Transactional BPEL Processes with AO4BPEL Aspects

Anis Charfi
SAP Research CEC Darmstadt
Darmstadt, Germany

Abstract

Recently, OASIS approved two standards respectively
for Web Service composition and for Web Service transac-
tions. Nevertheless, it is still unclear how WS-BPEL and
the WS-TX family of specifications interoperate, i.e., how to
use atomic transactions and business activities in the con-
text of BPEL processes. In this paper, we present several
transactional requirements in BPEL processes and argue
that BPEL’s compensation mechanism provides only limited
support for a few of these requirements, e.g., it cannot cope
with atomic transactions with the ACID properties. To sup-
port transactional BPEL processes, we use the AO4BPEL
process container framework. In this framework, the trans-
action requirements of the process activities are specified
declaratively in a deployment descriptor and an aspect-
based container is generated automatically to integrate the
process execution with the transaction middleware, which
is provided as a transaction Web Service based on Apache
Kandula.

1 Introduction

The current Web Service stack [24] addresses several ad-
vanced issues such as composition, security, reliable mes-
saging, transactions, etc. In this paper, we focus on two of
these issues namely composition and transactions.

Recently, OASIS approved WS-BPEL 2.0 [2] as a stan-
dard for Web Service composition. In this language, a com-
posite Web Service is implemented by means of a work-
flow process that consists of activities such as the messag-
ing activities invoke and reply, which are used for interact-
ing with the other Web Services and the structured activities
sequence and scope, which act as containers for their nested
activities.

BPEL provides some support for transactions through
its compensation mechanism, which allows undoing the ef-
fects of completed activities. However, the compensation
mechanism does not support many important transactional
requirements. For instance, it does not support distributed

Benjamin Schmeling
UBL Informationssysteme
Neu-Isenburg, Germany

Mira Mezini
Software Technology Group
TU Darmstadt, Germany

transactions where the process and the partner Web Services
have to agree jointly on the outcome of the transaction (as
in the 2-Phase-Commit protocol for example). That is, there
is no support for external coordination [23] in BPEL. More-
over, the compensation mechanism does not support strict
atomic transactions with the traditional ACID properties.

On the other hand, OASIS has also recently approved
a Web Services transaction standard that consists of three
specifications: WS-Coordination [11], which provides a
generic framework for coordinating distributed activities
and two other specifications that are built on top of it:
WS-AtomicTransaction (WS-AT for short) [20] supports
short-lived transactions with the traditional ACID proper-
ties and WS-BusinessActivity (WS-BA for short) [21] sup-
ports long-running compensation-based transactions.

In this paper, we discuss some transactional require-
ments in BPEL, which are necessary in many business sce-
narios. To address these requirements and enable transac-
tional BPEL-based production workflows [19], we integrate
BPEL with WS-AT and WS-BA by means of AO4BPEL
aspects. More precisely, our approach is based on the
AO4BPEL process container framework [7], which uses a
declarative deployment descriptor for specifying the non-
functional requirements and an aspect-based process con-
tainer for integrating the process execution with middleware
Web Services that provide the capabilities of WS-* specifi-
cations. We have already used that framework to support
security [5] and reliable messaging [8] in BPEL processes.
In this paper, we use it to integrate the process execution
by the BPEL engine with a transaction Web Service that is
based on Apache Kandula [1], an open source implementa-
tion of WS-AT and WS-BA.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a short overview of the composition and trans-
action specifications. Section 3 discusses some transac-
tional requirements in BPEL. Section 4 presents the con-
cepts of our approach and Section 5 explains how it is
implemented using AO4BPEL aspects and the transaction
Web Service. Section 6 reports on related work and Section
7 concludes the paper.

2 Background

This section introduces the WS-* specifications for
transactions and composition that are used in this work.

2.1 Web Service Coordination

WS-Coordination [11] provides a generic framework for
coordinating distributed activities. WS-Coordination is ex-
tensible, i.e., new coordination protocols (e.g., for short-
running atomic transactions) can be plugged into it. This
specification defines three services: an activation service, a
registration service, and a coordination service.

The activation service is used to create an activity. When
it receives an activity creation request, it creates a coordi-
nation context that contains a context identifier, a coordi-
nation protocol type, and the address of a registration ser-
vice. The coordination context can be transported with the
application messages to the participants, which will conse-
quently register for a certain coordination protocol (e.g., for
the completion protocol of WS-AT) using the registration
service. The registration service responds to the registra-
tion request with the address of the coordination service,
which is responsible for running one or more protocols (re-
ferred to as coordination type) between the registered par-
ties. WS-AtomicTransaction and WS-BusinessActivity are
two coordination types that leverage WS-Coordination.

2.2 Atomic transactions

The atomic transaction coordination type comprises
three protocols for supporting atomic distributed transac-
tions with the traditional ACID properties: a completion
protocol to initiate the commitment of a transaction and two
2-Phase-Commit protocols (volatile and durable) to decide
whether the transaction should be committed or aborted.

The initiator of the completion protocol gets informed
about the result of the commitment and can decide whether
the outcome of the transaction should be made durable
(committed) or must be rolled back. During the com-
mitment the coordinator controls two possible 2PC (Two-
Phase Commit) phases. The first phase Volatile 2PC is for
managing volatile resources like a cache and the second
phase Durable 2PC is for managing durable resources like
a database. The participants of a transaction may choose to
register for one of those protocols.

The 2PC protocol is blocking, i.e., after the first phase of
the protocol, all participant resources remain blocked un-
til the commit message is generated in the second phase.
This is necessary to preserve isolation, i.e., resources are
locked to disallow other concurrent transactions from ac-
cessing them before the locking transaction completes. Un-
less strict isolation is required, such an approach is unac-

ceptable in the distributed and heterogeneous Web Service
context because it reduces concurrency. Moreover, in cross-
organizational distributed contexts, locking resources for
a long time is not feasible because the resources are con-
trolled by different parties.

2.3 Business activities

The business activity coordination type supports long-
running distributed transactions. Unlike atomic transac-
tions, business activities do not lock resources until the
completion of the transaction. These transactions are char-
acterized by relaxed isolation, i.e., intermediary results can
be seen by other transactions. If a business activity has to be
rolled back, the already completed parts of the transaction
must be reversed using appropriate compensation logic.

WS-BusinessActivity defines two coordination types:
AtomicOutcome, in which the transaction coordinator di-
rects all participants uniformly to close or compensate their
work, and MixedOutcome, in which the coordinator can
direct some participants to close and others to compen-
sate. Moreover, WS-BA defines two coordination pro-
tocols. In the BusinessAgreementWithParticipantComple-
tion protocol, a participant informs the coordinator when
it completes his/her part of the transaction. Then, the co-
ordinator tells the participant to close or compensate. In
BusinessAgreementWithCoordinationCompletion, the par-
ticipant waits until the coordinator tells it to complete.

2.4 Business Process Execution Language

The work described in this paper uses BPEL 1.1 [10],
which is similar to a large extent to the WS-BPEL 2.0 stan-
dard [2]. The main concepts in BPEL are the partners,
which represent the parties that the process interacts with,
the variables, which are containers for the data that is ex-
changed between the process and its partners, and the activ-
ities, which are the units of the work in the process.

BPEL distinguishes atomic activities such as invoke,
which is used for calling a partner Web Service, and struc-
tured activities, which contain other activities and control
the order of their execution, e.g. sequence. A scope is a
special structured activity, which provides context for fault
handling and compensation handling.

Compensation in BPEL works as follows: the activ-
ity that may need to be compensated is nested in a scope
(named s for instance) and a compensation handler, which
defines some logic to undo the effects of that activity is at-
tached to that scope. This handler can be called implicitly
by the default fault handler of the parent scope of s when a
fault occurs or explicitly by using the compensate activity
in a fault handler or in another compensation handler.

3 Transactions in BPEL Processes

In this section, we present some transactional require-
ments in BPEL processes and discuss the limitations of
BPEL’s compensation mechanism with respect to them.

3.1 Transactional requirements in BPEL

Web Service based business processes and their partners
build distributed applications that have some business state,
which changes by means of operation calls (via messaging
activities in BPEL). A whole set of operation calls may need
to be executed completely and successfully to move the sys-
tem from one state into another valid state.

<process name="BankTransfer”>
<partners>
<partner name="customer” partnerLinkType="customerSLT”/>
<partner name=""subsidary” partnerLinkType="subSLT"/>
<partner name="tobank” partnerLinkType="tobankSLT”/>
</partners >
< variables >

</variables >
<sequence name="MainSequence” >
<receive name="receiveTransfer” partner ="customer”
portType="transferServicePT” operation =" transfer
variable =" clientrequest ” createlnstance = "yes”/>
<assign> ... </assign>
<scope name="debit—credit—scope” >
<sequence name="debit—credit”>
<invoke name="invokeDebit” partner="subsidary”
portType="subsidaryBankService” operation ="debit”
inputVariable ="debitln” outputVariable ="debitOut”/>
<invoke name="invokeCredit” partner="tobank”
portType="toBankService” operation ="credit”
inputVariable =”creditln” outputVariable ="creditOut”/>
</sequence>
</scope>
<assign > ... </assign>
<reply partner ="customer” portType=""transferServicePT”
operation =" transfer” variable =" clientresponse />
</sequence>
</process>

»

Listing 1. The Bank Transfer Process

For example, consider the bank transfer process shown in
Listing 1. This process transfers money from one account
to another using two invoke activities that call the Web Ser-
vices of two banks: one calls the operation debit on the Web
Service of the bank that hosts the account to be charged and
one calls the operation credit on the Web Service of the bank
that hosts the account to be credited. If only one of the op-
erations fails, the resulting state would be inconsistent. To
avoid such inconsistency, transactions providing all or noth-
ing semantics are needed, i.e., transaction support in BPEL
processes is necessary.

In the following, we focus on the relationship of trans-
actions to BPEL constructs such as activities and variables.

Thereby, we focus only on the cases where the process is
the initiator of the transaction, i.e., the party that controls
the transaction and the partners are participants (i.e., exe-
cute some operation in the context of a transaction that is
controlled by the process).

3.1.1 T1: Transactional activities

One should be able to define the behavior of each activity
in the BPEL process with respect to transactions. As struc-
tured activities provide a construct to group a set of child ac-
tivities, it is quite natural to use them as transaction bound-
aries. Hence, we derive requirement 7/: One should be able
to define the transactional behavior of structured activities.
Moreover, one should also specify for each transactional
activity whether the respective transaction is a short-lived
atomic transaction or a long-running compensation-based
transaction.

Making a structured activity transactional means that all
its child activities must participate in the same transaction.
For illustration, consider again the scope activity debit-
credit-scope in Listing 1. This scope should be defined as a
transaction. As a result, the nested invoke activities become
transactional and should then use the transaction protocol
defined for the parent scope activity. For instance, if we
declare the scope debit-credit-scope as transactional with
ACID semantics then the two nested invoke activities will
have to use the Durable2PC protocol defined in WS-AT.

For messaging activities, similar transaction concepts to
container-managed transactions in EJB [12] or propagation
types in the Spring framework [17] can be used.

3.1.2 T2: Supporting transaction rollback

When a fault occurs during the execution of a transactional
activity (e.g., because of a process fault or because a part-
ner is not available), the transaction must be rolled back
(requirement 72). That is, the BPEL process should imme-
diately send a rollback/compensate message to the transac-
tion coordinator. Related to T2 there are the requirements
T3 and T4 below.

3.1.3 T3: Restoring variable values

The data manipulation activity assign and the messaging ac-
tivities receive, reply, and invoke can change the values of
certain process variables. When these activities are part of
a transaction that should be rolled back the original variable
values before the transaction start must be restored (require-
ment 73).

3.1.4 T4: Isolating variable values

In scenarios where isolation is required restoring variables
is not enough. One must also hinder activities that are not
part of the atomic transaction from accessing variables that
are changed during that transaction (requirement 74). If iso-
lation is not preserved, activities that execute concurrently
to the transactional activity may work with the outcome of
the transaction that will not be committed.

Business activities are characterized by relaxed isolation,
i.e., the data that is modified by the transaction is made
durable without waiting for a commitment phase. Changes
are written and made visible to the other parties instantly
after executing the respective operation. If the effect of the
operation should be canceled, a particular compensation op-
eration has to be called. For example, to compensate the
debit operation, one could call the credit operation, which
increases the account with the same amount of money.

It is important to note that relaxed isolation is not feasi-
ble in all scenarios. For example, if a customer transfers 500
Euros from account A to account B by using a long-running
transaction with relaxed isolation for the debit operation to
A and the credit operation to B, then there would not be a
2PC protocol with a prepare phase, i.e., the operations debit
and credit are executed immediately. Consequently, when
another client accesses account B and debits 300 Euros, he
sees an account balance of 200 Euros. If now the long run-
ning transaction fails and all operations are compensated,
credit(500) to A and debit(500) to B are called to reverse the
actions taken during the transaction. The debit(500) opera-
tion will fail due to the overdrawn account that cannot have
a negative balance. This results in an inconsistent state, i.e.,
for the bank transfer scenario strict isolation is required.

Several levels of isolation were defined for SQL
databases such as weak read uncommitted, read commit-
ted, repeatable read, and serializable. The latter means that
transactions may only be processed one after another which
inhibits concurrency. It could make sense to provide these
levels for variable isolation as well as for the partners, but
we think that this is too complex for the variables.

Regarding the isolation level of the whole transaction the
process partners are required to provide a certain level of
isolation, but one cannot assume that these external part-
ners do support the required level. One does not even know
if the partner implementation uses a database at all. Conse-
quently, a general-purpose solution that provides a specific
isolation level for BPEL transactions does not make sense.
This is also the position of WS-AT, which leaves out isola-
tion issues because it considers them as application-specific
details. To avoid typical problems in transaction process-
ing such as lost updates, dirty reads, and phantom reads, we
propose providing the isolation level serializable.

3.2 Limitations of BPEL’s compensation
mechanism

BPEL’s compensation mechanism does not support
many of the transaction requirements that were discussed
in the previous section. In the following, we discuss three
limitations of that mechanism, which are related to the re-
quirements T1 to T4.

First, the compensation mechanism does not support
atomic transactions with strict ACID properties because it
lacks support for isolation. Consequently, the bank transfer
transaction cannot be implemented using BPEL compensa-
tion handlers, i.e., additional means are needed.

Second, the process is both the initiator and the coordi-
nator of the transaction in BPEL. It defines the transaction
boundaries and is also responsible for managing the trans-
action (i.e., it listens to faults during the process execution
and in the partner calls, it starts the compensation logic if
a fault occurs, etc.). In addition, the coordination model
of BPEL is local, i.e., the process decides alone on whether
compensation is needed. That is, if the process notices some
error e.g., during a call to a partner operation it initiates
compensation without interacting with the partner to check
whether the compensation is really needed. As a result, a
fault may occur at the partner without being noticed by the
process and consequently no compensation will be done,
which leads to an inconsistent state.

Third, in the programming model of BPEL, the process
programmer has to write manually a lot of code for handling
transactions, e.g., for defining scopes and nesting them cor-
rectly, defining compensation handlers, etc. In addition to
being a tedious task, such an approach leads to mixing the
code that belongs to the process business logic with the
transaction code. Moreover, BPEL expects programmers
to have knowledge not only on transactions in the processes
that they define but also on reversing the operations of part-
ner Web Services. However, it is more logical to suppose
that the implementor of the partner Web service knows how
to compensate the Web Service operations as assumed in
WS-BA.

4 Supporting Transactions in BPEL

This section presents some ideas on how to support the
transactional requirements that we presented in the last sec-
tion. Then, it discusses our solution concept using aspects.

4.1 Addressing the requirements

We integrate the process execution with a middleware
that provides the capabilities of WS-AT and WS-BA.

4.1.1 T1: Transactional activities

Figure 1 shows a process with an atomic scope activity that
contains a sequence with two invoke activities, interacting
with two different partners. To support the execution of that
activity as an atomic transaction the BPEL process execu-
tion and the transaction middleware are integrated as fol-
lows: when the scope is started, the process tells the mid-
dleware to create a new activity using the activation service
of the coordination framework (step 1). The activation ser-
vice returns an atomic transaction context, which will be
sent with the application messages of the nested invoke ac-
tivities (step 2). This transaction context tells the partners
(that must support WS-AT) to register at the registration
service for the 2PC protocol (step 3). After the scope ac-
tivity completes, the BPEL process registers for the com-
pletion protocol at the registration service (step 4), initiates
the completion protocol and tells the coordinator to commit
(step 5). The latter runs the 2PC protocol with the partners
A and B (step 6) and sends the result to the BPEL process
using the completion protocol. Depending on that, the pro-
cess tells the coordinator whether the transaction should be
committed or rolled back.

This means that the BPEL process or the BPEL engine
must be able to perform the following actions: creating an
activity, registering for completion, adding a coordination
context to application messages, and supporting the com-
pletion protocol. Similar actions are needed for supporting
business activities.

Process
1. Create <scope> 2. Send application
Atomic Activity <sequence> messages with context
<invoke/>
<invoke/>
</sequence>
</scope>
P 5. Completion
Protocol
R,
4. Register for
Completion
¥
[Activation] [Registration] [Coordinator]
tt
3. Register 6.2PC l {
fur 2PC Protocol l

Partner B ’k »I Partner A ‘
t

Figure 1. An atomic scope activity.

4.1.2 T2: Transaction rollback

If a transactional activity fails then the transaction coordi-
nator should be told to rollback/compensate because the ac-
tivity will not complete. To support rollback, we must add

a fault handler to the BPEL process that calls the appropri-
ate rollback/compensate operation of the transaction mid-
dleware. Adding these fault handlers and the activities for
calling the rollback operations leads to mixing the transac-
tion code with the business logic code.

4.1.3 T3: Restoring variable values

In order to restore variables we need to save the variable val-
ues before the execution of a transactional activity. There-
fore, we could add new process variables to save the origi-
nal variable values. If the atomic activity fails, the original
variable values must be restored using these new variables.
This resetting can be done using a compensation handler or
a fault handler.

An alternative to this is to call a persistence service to
save the original values. The service can also be used to
retrieve these values again in the compensation handler or
the fault handler. The advantage of using a persistence ser-
vice is that most of the complexity of storing and restoring
variable data will be hidden in the persistence service. That
is we do not need to add new variables and assign activi-
ties to the process, which is quite tedious and leads to very
complex process code that is bloated with transaction code.

4.1.4 T4: Isolating variable values

Activities that access variables that are written within an
atomic transaction must wait until the transactional activity
completes. That is, there is a dependency between the trans-
actional activity and the other activities, which read the vari-
ables that are modified within the transaction. This depen-
dency can be enforced by adding a link between both activi-
ties, which would result in mixing the transaction code with
the code implementing the process business logic. An al-
ternative solution to ensure the required isolation is the use
of serializable scopes [10], i.e., scopes that provide con-
currency control in governing access to shared variables.
A serializable scope can be marked as such by setting its
attribute variableAccessSerializable to yes. However, this
alternative cannot be used in all cases because serializable
scopes must not be nested and they must be leaf scopes.

4.2 Solution concept with aspects

It was clear from the ideas outlined in the paragraph
4.1.1 that the use of an additional technology is neces-
sary for integrating BPEL with WS-AT and WS-BA. At
the right points in the process execution, this integration
technology should intervene to call the transaction middle-
ware. In our work, AO4BPEL aspects play that integration
role. Through their unique support for cross-layer pointcuts
[3] these aspects are able to integrate process-level speci-
fications such as BPEL with messaging-level specifications

such as WS-AT. That is, AO4BPEL aspects allow to express
further transactional aspects that are not possible without
using them (i.e., only with using BPEL).

In addition to integrating the process execution with the
transaction middleware, aspects allow to separte the trans-
action code from the process code (i.e., extracting the trans-
action code from the BPEL processes). In fact, invasive
changes are required to support T2, T3, and T4, e.g., to add
a fault handler, add variables and activities to restore origi-
nal variable values, or enforce isolation. These changes lead
to mixed and tangled process code. By using AO4BPEL
aspects, we ensure that these changes are done in a mod-
ular and non-invasive way without modifying the process.
Through the reflective capabilities of AO4BPEL it is even
possible to modify the attribute serializable of a scope using
an aspect (to support T4). Adding fault handlers (to support
T2) as well as variable and activities (to support T3) can be
done using around advice.

S Implementation

This section shows how our solution is implemented us-
ing AO4BPEL aspects and a transaction Web Service.

5.1 The AO4BPEL-based process con-
tainer framework

AO4BPEL [6, 3] is an aspect-oriented extension to
BPEL, which supports the modularization of crosscutting
concerns and the dynamic adaptation of BPEL processes.
An aspect is an XML document that defines a set pointcuts
and advice. A pointcut is an XPath expression for select-
ing the joint points (i.e., points in the process execution)
where the logic of the crosscutting concern should be exe-
cuted. AO4BPEL supports two types of join points: activ-
ity join points select activities and infernal join points se-
lect internal points during the execution of activities (e.g.,
the point where the outgoing message of an invoke activity
is about to be sent out). A pointcut is associated with an
advice, which is a BPEL activity that defines some cross-
cutting logic. The advice type (e.g., before, around, before
soapmessageout) defines the order in which the advice is
executed w.r.t. the join points that are selected by the point-
cut. The advice language of AO4BPEL provides constructs
to access the join point context such as the name of the join
point activity, its input and/or output variable, the respective
SOAP messages, etc. In addition to pointcuts and advice, an
AO4BPEL aspect may also declare partners, variables, fault
handlers, and compensation handlers. There is one imple-
mentation of AO4BPEL, which is based on IBM BPWS4]J.

In [7], we presented an aspect-oriented and light-weight
process container framework to support non-functional re-
quirements in BPEL processes. This framework introduces

a declarative XML-based deployment descriptor to specify
the requirements of the activities and a process container,
which intercepts the process execution and calls middleware
Web Services to enforce these requirements. The process
container is implemented by means of AO4BPEL [6] as-
pects that are generated from the deployment descriptor.

The users of the process container framework need only
to know about the deployment descriptor, where they de-
fine the transaction requirements of the activities as well as
other non-functional requirements such as security [5] and
reliable messaging [8]. Then, with appropriate XSLT trans-
formations, a set of AO4BPEL aspects is generated auto-
matically. These aspects call WS-* based middleware Web
Services to enforce the non-functional requirements.

The deployment descriptor is an XML document that
consists mainly of selectors and requirements. With a
selector, the user defines an XPath expression to choose
one or more activities for which a certain requirement
will be defined. For instance, with the expression //in-
voke[@name="invokeDebit’], the user can select any in-
voke activity that is called invokeDebit. With the require-
ment element, the user can define a non-functional require-
ment and associate it to the selected activities.

<bpel—dd>
< selectors >
<selector id="0" name="s0” type="compoundActivity”>
/ process // scope[@name="debit—credit—scope”]
</selector >
</ selectors >
<services>
<service name="transaction”>
<requirements>
<requirement class="atomic” name="req0”
selectorid =”0” type="completion”/>
</requirements >
</service>
</services >
</bpel—dd>

Listing 2. The deployment descriptor for the
bank transfer process

Listing 2 shows the deployment descriptor for making
the scope activity in the bank transfer process transactional
with ACID properties. This requirement will be enforced
using the transaction Web Service. The type of this trans-
action requirement is defined uniquely by combining the
values of the attributes class (here atomic) and zype (here
completion), which means that for this activity an atomic
transaction should be initiated with the completion proto-
col defined by WS-AT. The selector is associated with the
requirement using the attribute selectorid. We have also de-
veloped a GUI tool that allows to define the requirements
graphically and generate the deployment descriptor.

We have implemented XSLT transformations that take
the deployment descriptor as input and generate AO4BPEL
aspects, which intercept the process execution and call ap-
propriate operations on the transaction Web Service to en-
force the transactional requirements of the activities. For
the requirement type defined in Listing 2, four aspects will
be generated respectively for starting the transaction when
the scope activity is executed, making the nested messag-
ing activities participate in the transaction, committing the
transaction after the completion of the scope activity, and
rolling back the transaction in case of faults.

Figure 2 shows the interaction of the process container
with the transaction Web Service to execute the debit-credit-
scope as an atomic transaction. Before the scope starts, a
new transaction is created by a transaction creation aspect
that calls the operation begin on the transaction Web Ser-
vice, which returns an identifier for this transaction. This
identifier makes it possible to refer to the transaction later.
Each nested invoke will be intercepted after message cre-
ation by the participation aspect, which sends its message
to the transaction Web Service to enhance it with the trans-
action context. The enhanced message overrides the origi-
nal one and the execution of the invoke activity resumes so
that the enhanced message is sent to the partner. When the
scope completes successfully, the commit aspect calls the
operation commit on the transaction Web Service.

5.2 Examples of transaction aspects

Currently, we have XSLT templates supporting the gen-
eration of the four aspect types mentioned in the previous
subsection. These aspect types allow supporting T1 and T2.
Aspects belonging to the aspect types for creating and com-
mitting a transaction are relatively simple as they just con-
tain a call to an operation on the transaction Web Service.
In the following, we discuss the other two aspect types.

Listing 3 shows an aspect for participating in a transac-
tion. Like all other transaction aspects, this participation as-
pect declares the transaction Web Service as partner. It also
declares two variables respectively for holding the input and
output data for calling the operation participate. The point-
cut of this aspect selects all invoke activities that are nested
in the scope named debit-credit-scope. If one of those ac-
tivities is executed, the pointcut matches and the advice is
executed in the order defined by the advice type.

The type of this advice is set to before soapmessageout
meaning that the activity selected by the pointcut is inter-
cepted after the SOAP request message is generated but be-
fore sending it to the partner. The advice of this aspect de-
fines a sequence activity with one nested invoke that calls
the operation participate and an assign activity that reads
the SOAP message of the selected join point activity and
writes it to the input variable of the invoke activity. The

<aspect name="atomicCompletionParticipate” >
<partnerLinks>
<partnerLink name="transService” partnerLinkType="txPLT"/>
</partnerLinks >
<variables>
<variable name="inMessage” messageType="rollbackRequest”/>
<variable name="outMessage” messageType="rollbackResponse”/
</variables >
<pointcut contextCollection ="true” name="s0">
/l scope[@name="debit—credit—scope’]//invoke
</pointcut >
<advice type="before soapmessageout”>
<sequence>
<assign>
<copy>
<from part="message” variable ="soapmessage”/>
<to part="soap” variable ="inMessage”/>
</copy>
<copy>
<from part="scopeid” variable ="ThisJPActivity”/>
<to part="id” variable ="inMessage”/>
<[copy>
</assign>
<invoke inputVariable ="inputMessage”
name=" TransactionService_participate ”
operation ="participate” outputVariable ="outMessage”
partner =" transService ” portType="txPT"/>
<assign>
<copy>
<from part=" participateReturn variable ="outMessage”/>
<to part="newmessage” variable ="newsoapmessage”/>
</copy>
</assign>
</sequence>
</advice>
</aspect>

Listing 3. Aspect for participating in an
atomic transaction

variable inputMessage has a part called scopeid that is used
to identify the transaction. After calling the transaction Web
Service, the operation participate returns the enhanced mes-
sage with a transaction header. This message overrides the
original SOAP message of the intercepted join point activ-
ity by using the special AO4BPEL variable newsoapmes-
sage [6]. When an advice writes a message to this special
variable, this message will be injected into the current join
point activity.

Listing 4 shows a transaction rollback aspect. The point-
cut of this aspect selects the transactional scope activity
and puts another scope activity with a compensation han-
dler around it (using the advice type around). The special
activity proceed is a place holder for the activity that is se-
lected by the pointcut. If a fault occurs during the execution
of that activity the compensation handler will be executed
and consequently the operation rollback will be called on
the transaction Web Service.

Middleware Services

TXWS

begin

participate
commit

Process Container Aspects
s N [

Begin
<process> o Aspect
I'

[<scope> P Participate
<sequence> "] Aspect
<invoke operation="debit"/> [T }1 B
[<invoke operation="credit"/>}f P Commit
</sequence> L Aspect
y

< > 4
I /scope l Other Aspect
Types

& AN

_J

—* SOAP + context l

[Partner 1] [Partner 2J

Figure 2. Interactions of the process container and the transaction Web Service

<aspect name=""transaction_rollback >

1
2 e
3| <pointcutandadvice >

4| <pointcut name="transactivity ”>

5| /process // scope[@name="debit—credit—scope”]
6| </pointcut>

7| <advice type="around”>

8 <scope>

9| <compensationHandler>

10| <sequence>

11 <assign>

12 <copy>

13 <from part="scopeid” variable =" ThisJPActivity />

14 <to part="id” variable ="inMessage”/>

15 <[copy>

16 <assign>

17 <invoke name=""trans_rollback™ operation=""rollback”

18 inputVariable ="inMessage” outputVariable ="outMessage”
19 partner =" transactionService ” portType="txPT"/>

20| </sequence>

21| </compensationHandler>
2| <sequence>

23 <proceed/>

24| </sequence>

25| </scope>

26| </advice>

27| </pointcutandadvice >

28| </aspect>

Listing 4. Transaction rollback aspect

5.3 The transaction Web Service

We have implemented a transaction Web Service based
on Apache Kandula, which is an open-source implementa-
tion of WS-AT and WS-BA.

5.3.1 The atomic transaction port type

For supporting transactions as defined in WS-AT, the trans-
action service offers the following operations, which are de-
fined in the atomic transaction port type:

e begin (String id)
e participate(String id, String soap)
e commit (String id)

e rollback (String id)

e registerContext (String id,
context)

String

The creation of the transaction is done using the opera-
tion begin. As this operation must be called from the pro-
cess container before an atomic activity is executed a before
advice is used. Thereupon, the transaction service creates a
new activity.

After executing the method begin the transaction service
maintains the created context in order to add it to the appli-
cation messages when the nested messaging activities are
executed. In the bank transfer process these are the two
invoke. Since we have already explained the participation
aspect it is now clear how the enhancement of messaging
activities with the transaction context is done. By send-
ing the coordination context with the application message,
the target Web Services register for the 2PC protocol at the
transaction coordinator.

The initiator of the transaction (in this case the trans-
action Web Service as representative of the BPEL process)
uses the completion protocol to control the coordination ser-
vice. Therefore, it must register for completion at the reg-
istration service. To tell the coordinator that it may start

with the 2PC protocol, the transaction Web Service sends a
completion commit message to it. This is initiated by a con-
tainer aspect that calls the operation commit on the transac-
tion Web Service after the completion of the atomic activity
(as the advice type is after).

The explanation above shows that the transaction Web
Service supports transactional activities (requirement T1)
and transaction rollback (requirement T2). Restoring vari-
ables values (requirement T3) can be done by using aspects
that interact with a persistence Web Service to save the orig-
inal values of variables at transaction begin and restore them
in case of a fault (in a similar manner to the rollback as-
pect). Requirement T4 can be supported when the transac-
tion boundary is a scope by using an aspect that sets the
attribute serializable to the value yes using the reflective
variable ThisJPActivity and its part variableAccessSerializ-
able. If this attribute cannot be used e.g., because a scope
is nested or it is not a leaf scope, appropriate aspects could
be deployed to hinder concurrent transactions from reading
the data that is modified within another transaction.

5.3.2 The long-running transaction port type

The long running transactions port type of the transaction
Web Service provides operations that support the execution
of BPEL activities as business activities.

e boolean begin(String id, boolean
atomicOutcome)

e void beginNested (String id,
String parentContext, boolean
atomicOutcome)

e String participate(String id, String
soap)

e boolean commit (String id)
e void compensate (String id)

The operation begin is used to create a new business ac-
tivity. The parameter atomic outcome can be set to true if
strict atomicity is required or to false if a mixed outcome
is required. The same applies to the operation beginNested,
which takes an additional parameter parentContext that is a
reference to the parent transaction, in which a new atomic
transaction or business activity will be nested.

The operation participate is similar to that of the atomic
transaction port type, as it enhances the message of a mes-
saging activity with a business activity context that was
previously created either by calling begin or beginNested.
The operation commit is clear and the operation compen-
sate starts the compensation mechanism of WS-BA.

The long running transactions port type is not imple-
mented because Kandula does not yet support WS-BA.

6 Related Work

There are many works on transactional workflows based
on advanced transaction models such as [22, 15, 18]. These
works incorporate transaction semantics such as atomicity
and isolation to insure a reliable workflow execution. For
example, Leymann [18] introduced the concept of compen-
sation spheres in the IBM FlowMark workflow system to
allow the compensation of actvities. However, we observe
that there are a few works on transactions in the context of
BPEL such as [14] and [23].

In [14], Choreology proposed dedicated language ex-
tensions to BPEL for supporting transactions, e.g., the
businessTransaction element is used to create or terminate
transactions. Moreover, BPEL variables are used to hold
coordination contexts and participant identifiers. Messag-
ing activities are extended with two new attributes for the
propagation of business transactions. Such an approach
increases the complexity as language extensions will be
needed for each non-functional concern (e.g., security) and
breaks its portability. It is also against the principle of sep-
arations of concerns.

In [23], Tai et al. wused WS-Policy [16] and WS-
PolicyAttachment [9] to specify the transactional require-
ments of scopes and partner links. Whilst the purpose of
the process container and the transaction Web Service is
also to support transactions in BPEL processes, it is differ-
ent from our approach w.r.t requirement specification and
requirement enforcement.

With respect to requirement specification, one has to an-
notate each transactional activity in the BPEL process with
an appropriate transactional policy. That is the specification
of business logic and transaction code is intertwined. In
contrast, our deployment descriptor allows a separate speci-
fication of the non-functional properties of the composition.
In addition, it uses XPath-based activity selectors, which
eliminates the need for attaching policies to BPEL activities
in a point-wise fashion. A unified approach combining the
benefits of both works (i.e., using WS-Policy with external
policy attachment via XPath) is presented in [4].

With respect to requirement enforcement, policies allow
to specify what is required but not how it should be en-
forced. The logic that enforces a certain requirement is hid-
den inside the policy handlers. Moreover, a special compiler
is used in [23] to generate a Java stub that contains the nec-
essary calls to the transaction middleware. As a result, it is
not possible to exchange the transaction middleware by an-
other one or to integrate further middleware services with-
out changing the compiler. Such extensions are supported
easily in the AO4BPEL container framework by writing ap-
propriate aspects.

There are other works that used AOP to modular-
ize transaction management in object-oriented applications

such as the domain-specific aspect languages proposed in
Fabry and Cleenewerk [13] and in Spring AOP [17].

7 Conclusion

To enable transactional workflows in BPEL, we used the
AO4BPEL process container framework, which provides
several benefits. It is open and light-weight, i.e., it can be
easily extended by deploying new aspects. Moreover, fur-
ther middleware Web Services can be integrated. Another
advantage is the separation of concerns as functional and
non-functional code are separated. In addition, the use of
XPath allows to quantify over several processes. On the
other hand our approach has some limitations w.r.t perfor-
mance (e.g., the overhead for pointcut matching) and works
only for our AO4BPEL engine.

As future work, we will provide transaction aspects that
allow the BPEL process to be a participant in a transaction.
This is needed in many scenarios, e.g., the transfer process
may be called as part of another transactional activity such
as a rental car booking process that uses the transfer pro-
cess for payment. Moreover, we will implement appropri-
ate XSLT templates to generate aspects for restoring vari-
able values in case of transaction rollback and for enforc-
ing the variable isolation level serializable. In addition, the
business activity port type will be implemented as soon as
support for WS-BA is available in Sandesha. Another thrust
of future work is to decouple the AO4BPEL language and
its implementation from SOAP so that it can be used with
the other messaging layers that can underly BPEL.

References

[1] Apache. Kandula 0.2.
kandula/, May 2006.

[2] A. Arkin, S. Askary, B. Bloch, et al. Web Services Business
Process Execution Language 2.0, OASIS Standard, 11 April
2007.

[3] A. Charfi. Aspect-Oriented Workflow Languages:

AO4BPEL and Applications. PhD thesis, Darmstadt Uni-

versity of Technology, Darmstadt, Germany, 2007. http:

//elib.tu-darmstadt.de/diss/000852/.

A. Charfi, R. Khalaf, and N. Mukhi. QoS-aware Web Ser-

vice Compositions Using Non-Intrusive Policy Attachment

to BPEL. In Proc. of the 5th International Conference on

Service Oriented Computing (ICSOC), Industry track, to ap-

pear. Springer, September 2007.

[5] A. Charfi and M. Mezini. Using Aspects for Security Engi-
neering of Web Service Compositions. In Proc. of the 3rd
IEEE International Conference on Web Services (ICWS),
pages 59-66. IEEE Computer Society, July 2005.

[6] A. Charfi and M. Mezini. AO4BPEL: An Aspect-Oriented
Extension to BPEL. World Wide Web Journal: Recent Ad-
vances on Web Services (special issue), March 2007.

http://ws.apache.org/

[4

—

(7]

(8]

(91

(10]

(1]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]
(20]
(21]
(22]

(23]

[24]

A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini.
Reliable, Secure and Transacted Web Service Composition
with AO4BPEL. In Proc. of the 4th IEEE European Confer-
ence on Web Services (ECOWS), pages 23-34. IEEE Com-
puter Society, December 2006.

A. Charfi, B. Schmeling, and M. Mezini. Reliable Messag-
ing for BPEL Processes. In Proc. of the 4th IEEE Interna-
tional Conference on Web Services (ICWS), pages 293-302.
IEEE Computer Society, September 2006.

Chris Sharp (Eds.). Web Services Policy Attachment
(WS-PolicyAttachment). ftp://www6.software.
ibm.com/software/developer/library/
ws—polat.pdf, September 2004.

F. Curbera, Y. Goland, J. Klein, et al. Business Process Exe-
cution Language for Web Services (BPEL4AWS) Version 1.1,
May 2003.

David Langworthy (Eds.). Web Services Coordination (WS-
Coordination) 1.1, April 2007.

L. G. DeMichiel and M. Keith. Enterprise JavaBeans Spec-
ification 3.0, May 2006.

J. Fabry and T. Cleenewerck. Aspect-Oriented Domain Spe-
cific Languages for Advanced Transaction Management. In
Proc. of the 7th International Conference on Enterprise In-
formation Systems (ICEIS), pages 428—432, May 2005.

T. Flechter, P. Furniss, A. Green, and R. Haugen. BPEL and
Business Transaction Management, Choreology submission
to OASIS, 2003.

D. Georgakopoulos and M. Hornick. A framework for en-
forceable specification of extended transaction models and
transactional workflow. Journal of Intelligent and Coopera-
tive Information Systems, 3(3), 1994.

Jeffry. Schlimmer (Eds.). Web Services Policy Framework
(WS-Policy). ftp://www6.software.ibm.com/
software/developer/library/ws—-policy.
pdf, September 2004.

R. Johnson. Introduction to the Spring Framework.
http://www.theserverside.com/articles/
article.tss?1l=SpringFramework, May 2005.

F. Leymann. Supporting business transactions via partial
backward recovery in workflow management systems. In
Proc. of BTW, 1995.

F. Leymann and D. Roller. Production Workflows. Prentice-
Hall, 2000.

OASIS WS-TX TC. Web Services Atomic Transaction
(WS-AtomicTransaction) 1.1, April 16, 2007.

OASIS WS-TX TC. Web Services Business Activity (WS-
BusinessActivity) 1.1, April 16, 2007.

A. Sheth and M. Rusinkiewicz. On transaction workflow.
IEEE Data Engineering Bulletin, 1993.

S. Tai, R. Khalaf, and T. Mikalsen. Composition of Coordi-
nated Web Services. In Proc. of the 5th International Mid-
dleware Conference (Middleware), volume 3231 of LNCS,
pages 294-310. Springer, October 2004.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson. Web Services Platform Architecture : SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Pearson Education, 2005.

