:sub,my:pred,my:obj>
added during this session into a reified statement that
is augmented (a) by a reference to the URI of its
author and (b) the point in time the statement was
issued. This would result in the following set of triples:

<ID, rdf:type, rdf:Statement >
<ID, rdf:subject, my:sub >
<ID, rdf:predicate, my:pred >
<ID, rdf:object, my:obj >
<ID, ex:addedBy,
http://www.deri.org >
<ID, ex:addedAt,
"2005-06-30-12:04:32" >

ID in here is a unique identifier for this reified statement,
to be created by the Triple Store. If, as proposed in our pro-
totypical implementation, we use quads instead of triples
for the internal representation (i.e., each triple has an iden-
tity and an identifier of its own), then the reification can
be further simplified. ”addedBy” is a predicate pointing to
the URI of the author of the original triple. The mapping
between individuals and these URIs is established during
enrolment of users to the Triple Store, and is to be managed
by the Triple Store. ”addedAt” is a predicate pointing to a
literal value that holds the point in time this statement was
added. This is important for later reasoning about multiple
contradicting statements issued at different points in time
(often the latest statement will be the most trustworthy one
in a chain of conflicting statements about the same property
for the same resource).

This in combination with disallowing delete and change
operations on the Triple Space provides exactly the func-
tionality described in the subsection above: A multiplicity
of users can add triples to the Triple Space, but nobody can
destroy or maliciously modify existing statements.

When accessing the Triple Space, it is just necessary to
restrict the triples to be returned to such added by a source
we trust. Whom we trust can of course be expressed as
a logical expression (”I believe all triples added by either
Peter OR Mary” or ”I believe only triples added by Peter
AND also added by Mary”) or in a full taxonomy, allowing
very flexible access. The Triple Store can either return the



Figure 4. Usage of third-party Triple Space
provider as envisioned by the TSC project

”raw”, reified statements, or transform those that match our
trustworthiness conditions back into the original triples.

6. Related efforts

In the scope of the Triple Space Computing (TSC,
http://tsc.deri.at) project, the authors aim at developing a
middleware supporting coordination and communication
with Triple Spaces (Fig. 4). The project’s main objectives
are thus to extend Tuple Space computing to Triple Spaces
and to make the Triple Space compatible with current Web
service technology. In this way it is envisioned to overcome
the deficiencies discussed in Section 2. The TSC technol-
ogy will be integrated in the Web Service Execution En-
vironment - WSMX (http://www.wsmx.org), which is the
reference implementation of the Web Service Modeling On-
tology framework (http://www.wsmo.org). Hence it is guar-
anteed that the project outcome is aligned with emerging
technologies in the area of Semantic Web services.

Based on the definition of the Triple Space architecture
we want to further improve the implementation. A major
issue is the underlying storage component. ’Yet Another
RDF Store’ (YARS, [13]) is of particular interest, as

• it provides a data store for RDF in Java,

• it uses N3 to encode facts and queries, and

• it already handles the concept of quads.

The interface for interacting with YARS is plain HTTP
(GET, PUT, and DELETE) and is built upon the REST prin-
ciple. YARS supports keyword-based searches and content
negotiation. Therefore the efforts of the YARS research
group are of great interest to our work with TSC.

In addition to the efforts of the TSC project consortium
there exist other initiatives [15][20] that want to bring se-
mantics to Tuple Space computing. [15] introduced, in the
scope of the sTuples project, a Tuple Space supporting se-
mantic data that extends the JavaSpace [11] implementa-
tion. A generic Semantic Tuple containing an object field

of type DAML-OIL Individual extends the JavaSpace En-
try interface. Fundamentally, a non-semantic implementa-
tion of Tuple Spaces was augmented with Semantic Web
technology. There are however various difference to the
TSC approach: sTuples targets in-house infrastructures for
e.g. intelligent conference rooms. Moreover, the underly-
ing data model is a mix of non-semantic and semantic tech-
nology (compared to clean semantic triples/quads in Triple
Spaces). All in all, sTuples point in the same direction, but
do not aim at an Internet-wide system that is fully support-
ing Semantic Web technology in the Web sense. In [20] the
authors introduce RDFSpaces, which continue their previ-
ous work on XMLSpaces. The latter is a Java and .NET im-
plementation of the classical Linda model that was extended
in order to support the management of XML documents as
types of tuples and tuple fields.

7. Conclusion

Ubiquitous computing is expected to be the ”killer ap-
plication” for Tuple Space computing [14] because of its
portability, extensibility, flexibility, and ability to deal with
heterogeneous environments. In fact, we think that space-
based communication is close in spirit to the Web and may
help to bring Web services to their full potential. It requires
a move from a message-oriented communication model to a
Web where information is persistently published and read.
We have reason to believe that Tuple Spaces help to over-
come many problems around heterogeneity in information
distribution and information access. Since applications are
decoupled in reference, time, and space, many issues in pro-
tocol and process alignment are mitigated. However, Tuple
Space do not contribute to the solution of data and infor-
mation heterogeneity. In this paper, we proposed to com-
bine the idea of Tuple Space computing, based on shared
information spaces, with Semantic Web technology. Our
approach is to augment Tuple Space into a semantically-
enriched Triple Spaces holding RDF triples. This Triple
Space adds to the Web a means for the exchange of seman-
tic data between applications and services. Therefore, the
Triple Space may become the Web for machines as the Web
based on HTML became the World Wide Web for humans.

Acknowledgment

The work is funded by the European Commission un-
der the projects DIP, Knowledge Web, InfraWebs, SEKT,
SWWS, ASG and Esperonto; by Science Foundation Ire-
land under the DERI-Lion project; by the Austrian Federal
Ministry for Transport, Innovation, and Technology under
the FIT-IT projects RW2 and TSC; and by NCR Korea.



References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web
Services, Springer, 2003.

[2] T. Berners-Lee, J. Hendler and O. Lassila, ”The Se-
mantic Web”,The Scientific American, May 2001.

[3] T. Berners-Lee, ”N3QL - RDF Data Query Lan-
guage”, July 2004,
http://www.w3.org/DesignIssues/N3QL.html

[4] D. Brickley and R.V. Guha (eds.), ”RDF Vocabulary
Description Language 1.0: RDF Schema”, W3C Rec-
ommendation, Feb 2004,
http://www.w3c.org/TR/rdf-schema/

[5] Ch. Bussler, ”A Minimal Triple Space Computing Ar-
chitecture”, 2nd WSMO Implementation Workshop,
Innsbruck, Austria, June 2005.

[6] E. Christensen, F. Curbera, G. Meredith, S.
Weerawarana, ”Web Services Description Language
(WSDL) 1.1”, W3C Note 15 March 2001,
http://www.w3.org/TR/wsdl

[7] D. Fensel and C. Bussler, ”The Web Service Modeling
Framework WSMF”,Electronic Commerce Research
and Applications, 1(2), 2002.

[8] D. Fensel, ”Triple-space computing: Semantic Web
Services based on persistent publication of informa-
tion”, Proc. of IFIP Int’l Conf. on Intelligence in Com-
munication Systems 2004, Bangkok, Thailand, Nov
2004:43-53.

[9] R.T. Fielding, ”Architectural styles and the design of
network-based software architectures”, PhD Thesis,
University of California, Irvine, 2000.

[10] R.T. Fielding and R. N. Taylor, ”Principled Design
of the Modern Web Architecture”, ACM Transactions
on Internet Technology (TOIT), 2(2), May 2002:115-
150.

[11] E. Freeman, S. Hupfer and K. Arnold, ”JavaSpaces
Principles, Patterns and Practice”,The Jini Technology
Series, Addison-Wesley, Reading MA, USA.

[12] D. Gelernter, ”Generative Communication in Linda”,
ACM Transactions on Prog. Lang. and Systems,
7(1):80-112.

[13] A. Harth and St. Decker, ”Yet Another RDF Store:
Perfect Index Structures for Storing Semantic Web
Data With Contexts”, June 2004,
http://sw.deri.org/2004/06/yars/doc/summary

[14] B. Johanson and A. Fox, ”Extending Tuplespaces for
Coordination in Interactive Workspaces”,Journal of
Systems and Software, 69(3), Jan 2004:243-266.

[15] D. Khushraj, O. Lassila and T. Finin, ”sTuples: Se-
mantic Tuple Spaces”, 1st Ann. Int’l Conf. on Mobile
and Ubiquitous Systems: Networking and Services,
Boston, USA, Aug 2004:268-277.

[16] G. Klyne and J.J. Carroll (eds.), ”Resource Descrip-
tion Framework (RDF): Concepts and Abstract Syn-
tax”, W3C Recommendation, Feb 2004,
http://www.w3.org/TR/rdf-concepts/

[17] D.L. McGuinness and F. van Harmelen (eds.), ”OWL
Web Ontology Language: Overview”, W3C Recom-
mendation, Feb 2004,
http://www.w3c.org/TR/owl-features/

[18] N. Mitra (ed.), ”SOAP Version 1.2 Part 0”,
Primer, W3C Recommendation, 24 June 2003,
http://www.w3.org/TR/soap12-part0/

[19] E. Purd’hommeaux and A. Seaborne (eds.), ”SPARQL
Query Language for RDF”, W3C Working Draft, Apr
2005,
http://www.w3.org/TR/rdf-sparql-query/

[20] R. Tolksdorf, L. Nixon, E. Paslaru Bontas, D.M.
Nguyen and F. Liebsch, ”Enabling real world Seman-
tic Web applications through a coordination middle-
ware”, 2nd European Semantic Web Conf., Heraklion,
Crete, June 2005:679-693.

[21] M. zur Muehlen, J. V. Nickerson and K. D. Swenson,
”Developing Web Services Choreography Standards -
The Case of REST vs. SOAP”,Decision Support Sys-
tems, 37, 2004.


