Composing services withJOLIE*

Fabrizio Montesi Claudio Guidi
Gianluigi Zavattaro
Department of Computer Science, University of Bologna, Italy
{f nont esi , cgui di , zavattar }@s. uni bo. it

Abstract In this paper we presedOLIE, Java Orchestration Lan-
guage Interpreter Engine, an opensource project released
Service composition and service statefulness are keyunder the LGPL license [Pro] and publicly available for
concepts in Web Service system programming. In this pa-consultation and use [JOLR]JOLIE is the full implementa-
per we presenfOLIE, which is the full implementation of tion of our formal calculus for service orchestration, el
our formal calculus for service orchestration callS@CK. SOCK [GLG™06]. In SOCK we have formalized the ba-
JOLIE inherits all the formal semantics &OCK and pro- sic features of the Service Oriented Computing paradigm
vides a C-like syntax which allows the programmer to de- and we have provided a language syntax with few basic
sign the service behaviour and the service deployment in-constructs which allows for the composition of services.
formation separately. The service behaviour is exploited SOCK is equipped with a formal semantics and is struc-
to design the interaction workflow and the computational tured on three layers: theervice behaviour layethe ser-
functionalities of the service, whereas the service deploy vice engine layeand theservices system layefhe service
ment information deals with service interface definition, behaviour layer allows for the design of service behaviours
statefulness and service session management. On the only supplying computational and external communication
hand, JOLIE offers a simple syntax for dealing with ser- primitives inspired to Web Services operations and work-
vice composition and efficient multiple request processing flow operators (e.g. sequence, parallel and choice). The
on the other hand, it is based on a formal semantics which service engine layer is built on top of the former and allows
offers a solid development base, along with the future pos-for the specification of the service deployment, where it is
sibility of creating automated tools for testing systemgpro possible to design in an orthogonal way three main features
erties such as deadlock freeness. which directly deal with service instances, callsksions
and service statefulnesgxecution modalitystate persis-
tenceandcorrelation sets Execution modality deals with
the possibility to execute service sessions in a sequantial
der or in a concurrent way; state persistence allows to spec-
ify if each session has its own independent state or if the
Usually related to orchestration languages, service com-state is shared among all the sessions of the service engine.
position and service statefulness are key concepts in WelDepending on the execution modality and state persistence
Service system programming. Service composition dealsfeatures we distinguish four service categories:
with the ability to aggregate existent services in order to
obtain a new one which offers more complex functionali- 1. concurrent/not persistenthey are services which con-

1 Introduction

ties, whereas service statefulness deals with the ability t currently execute their sessions where each of them is
mantain the state of a conversation among different sesvice equipped with its own state that expires when the ses-
until the end of the so-callebusiness activity Orchestra- sion is terminated. Usually, BPEL processes belong to
tion languages, on the one hand, provide workflow con- this service category.

structs such as sequence, parallelism and non-deteriminist
choice for composing communication interactions and, on
the other hand, they deal with statefulness by activatifig di
ferent workflow instances for each business task to manage.

2. concurrent/persistenthey are services which concur-
rently execute their sessions. Sessions share a common
state which does not expire when session terminates
but the stored information are available for next ses-
*Research partially funded by EU Integrated Project Seasoontract sion executions. Usually, services which allow for the

n. 016004. management of databases belong to this service cate-

gory. two different files for programming the behaviour and the
system integration information of the service is a key fea-
3. sequential/not persistenthey are services whose ses- ture; this allows the programmer for the reuse of existing
sions are forced to be executed following a sequential pehavioural files in different service environments (by-cou
order where each session is equipped with its own statepling it with a new deployment file) and for the reuse of
that expires when the session is terminated. For ex-deployment files with compatible workflows. It is worth
ample, a video game is accessed sequentially by eachoting that the syntax offered BYOCK is mapped by the
player and each game is different from the previous |anguages of the two files. In fact, the behavioural language
one. maps the syntax of the service behaviour layer, whereas the
] . .] deployment language maps the syntax of the service engine
4. sequential/persistenthey are services whose sessions layer. As the services system layer is only a semantic layer
are forced to be executed follqwing asequent_ial order_, and does not specify a syntax, there is no corresponding
where the state does not expire after a session termi-jo| |g Janguage for it. As far as the behavioural language
nation but the stored information are available for next is concerned, it is possible to interact with other services
session executions. A cashpoint machine could be con-,y means of communication primitives inspired by WSDL
sidered as an example of service belonging to this Cat'operations (One-Way, Request-Response, Notification and
egory. Solicit-Response), to model timeouts, to synchronize in-
ternal parallel processes, to use the clasgic| e loop
instruction and the f -t hen-el se conditional statement.
Moreover, the programmer is allowed to compose state-
ments in a workflow by making sequences, parallelisms and
non-deterministic choices. Using its communication prim-
itives and its compositional operato)LIE can compose
ther services by exploiting their input operations. Hinal

The correlation sets mechanism, which is inspired by the
BPEL one, allows us to distinguish sessions initiated by dif
ferent dialoguers by means of the values received within
some specified variables. It is worth noting that session
statefulness can be easily achieved by exploiting coioglat
sets jointly to not persistent states. In these cases, dhdee

each session has its own state identified by a correlation se . : .
he behavioural language provides statements for user in-

which expires when the session terminates. Finally, the ser .)
. : . T put/output console interaction. As far as the deployment
vices system layer defines the semantics of service interacy

. . . . language is concerned, its grammar structure is composed
tions (i.e. the functioning of message exchanging between guag 9 P

. :) . by two main parts. The first part contains the deployment
services), allowing for the reasoning about the behaviburo 7 . . .
directives (execution modality, the state mode (persisien
the whole system.

JOLIE. wh limi behavi T h | not persistent) and the correlation set of the orchestrator
» WNose preliminary behavioural language nas al- y,q5q girectives map the same features provided by the ser-
ready been presented in [MGLZ06], inherits all the formal

i SOCK and id i hich vice engine layer o5OCK for dealing with sessions and
semantics o and provides a syntax wWnich resem- oo ica statefulness. The second part deals with intesface
bles that of the C language. This is in contrast with the

and contains all the information needed for interactiomwit

lE‘)ther services: operations, port types, protocol/poretyp
bindings and service deployment endpoints.
Summarizing, the main advantages J)LIE are: (i)

e programmer-friendly syntax that permits fast orclaestr

as XLANG [Tha] and BPEL, which are based upon XML.
In particular JOLIE supports the three layers 8OCK sep-
arately. The service behaviour layer and the service engineth

gnﬁ are uselrf_Tpec:jflztirl])IZ byl meanst(;fl two d|ffetren|t f'I%S: thetion prototyping and the subsequent step-by-step incremen
ehavioural fileand thedeployment TIErespectively. Dn. extension; (ii) the distinction between the behavibura

the contrary, the service system layer is embedded in the ' . . i
Communication Core of thdOLIE implementation as de- and the deployment files supporting the full decoupling be

tailed in Section 4. The interpreter implementation hasib tween the orchestration logics and the actual development
vsritef[en i ?gvg mékine a setrgne ise gf?:or?ceatsosuc??asef::oteChnomgy; (iii) the solid formal semantics provided bg th

. ' KIng g use ol P - SOCK calculus [GLG 06] allowing for the formal reason-
hesion, encapsulation and modularization, which we ekploi

in our internal architecture in order to permit the integra- Ing aboutJOLIE orchestrators.
tion with different technologies and heterogeneous enviro
ments. 2. JOLIE behavioural language overview

The behavioural file (denoted by thel extension) con-
tains the workflow definition of the orchestrator, whereas This section is devoted to a presentation of Ji@_IE
the deployment file (denoted by thelol extension) con- behavioural language, which corresponds to the syntax of
tains directives for the execution engine and specifies in-the service behaviour layer foundSOCK. For the sake of
formation for the integration of the orchestrator in the-ser brevity, we report only the basic features of the language,
vice oriented architecture. The fact thHDLIE provides without considering fault and compensation handling in-

structions. OneVy: SingleWayOp-detl
| Request Response: RequestResponse-decl

2.1. Program structure | Notification: SingleWayOp-detl
| SolicitResponse: SolicitResponse-decl

A JOLIE program is defined as follows: SingleWayOp-decl= id<var-type-list-
Program::= RequestResponse-desl

| ocations {id-list} |e iqfvar-type-list><var—type—|ist>

oper ati ons { Operation-declarations} | e SolicitResponse-deck _

variabl es {id-list} |e |d<var-_type-||st><var-type-l|st>

l'inks {id-list} |e var-type-list::= var-type'

definitiort var-type:=int | string | variant

mai n { Process}

definition A One-Way operation needs a list of variable types
definition::= def i ne id { Process} (var-type-lis) in its declaration. When the interpreter re-

where we represent non-terminal symbols in italic and the ceives a message for that One-Way operation, it checks the
Kleene star represents a zero or more time repetitionidAn incoming message value types with the given-type-list
represents an unambiguous identifier (i.e. a unique name)if the types do not correspond, the message is rejected.
whereas af-list is a list of them. The first program partis A Notification operation variable types are used when
declarative: the programmer uses it to specify the location the interpreter sends a message with that operation: the
operations, variables and internal synchronization linls variables used in the workflow are automatically cast to the
going to use in the workflow code. The second part definestypes written here before sending the message. Request-
the workflow of the orchestrator, formed by an entry point Response operations need two lists, the first for input
(mai n) and user-defineable procedurefinitiors). For variable types and the second for output variable types.

the sake of clarity, the various program parts are individu- Solicit-Response operations, inversely, use the firsfdist
ally explained in the following. output variable types and the second list for input variable

types. Supported variable types drat (a Java based
integer), stri ng (a Java based string) andari ant .
The variant type matches with botmt andstri ng: if
specified in an inputar-type-list the interpreter accepts
any type for that value and the corresponding incoming
variable will implicitly take that type, while if specifiechi

Locations A location represents a communication end-
point to a service, used bJOLIE to create a communi-
cation channel. The behavioural program requires only an
id-list for location declarations: their real value is to be
specified in the deployment file. This allows us to decou- . ! ;
ple the workflow design from a communication detail: lo- &" putputvgr-type-hstthe rglgted variable in the workflow
cation changes of other services are reflected only in themamtgms its current implicit type. Let us comment the
deployment file, leaving the behaviour of the orchestrator following example:

unmodified. operations {
OneVay:

. . . . nyFirstOM int, string >, mySecondOW>
Operations Operations are used to interact with other gequest Response:

services, invoking one of their exposed functionalities. nyRR< int, int, variant >< int, variant >
JOLIE supports the four operation types defined in the Notification:

WSDL specification: One-Way, Request-Response, Notifi- SOWCNIOI :Qfe'sggtn'sg:no

cation, Solicit-Response. One-Way and Request-Response nysr< int, string, variant >< int, int >
are input operations: a One-Way operation simply waits }

for a message and receives it, whereas a Request-Response . . i
operation waits for a message, executes a code block andherenyFi r st OAfreceives two values, which must be an
then sends a response message to the invoker. Notificatioft€ger and a strlng_value, respectlv_ely. If the rece|qu va
and Solicit-Response are, respectively, the output counte U€S are not of the right typdOLIE will refuse to receive
parts of input operations: a Notification operation is ugedt the message. In the casemfSR, the interpreter will con-
invoke a One-Way operation of another service by sendingVe't |ts.f|rst \(alug to an integer, its second to a string asd it
a message, while a Solicit-Response operation invokes ghird will maintain its current type.

Request-Response operation by sending a message and

then remains blocked until it receives the response. TheVariables JOLIE makes use of dynamic typing: variable
non-terminal follows: types are not declared and errors are caught during pro-
Operation-declarations.= gram execution (similar behaviours can be found in other

languages, e.g. Perl, PHP and JavaScript). The interpreterd to the corresponding Request-Response operation, com-
needs only that the program declares in advance the variposed with the values of the firistlist variables, to the com-
ables it is going to use during the execution, specifying an munication endpoint represented by the secwh(which

id-list in thevar i abl es block. Implicit supported vari-
able types are integers and strings.

Links
chronization. As seen for variables, thenks declarative
block requires only a list of identifiers.

Definitions Definitions allow the programmer to define

procedures, which will be callable thereafter by usingrthei
identifiers as statements. An example of a procedure defin
tion follows:

define printHello { out("Hello, world!") }

Main The mai n block is the starting procedure of the
program execution. Informally, it is comparable to the main
function of a C or Java program.

2.2. Statements

For the sake of brevity, we show only a short overview
of the available instructions; a more detailed descripison
available in [MGLZ06].

The communication primitives are:

One-Way. id<id list> : waits for a message on the opera-
tion whose name is specified wiithand stores the received
values in thed list variables.

Request-Response.id<id list> <id list> (Process) :

waits for a message on the operation whose name is spe

ified with id, stores the received values in the fiidtlist
variables, executes the code bldefocessand sends a re-

sponse message composed with the values of the secon

id list variables. It is worth noting that, differently from

BPEL, in JOLIE the Request-Response operation is spec-

ified atomically, whereProcessrepresents the activities to

be executed between the request reception and the respon

sending.
Notification. id@id<id list> : sends a message on the op-
eration whose name is specified with the ficsto the cor-

responding One-Way operation (which is specified in the

deployment file), which contains the values of tidelist

Links are used for internal parallel processes syn-

can be, as for the Notification statement, a location or a
variable). Once the message is sent, it waits for a response
message from the invoked Request-Response and stores the
received values in the secoitllist variables.

Basic program flow control statements are provided
through the classioshil e and i f -t hen-el se con-
structs (which follow the same syntax of the C language),
along with the possibility to call a procedure by writ-
ing its identifier. Internal parallel processes synchraniz

ition is performed by using thei nkln and | i nkQut

statements, which require an internal synchronizatiok lin
id as a parameter. There are alsone-op statement
(nul I Process) and asl eep one; the latter is particu-
larly useful for modeling a timeout when waiting for a com-
munication input or a parallel activity. MoreovelQLIE
provides the possibility to evaluate expressions and make
variable assignments.

It is worth noting that, differently from BPEL]JOLIE is
able to interact with the executing user, thanks toithe
andout instructions. The former waits for a user console
input and stores it in a variable, while the latter displays a
message on the screen.

Statement composition JOLIE provides three ways to
compose statements: making a sequence, a parallelism or a
non-deterministic choice. Every composition can be formed
by any number of elements.

Sequences are composed by exploiting stheperator,

So thatA ;B executesA, waits for it to finish and then

executes.

Parallelisms are composed by theoperator. A | B
taxecutesA andB in parallel, and waits for the termination
of both.

A non-deterministic choice can be expressed among dif-
ferent guarded branches by using theoperator. A branch

%Jard can only be an input operatior, iank| n statement,

ani n statement or al eep statement, whereas the branch
can be any possible process. Let

(gl7p1)l (925p2): cee 1(gn—17pn—1): (gn7pn)
be branches whergis the branch guard andthe guarded

variables, to the communication endpoint represented byProcess. The syntax of the non-deterministic choice fol-

the secondd. The secondd can be a location declared

in the locations block or a variable containing a string that

lows:

[g1l pr++[g2l p2t+. . . ++[gno1] Pn—1++[gn] P

can be evaluated as a location. It is worth noting that such a

feature implements location mobility. It is possible, iede

The guards are defined within square brackets. When a non-

to receive a location which can be exploited afterwards for deterministic choice is reached, the interpreter waitsafor

executing a Notification or a Solicit-Response statement.
Solicit-Responseid@id<id list> <id list> : send a mes-

input on one of its guards. Once an input comes for a guard
gi, the related process is executed and the other branches

sage on the operation whose name is specified with the firstare deactivated. It is worth noting that the, | i nkl n and

sl eep instructions are useable as branch guards; this isond defines thénterfacesneeded for the integration of the
useful to permit user interaction, receive inputs fromiinte orchestrator in the target service oriented architectime.
nal processes or setting timeouts. As areference, notite th the following we examine the instructions offered by the
the non-deterministic choice construct follows a behaviou deployment language, providing at the end an example of
similar to that of thepi ck activity found in BPEL where, their use.
differently, it is not possible to specify inputs on interna
links. 3.1. Deployment information structure

The statement composers interpretation priority; ig:
++. In the following example, where A, B, C and D are The JOLIE deployment information structure is repre-
statements, we show how priority works. sented by the fo”owing grammar:
[regl<a>] A| B; C++ [req2] D; C; B| D Deployment-informatiorn=

; . .) state { State-mode}’
This code fragment contains a non-deterministic choice be- axecuti on { Execution-modality} ?

tween two branches. The branches are guarded by two One- get { id-list }7

Way operations:r(eql<a> andr eq2). Considering | ocations { Location-definitions} ’
the operator priority, the same code would be explicited as | nt erf ace { Interface-definition} ?
follows.

[regl<a>] where we exploit the’ notation to show that a block
(Al (B; C)) is optional and may be left unspecified. It is worth noting
=+ [rengb?:]. 5 5 that the first three parts{ at e, execut i on andcset)
((b:C:B)ID) correspond to the service engine layer synta$OfCK. In
the following we explain the structure elements separately

2.3. The factorial service
3.2. Deployment directives
We present now a simple, yet practical, example of how
to write a correct behavioural file for the realisation of e se State persistence The st at e instruction indicates how
vice which calculates the factorial of a given number. The the active sessions access the variables. The programmer

code follows: can choose between two values:
operations { State-mode:= pers_i stent | not _per si st ent _
Request Response: On the one hand, in per si st ent state mode the vari-
cal cul ateFactorial RR< int ><int > ables are treated as shared among all the sessions; on the
, . other hand, anot _per si st ent state mode makes every
variables { i, n, result }
define cal cFactorial { session owning its own independent variable state. If the
while(i <n) { st at e block is left unspecified,JOLIE sets its value to
i =i +1; result =result * i persi stent.
}
}
mein { Execution modality JOLIE supports three possible exe-

| =0; result =1 cution modalities:
cal cul ateFactorial RR< n >< result > . .
(cal cFactorial) Execution-modality:=

} singl e | sequential | concurrent
. .) . The interpreter handles sessions depending on the value of
The orchestrator initializes its variables ,(n and theexecut i on block:

resul t) and then waits for a request for the operation g g e: the orchestrator does not create sessions, it just
cal cul at eFact ori al RR. When a correct request (i.e. 1 ns the code only one time.

a message containing a singlet value) for the operation gequent i al : the orchestrator creates sessions sequen-
is received JOLIE will call the cal cFact ori al proce- tially, enqueuing the incoming requests.
dure, and then send back to the caller the value stored inconcurrent : the orchestrator creates sessions concur-

result. rently, handling all the requests in parallel.
If the execut i on block is left unspecifiedJOLIE sets its
3. JOLIE deployment language value tosi ngl e.
The interpreter generates a session when the first in-
The deployment file is composed by two main parts: the put operation statement, specified in the behavioural file,
first one containgleployment directivesvhereas the sec- receives a message. Notice that the input operation can

be a One-Way, a Request-Response or a non-deterministic keepRun = 1; createGane<>< id >(newGane);
choice which comprehends one or more of them. Consider Wil E(N';eepR_Ug) A

. . . makeMove< id, nove >;
the followingmai n procedure: if (nove == "quit”) { keepRun = 0 }
main { el se { playMve }

out("Starting..."); myOneWay< x >; out(X) } }
}

which we suppose is executed with a concurrent executionVNich we suppose coupled with the following deployment
modality and a not persistent state mode. This code blockdirectives:

prints theSt ar t i ng. . . string, then waits for input mes- state { not_persistent }

sages for tharyOneWay operation. Whenever an input execution { concurrent }

message fony OneVy is received JOLIE creates a new ¢S¢t { 7d}

session, which prints the received value on the screen. The behavioural code waits for a message for the
Itis worth noting that theconcur r ent modahty In- cr eat eGane operation. Once the orchestrator receives a

troduces a problem related to system resource3OiniE, message for that operation, it creates a new concurrent ses-

every concurrent session is executed by a separate thread;jon, which calls theewGare procedure (responsible for
Such a mechanisms offers real concurrency and good Sca|getting a fresh gamied by interacting with another service)
ability, but threads have a cost in terms of system memory anq sends back the identifier of the created game. The or-
allocation. In order to address this isSU@LIE offers a chestrator then enters in a loop which accepts game moves
command line parameter which permits to specifyaconnec-by means of therakeMbve operation. The user can end
tion limit: once the number of running sessions reaches theyne gaming session by issuing the stripgi t as a move.
connection limit, JOLIE begins to enqueue the incoming The problem is related to the fact that there could be a lot
requests. BefordOLIE starts their processing, enqueued of sessions in concurrent execution; so, when a message
requests have to wait for the number of running sessions tofr rpkeMbove comes, we need to decide which session
decrease. The command line parameter for the specificaghouid receive it. The correlated variablé addresses this
tion of connection limitis- 1 [nunber]; an example of jssye: once the interpreter reads its value in the message
its use follows: for makeMove, it chooses the session which has the same
jolie -1 1000 value stored in the same variable. For example, suppose that
we created two gaming sessions, session A with2 and
which tellsJOLIE to run at most one thousand sessions at a session B with d=4, and that an invoker sends a message
time. In case thel option is not passedOLIE exploits an containing the values 4, "quit’” >. Such a message will
heuristic approach to decide dynamically if a request shoul be routed by the interpreter to session B, because the first
be enqueued or not. The aim of the heuristic choice is tovalue of the message corresponds to the actual value of the
avoid swapping as much as possible, which would result ini d variable within its session state.

a seriously slow execution.

Locations Locations declared in the behavioural file must
Correlation set Sessions often require to be distinguished have their value specified in th@cat i on block of the de-
and accessed only by those invokers which hold some speployment file:
cific references. In other paradigms, such as the Object-Location-definitions:=
oriented one, such references are managed by the under- id =" URI" Location-definitions| e
lying framework. Unfortunately, we can't make such an whereURI is to be intended as a standard Uniform Re-
assumption in the service oriented computing model; corre-source Identifier. CurrentlyJOLIE supports only socket
lation sets, introduced by BPEL, allow us to address such anbased communications. An example containing location
issue. An orchestrator may define a setofrelated vari- definitions follows:
ablesthrough thecset instruction (e.gcset { a, b, | ocati ons {
c }): the specified set becomes the correlation set to Use nyservice = "socket : // wwv. adnsname. com 80",
for session referencing. The functioning of correlatiots se ipUi = "socket://123.12.13.111: 3000"
in SOCK (and thus, iNJOLIE) is extensively explained in }
[GLG06]. For the sake of clarity, in the following we re-
port an example of their usage, modeling a simplified mech- 3.3. Interface definition
anism for the creation of new gaming sessions of a one
player game:

Thei nt er f ace block describes the interface offered
min { by the orchestrator, along with the protocols to use for in-

voking the input operations of other services. This deploy-
ment file section is greatly inspired by WSDL, being our
first step for a WSDL export tool. Indeed, the non-terminal
Interface-definitiorcontains elements similar to these found
in a WSDL file:
Interface-definition:=

operations { Operation-defs}

i nput Port Types { PortType-def }

out put Port Types { PortType-def }

bi ndi ngs { Binding-def* }

service { Service-def }

Operations Theoper at i ons block permits to specify
interface related operation information, such as the btgia

where the firstd is the name of the port to create, the sec-
ondid is the port type to use and the thidlis a communi-
cation protocol. CurrenthJOLIE supports fully a propri-
etary communication protocol (named SOBEBNd par-
tially SOAP (only for flat structured messages). Therefore,
the programmer can use th@dep or soap keyword to
specify a port protocol.

Services Services represent the input interface of the or-
chestrator. The syntax follows:

"URI" id

whereURI is a standard Uniform Resource Identifier and
id is an input port specified in thbi ndi ngs section.
Each service entry define an input communication endpoint

names to use in message exchanging (particularly usefutvhich ptherservices can use to invoke the relative inputt por
for SOAP based transmissions) and the input operationOPerations.

name an output operation has to invoke. The syntax is:
Operation-defs:=

OneVy: OneWay-def

| Request Response: RequestResponse-def

| Notification: Notification-def

| SolicitResponse: SolicitResponse-déf
OneWay-def:= id<id-list>
RequestResponse-ded id<id-list><id-list>
Notification-def::= id<id-list> id
SolicitResponse-deck id<id-list><id-list>

id

where the id-lists in the angular brackets represent

the bound variable names to use in message exchanging.

The output operation definitions require ignto be bound
through the= operator: thatd will be used to identify the
input operation to invoke on the other service when the
behavioural code will call the output operation.

Input port types Input port types are collections of in-
put operations; they are used in thendi ngs and the
ser vi ce blocks to define the orchestrator input interface.
Thus, each port type requires only a non-emgtist of in-

put operations:

PortType-def:=id: id-list

whereid is the name of the created port type.

Output port types Counterparts of input port types, out-

Deploying the factorial service In the following, we dis-
cuss the deployment information to be coupled with the be-
havioural code presented in 2.3. The code follows:

state { not_persistent }
execution { concurrent }
cset {}
interface {
operations {
Request Response:
factorial RR = factorial RR< nunber >< result >
}

i nput Port Types { factorial Port Type:
bi ndi ngs {

soapFactori al Port:
}

service {
"socket://| ocal host: 2555":
}

}

Here, we instruct the interpreter to execute ses-
sions using a not persistent state modet gt e {

not persistent }) and in a concurrent way
(execution { concurrent }). We do not need

to specify anything in the correlation set, as the service
does not need to identify its sessions. Furthermore, in the
oper at i ons block, we specify the names the variables
assume irf act ori al RR message exchangingymnber
andresul t). This approach allows the programmer to
decouple the behavioural programming from the SOAP

factorial RR }

factorial Port Type : soap

soapFactori al Port

put port types define collections of output operations; they message naming details: the variables contained in the

are used only in théi ndi ngs block, in order to define

factori al RR statement of the behavioural file will

the protocol to use when calling an output operation of the be automatically renamed tounber andresul t for

bound output port type. Output port types are defined with
the same non-terminal of input port typ&srtType-def

Bindings A binding creates a port from a port type and
defines its communication protocol. The syntax is:
Binding-def::=id: id: id

message creation and receiving, respectively. Finally, we
create an input porf @ct or i al Port Type) containing

our operation, we bind the soap protocol to it (in the

bi ndi ngs block) and we expose it on a socket based

service, network port 2555 (in tteer vi ce block).

1Simple Operation Data Exchange Protocol

4. JOLIE internal architecture 5. A business case study

In this section we present a typical business scenario pro-
grammed withJOLIE, where there are five participants in-
volved: a customer, a market, a service register, a supplier
and a bank. The customer wants to buy a product and asks
for its price to the market. The market queries the register
in order to obtain a supplier which is able to satisfy the cus-
tomer and then it requests the supplier for the price. The
market forwards the price to the customer, that decides ei-
ther to buy or not. If it decides to buy, the market requests
for the order to the supplier and, concurrently, it asks & th
Code analysis JOLIE offers a library for code analysis, pank to perform the financial transaction. In order to do
which is the same used by the interpreter itself for pars- that, the bank will request both the customer and the sup-
ing its input files and obtain an optimized abstract syn- piier for the bank data. At the end, the bank will notify the

tax tree. The library offers the possibility to exploit the cystomer, the supplier and the market for the transaction
Vi si t or object oriented design pattern [Wik], in order termination.

to analyze and/or manipulate the parsing result. For exam-
ple, theJOLIE internal code optimizer and program well-
formedness checker (which takes its rules by 8@CK
specifications) are implemented by means of this approach.

In this section we report an overview of the internal ar-
chitecture ofJOLIE, along with its connections with the
semantic layers dBOCK, which are theservice behaviour
layer, theservice engine layeand theservices system layer
A more accurate description of the implementation details,
including a graphical representation of the architectige,
available in [MGLZ06].

getBankOrder

getBankData

Object Oriented Interpretation Tree Responsible for
the execution of the behavioural code, the Object Oriented
Interpretation Tree (OOIT) is a tree composed by small ex-
ecution units. Each semantic rule specified by the service
behaviour layer is implemented by an OOIT execution unit.
This approach based on encapsulation makes very simple tc
update the interpreter semantics w.r.t. new developménts o
SOCK. The OOIT is produced byOLIE starting from the
optimized abstract syntax tree.

execirder

receipt
getBuro

Figure 1. Example architecture

Runtime environment The runtime environment handles In Fig. 1 we report a graphical representation of the sys-

the creation of new sessions, the synchronization of pro-tem where circles represent services, black rectangtes re
cesses and the service state. It interacts with all the othefggent Request-Response operations, white rectangles rep
components o§OLIE and abstracts the OOIT from session resent One-Way operations and arrows represent the inter-
state handling. This component implements rigorously the actions among the services. The system is composed by
semantics of the service engine layer. the following services: thegister ServicREG, the Bank

Service composed by ttank Information Servic®! and

the Bank Master Servic8, the Supplier Service composed
Communication core The communication core permits by the Supplier Information Servic&l and theSupplier
to keep the OOIT separated from communication related Master ServiceS, theMarket ServiceM and theCustomer
problematics. This component handles incoming connec-C. The Bank Information Service and the Supplier Informa-
tions and internal message routing to the various sessionstion Service model services which manage persistent infor-
along with the service input interface deployment as spec-mation repositories such as the bank account database and
ified in theser vi ce block of the deployment file. More- the product list database, respectively.
over, its modularized design permits to implement easily In the following, we present the code for the market ser-
support for new protocols and communication mediums vice. For the reader’s convenience, each operation state-
(such as files and local memory). The communication core ment has been suffixed with its respective tyPafor One-
implements the semantics of the services system layer, enWay operationsiRR for Request-Response operatiaNs$or
abling JOLIE to communicate with other services. Notification operations an8R for Solicit-Response opera-

tions. The complete and executable example of the entirevalue" t i meout " in variableack, which will be tested
service system can be downloaded at [JOLa]. by the customer application for verifying if the Market
Service session has expired. If the customer sends its

main { . .
get Pri ceRR< quantity, clientlLoc, product > message before the timeout occurs and confirms to buy, the
< euro >(Market Service invokes the Supplier for initiating the arde
get | dByQuer ySR@ egi st er < product >< supld >; (or der SR operation) and then the Bank Master Service
get Dat aSR@egi ster < supld > for initiating the financial transactiorp&y SR operation).

< suplLocl, supLoc2 >;

nyLoc = "socket: //1 ocal host : 2564" ; Finally, it waits for a receipt from the Bank Master Service
get Eur oSR@upLocl< product >< price >; and then sends a commit to the customer.
euro = price * quantity;
), ack = "ok";
[sleep(3000)] (6 Related works
ack = "timeout";
buy RR< tity, clientLoc, duct , f>
UZ ack“i?”n'u, ?’P, gc'eﬁg‘)OC product., con JOLIE represents a complementary approach fo ser-
) vice composition w.r.t. BPEL. The main differences can
+ , _ be summarized as followsJOLIE supports a Java-like
[< ggiRS? gﬂf‘lnfj'r to)é;asgl ')]e”t Loc, product, conf > syntax that is simpler than the XML one, which needs
if(conf=="yes") { graphical tools for managing its complexity; we think that
or der SR@upLoc2 textual and graphical programming can be both useful as
: _qgan:jl ty;. clientlLoc, product > pseudocode and flow-charts in traditional imperative pro-
paySIR@?ranEr ’ gramming.JOLIE supports decoupling between behaviour
< idorder, clientLoc, and deployment as partially done also by BPEL/WSDL; in
supLoc2, nyloc, euro >< bkld >; JOLIE correlation sets are considered at the level of de-
recei pt O bkld, idtran >; ployment instead of behaviour and, moreover, we permit
commi t N@! i ent Loc<> e
} the specification of execution modality and state persigten
} which are not supported by BPEL/WSDL. Final3QLIE

is built upon the solid formal semantics provided by the
Since the Market Service has to manage differ- SOCK calculus. On the contrary, the official semantics of
ent requests from different clients, it is deployed BPEL is informal; several (and sometimes unrelated) for-
by exploiting a concurrent execution modality and malizations of BPEL have been given, but usually these
a not persistent state where the correlation set isformalizations do not cope with the entire very rich BPEL
{product, quantity, clientLoc, bkl d}. Variable syntax (see [BKO6] for an overview).

product contains the product type, variald@iant i ty Relevant orchestration languages based upon a process-
contains the requested quantity for the given product, calculus formal semantics are inspired by thealculus in-
variablecl i ent Loc contains the location of the client stead ofSOCK, see e.g. [CLMO05] and [FGKO03]. Strong
and, finally, variablebkl d contains the unique identifier points of these works are the easy manipulation of XML
for the Bank Master Service session. The behaviour of messages and the underlying scalable architecture. The sep
the Market Service starts with the Request-Responsearation between behaviour and deployment, which is a pe-
statemenget Pri ceRR, which takes as inputs the vari- culiar feature ofJOLIE, on the other hand better supports
ables quantity,clientlLoc, product and returns an architecture which is communication technology inde-
the product price. Between the request message and th@endent. Another difference is that we more closely re-
response one, the body gt Pri ceRR performs two flect the message passing style of Service Oriented Archi-
invocations to the Register Servicgef | dByQuer ySR tectures based on operations and correlation sets, instead
and get Dat aSR operations), in order to retrieve the exploiting the typical channel based communication of the
supplier location. The supplier location is exploited w-calculus.

for requesting the product price to the Supplier Service A different approach with respect to the above textual
(get Eur oSR operation). Once thget Pri ceRR state- languages is showed in [act, ora, PA03], where service com-
ment is performed, the Market Service starts a race betweemosition is obtained by means of visual programming lan-
an internal timeout and the confirmation message from theguages. We think that textual and graphical programming
customer. Such a race is programmed by means of a nonean be both useful in the context of orchestration program-
deterministic choice between the statenseep(3000and ming as pseudocode and flow-charts in traditional impera-
the Request-Response statentamy RR. It is worth noting tive programming; only the next few years of research on
that if the timeout occurs, theuy RR operation is still able Service Oriented Computing will clarify the relative advan
to receive a message from the customer, but it returns thetages and disadvantages of the two approaches.

7. Conclusions

We presentedOLIE, Java Orchestration Language In-
terpreter Engine, and showed a practical example of servic
composition through its usage.

Future works will cover the introduction of structured
data values, in order to manipulate XML messages. In or-
der to improve furthermore our compatibility with the Web
Services technology, we plan to exploit the new data han-
dling syntax jointly with theJOLIE deployment language to
make possible for the interpreter to understand WSDL files
of other services and to publish its own WSDL file. By ex-
ploiting the flexibility of the internal communication cqre
we plan to support SOAP based communications and other
IPC (Inter Process Communication) mechanisms. Follow- [0ra]
ing recent developments &OCK, a fault and compensa-
tion handling mechanism falOLIE has been developed
and is under testing. Finally, future versionsJ@LIE will
permit to integrate Java code in an orchestrator workflow.
This will permit to useJOLIE even for complex client ap-
plications or heavy computational tasks.

[OAS]

[PAO3]

References

[act] ActiveBPEL Open Source Engine. [Pro]

[http://www.active-endpoints.com/active-
bpel-engine-overview.htm].

Tha
[BKO6] F. Breugel and M. Koshkina. Mod- [Thal
els and verification of BPEL 2006.
[http://www.cse.yorku.catfranck/research/

drafts/tutorial.pdf].

[Wik]

[CLMO5] Samuele Carpineti, Cosimo Laneve, and Paolo
Milazzo. Bopi - a distributed machine for ex-
perimenting web services technologiesFlfth
International Conference on Application of
Concurrency to System Design (ACSD 2005),
6-9 June 2005, St. Malo, Francpages 202—

211. IEEE Computer Society, 2005.

[FGKO3] Daniela Florescu, Andreas @rhagen, and
Donald Kossmann. XI: a platform for web ser-

vices. InCIDR, 2003.

[GLGT06] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and
G. Zavattaro. SOCK: A calculus for service ori-
ented computing. IfProc. of ICSOC’06 vol-
ume 4294 ofLecture Notes in Computer Sci-
ence pages 327-338. Springer-Verlag, 2006.

[JOLa] JOLIE. Business
[http://jolie.sourceforge.net/

files/lecows07/example.zip], 2007.

case study.

10

[JOLb]

JOLIE. JOLIE: a Java Orchestra-
tion Language Interpreter Engine.
[http://jolie.sourceforge.net/], 2006.

9MGLZ06] F. Montesi, C. Guidi, R. Lucchi, and G. Za-

vattaro. JOLIE: a Java Orchestration Language
Interpreter Engine. IRroc. of CoOrg’06 Elec-
tronic Notes in Theoretical Computer Science.
Elsevier, 2006. To appear.

OASIS. Web Services Business Process Exe-
cution Language Version 2.0, Working Draft
[http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
specification-draft.pdf].

Oracle BPEL process
[http://www.oracle.com/technology/
products/ias/bpel/index.html].

manager.

Cesare Pautasso and Gustavo Alonso. Visual
composition of web services. 1B003 IEEE
Symposium on Human Centric Computing Lan-
guages and Environments (HCC 2003), 28-31
October 2003, Auckland, New Zealarmmhges
92-99. IEEE Computer Society, 2003.

GNU Lesser
General Public License.
[http://www.gnu.org/copyleft/gpl.html], 2006.

Project. GNU

S. Thatte. XLANG: Web Services for Business
Process Design. Microsoft Corporation, 2001.

Wikipedia. Visitor pattern.
[http://en.wikipedia.org/wiki/Visitorpattern], 2007.

