
The Service Responsibility and Interaction Design Method:

Using an Agile approach for Web Service Design

David E. Millard

Hugh C. Davis

Yvonne Howard

Lester Gilbert

Robert J. Walters

Noura Abbas

Gary B. Wills

School of Electronics and Computer Science

University of Southampton, Southampton, UK
+44 (0)23 8059 5749

{dem, ymh, na06r, hcd, lg3, gbw, rjw1} @ecs.soton.ac.uk

Abstract

Service-Oriented Architectures (SOAs) are

increasingly deployed to achieve distributed systems

that are modular, flexible and extensible. Designing

for a SOA can be difficult, however. There are issues

involving the granularity of the cooperating services,

and there are no currently accepted conventions for

describing a service or its interactions at an abstract

level. This paper presents the Service Responsibility

and Interaction Design Method (SRI-DM), an agile

approach for engineering a Web Service design, based

on capturing a scenario as a use-case, factoring this

into a set of Service Responsibility and Collaboration

Cards, and constructing a Sequence diagram

illustrating their interactions in fulfilling the scenario.

The paper presents the notation for each step and

describes with the aid of an example how this process

is used to create a service design within the domain of

e-assessment.

1. Introduction

Engineering widely distributed systems has long

been a challenge for the software engineering

community. In the last few years a trend has emerged

towards Service-Oriented Architectures (SOA) that

aims at simplifying this problem. SOAs are an attempt

to modularize systems in such a way that they are

composed of independent software components that

offer services to one another through well-defined

interfaces. Such modularization typically is most

useful for large and/or complex systems, but may also

be used for other systems where a service orientation

offers particular benefits, such as minimizing new

building effort and maximizing the use of existing

services. The service approach is ideally suited to more

loosely coupled systems, where individual parts may be

developed by different people or organizations. Wilson

et al. describe the three main advantages of such a

system as Modularity (dynamic coupling),

Interoperability (standard interfaces), and Extensibility

(encapsulation) [15].

Service-orientation is a philosophical approach to

creating distributed systems, but there are a number of

standards and approaches to providing them at an

implementation level (including Web Services based

on SOAP, GRID Services based on OGSI, and REST

services based on HTTP and XML). Because of the

difference in these approaches, and due to a lack of

common notation and engineering experience,

developing a service-oriented system can be difficult.

Decisions must be made about how to divide a problem

into logical services, how those logical services should

be interfaced to maximize reuse, how they should be

gathered together to create composite services, and

what service-oriented implementation is best suited to

each service, or to the design as a whole.

Agile methods are a number of software

development methods which were proposed in the mid

1990s as a reaction to the limitations of traditional

software development methodologies. Although these

methods vary in practice, they share common principles

such as [16]:

• deliver working software frequently within a

short timescale

• close communication

• simplicity

• programming over documenting

• customer involvement

• encourage rapid and flexible response to

change.

In this paper we present the Service Responsibility

and Interaction Design Method (SRI-DM), an agile

approach for the modelling of services at an abstract

level that is independent of implementation. SRI-DM is

agile as it enables a team of developers to quickly

define a scenario and generate a number of services

that will fulfill it. It is lightweight in that the

documentation is minimal, and serves to drive the

development forward as well as record it for others.

SRI-DM:

• Defines a scenario with a use case diagram.

• Factors a set of services based on individual use

cases.

• Represents these services at a high level using

Service Responsibility and Collaboration cards

(SRCs).

• Refactors these SRCs as necessary.

• Defines how Services might interact to fulfill

the scenario using a Sequence diagram.

In this paper we present the SRI-DM and its

notation, and present an example of SRI-DM being

used to create a set of services in the domain of

e-assessment.

2. Background

Service-orientation is an approach to creating stand

alone components such that their potential for reuse is

maximized. A number of standards, infrastructures and

protocols have emerged which provide for this at an

implementation level.

Web services have received a great of recent

attention, and are defined around a set of standards

(such as SOAP, WSDL, UDDI) developed by the W3C

to make functionality available over the Web as simply

as data [4]. Originally Web services had little support

for security, which made them good for non-sensitive

information and ad-hoc systems, but meant that they

were not easily capable of supporting a virtual

organisation (a tightly integrated secure system that is

distributed) without additional non-standard security

layers.

Grid services on the other hand assume a highly

secure environment, and rely on certificates and

authentication bodies to operate [7]. This heavyweight

approach to security makes it possible to build virtual

organisations that exchange and manipulate sensitive

information, but might be prohibitive for developers

wishing to build simpler services and applications.

These two technologies are becoming more closely

defined and a new generation of Web Service standards

(such as WS_Security) is now being introduced to add

a standard layer of authentication and security to Web

Services. This will make Web Services attractive for

systems builders as it will become possible to build

virtual organisations using relatively lightweight

middleware.

A third approach to service provision is represented

by Representational State Transfer (REST) [6], the

name for a methodology rather than a set of standards,

where HTTP and XML are used to send and retrieve

data to a remote script or application residing on a Web

server. REST services are popular, but are not secure

enough to build virtual organisations and therefore will

not be able to support the growing number of

sophisticated service-based systems.

We believe that each approach is applicable in

different situations, and that an agile methodology for

service design should be agnostic about the service

technology itself.

2.1 Establishing SOA

The take-up of Web services within enterprises may

be problematic. Weatherley suggests that in the

educational domain there are a number of barriers that

prevent the widespread use of Web services for

delivering Web-based educational materials [14].

These barriers relate to the need for understanding Web

service protocols and the dynamic nature of the

communication with Web browsers. In addition, in

many institutions, developers are prevented from

installing or running dynamic application software on

their servers. Mukhi et al. believe that an increase in

the adoption of SOA requires improvement to some of

the non-functional features such as security

transactionality and reliability [10]. They have

developed a framework that supports and uses

transactional and reliable services, achieved by using a

policy model based on WS_Policy.

SOA specifications are progressing toward

standardization in a variety of ways, including small

groups of vendors and chartered technical committees.

For example, an SOA Reference Model Technical

Committee has been formed by OASIS members to

encourage the continued growth of different and

specialized SOA implementations whilst preserving a

common layer of understanding about SOAs

themselves. The e-Framework is an initiative by the

UK’s Joint Information Systems Committee (JISC) and

Australia’s Department of Education, Science and

Training (DEST) to systematise a SOA for Education

and Research [17]. We believe that substantive barriers

to the establishment of SOAs include little shared

understanding about how services should be developed,

what granularity is appropriate for different problems,

and no common notation to enable developers to share

designs.

2.2. Modelling Services

Dijkman and Dumas explain the need for particular

Service Oriented Design strategies [5], based on a

number of characteristics that differentiate Service

from Component-based design: High Autonomy (of

designers and developers), Coarse Granularity (of

service interfaces), and Process Awareness (close

relationship with business processes). Enterprise level

service development is most affected by the latter two

characteristics. For example, Quartel et al describe the

use of design milestones to help develop Web services

from business practices [12], and Benatallah and

Dumas have created environments to ease the creation

of composite services [3]. Martin et al. suggest that the

best way to implement Web Services in an enterprise is

to start with a component-based architecture that

exposes business process level services as Web

services [9]. Wada et al have taken a model driven

approach to this problem, building a model of the

domain and then using this to derive an object design

[13]; this kind of modelling has also been used with

SOAs to validate a design [1].

In more loosely coupled community efforts, such as

the JISC e-Framework [11, 17], the first characteristic

of SOA design, High Autonomy, becomes the

dominant problem, as services for the framework are

being developed by a wide variety of institutions for a

number of purposes. What is required is not just a

common repository for services, but a community wide

understanding of the domain, and how independently

authored services fit within.

Wilson et al. present Reference Models as a

potential solution [15]. Broadly speaking a Reference

Model can be thought of as a description of how a set

of services within a Framework collaborate to provide

the necessary functionality for a particular domain.

Reference models are a way to help architects and

software vendors make consistent logical divisions in

their architectures and products. However, they require

a method for describing services and their interactions

at an abstract, logical level.

We believe that the model-driven approach to

service-design, while worthwhile in many domains

where there is a consistent/constrained understanding

of the processes, may be too heavyweight for situations

where the domain is broader and the service model will

need to respond to rapid changes. In these situations an

agile approach seems more appropriate.

3. SRI-DM

The Service Responsibility and Interaction Design

Method (SRI-DM) separates abstract representations of

Services from their implementation. It uses a collection

of logical descriptions (Service Profiles) to describe

how a number of services, regardless of

implementation, might be combined to solve a

particular problem defined as a Use Case scenario. Our

approach is based on the following principles:

• To facilitate and record a clear design path from

a problem scenario to a software

implementation.

• To be informed by agile principles and

practices:

o Start with scenarios that are useful and

simple.

o Enable developers to build the simplest

service architecture with quality attributes

of cohesion and loose coupling.

o Draw on close relationship with domain

experts to define scenarios and re-factor

the SRCs.

o Produce design documentation as part of

the design process rather than using a

document oriented process.

• Use UML 2.0 as a modelling method where

possible, to enable understandability and

promote links to CASE tools.

• Work at an abstract level that is non-prescriptive

at implementation level.

There is a tension when designing services between

ensuring that services are atomic (to encourage reuse)

and ensuring that they are appropriate building blocks

for a higher purpose, enabling the services to be

combined to create a larger system. Services are always

created within a context, and yet must be described

independently from that context to be fully reusable.

SRI-DM achieves this by treating individual Service

Profiles as atomic, and placing the description of how

they might be combined in a separate sequence

diagram that is tied to a particular scenario. Therefore

the method produces a design that has the following

parts:

• A Scenario: presented as a Use Case Diagram

and narrative that describes a problem for which

a set of services can provide a solution.

• Service Profiles: a set of profiles that describe a

number of services at an abstract logical level.

These suggest granularity, and describe the

individual capabilities of each service. They

promote reuse and understanding of the design,

while retaining flexibility in the implementation.

• Sequence Diagram: This describes one

example of how the services can interoperate to

fulfil the scenario.

Service Profiles are not concrete interfaces and so

cannot be described using interface definition

languages (such as WSDL). Instead they set the

granularity of the model, and describe in a semi-formal

way the role of each service and the potential way in

which they might rely on one another.

In the rest of this section we will look at each part of

the SRI-DM - Scenario, Service Profiles, and

Sequences - and describe their formal notation.

3.1. Scenarios

Our method takes as its starting point a scenario that

describes a problem that is to be solved using a set of

interacting services. We have chosen Use Case

diagrams as our method of modeling because they are

high level and implementation independent. From an

agile point of view they are also useful in that they

relatively informal, simple, and help to define and

structure a problem space without too much detail

about the activities within that space. A brief narrative

description is held alongside the diagram as a whole, as

well as for each individual use case. These descriptions

help disambiguate the use cases, explain the roles of

the different actors associated with the use cases, and

focus at a high level on what each use case involves.

Scenarios are developed in a community or user

focused manner in line with agile principles to ensure

that they are relevant. These use case diagrams capture

the practice of an existing user community.

3.2 Service Profiles

Service Profiles are abstract descriptions of services

that may be fulfilled by several different Service

Implementations that may each expose different

concrete interfaces. Service Profiles are thus modelled

in an abstract way that does not prescribe a data model

or dictate explicit methods. To do this we created

Service Responsibility and Collaboration cards (SRCs)

based on Class Responsibilities/ Collaborations, a

modelling technique first described by Beck and

Cunningham for eXtreme Programming (XP) [2].

Our SRCs model the capability of a service to

realise a specific use case (a single bubble from a

larger use case diagram). The aim of the cards is to

help articulate a design, to suggest granularity, to guide

refinement of that design, and to model for

understandability. The SRCs do not show how services

may be combined in a wider scenario, but do model

possible collaborations with other services that might

occur for this service to fulfill its own specific

responsibilities.

An SRC card is a small card (we use A5 address

cards in our design sessions).

• The name of the service appears at the top of the

card.

• Down the left hand side of the card, we list the

responsibilities of the service.

• On the right hand side we list and group other

services which collaborate to fulfill the

responsibilities listed on the left hand side.

The responsibilities of a service describe at a high

level: what is it for, what does it do, and what can it

provide to other components.

The guidance for CRC design is that a class should

not have more than 3-4 responsibilities, as too many

responsibilities corresponds to low cohesion in a class

(a measure of a poor quality design). This guideline

seems appropriate for the SRCs we have developed in

our e-assessment domain cases.

The use case from which the service was derived

can help indicate where collaborations will be required.

In particular, include relationships are a strong

indicator that a collaboration should be used, although

as too many collaborations create a tightly coupled

design they should be suggested sparingly. In

particular, use cases connected through a use case actor

do not necessarily collaborate.

The Service Profile is atomic in that any connection

with other services is described in terms of how that

connection might help this service fulfil its own role.

This is different from describing how a set of services

might be used together for some purpose that is greater

than any individual service.

3.3 Service Sequence Diagrams

At the scenario level, services represented by SRCs

must interact with each other to fulfil a wider purpose.

These interactions are complex and include

transactions, sequences and state. We looked at a

number of UML 2.0 diagrams for representing a

dynamic model, including state and activity diagrams.

We decided that if the scenario modelling was to

maintain the high level of abstraction necessary for

agile development then it would be inappropriate to

declare a detailed data model, or to specify the logic of

the communicating services. So we use Sequence

Diagrams to represent the interactions, showing which

services should communicate and in which order, and

containing enough description to show how the

individual services are responsible for moving and

Figure 1: Use Case for Summative End-to-End CAA

processing data, without having to specify the detail of

the data model or the decision making logic.

4. An Example Factoring

We call the process of deriving a set of services for

a given scenario Service Factoring. The philosophy

behind our method is that this whole process is

transparent and fully audited. It begins with a

community consultation exercise that produces a

number of scenarios. These are then formalised as Use

Case Diagrams, and from each Use Case a SRC (or set

of SRCs) is created. Referring back to the Use Case

Diagram of the Scenario allows us to specify a

Sequence Diagram that describes how these services

interact to fulfil the goal of the scenario.

The authors have been involved in a project called

FREMA (the Framework Reference Model for

Assessment) which has examined how a number of

scenarios from the e-assessment domain might be

supported via services. The Assessment Domain can be

described as a brown-field site for service developers

due to the many existing tools and standards in the

area. Therefore what is required is not just a common

repository for services, but a community wide

understanding of the domain, and how services fit

within it. FREMA has developed a Community Model,

based on a Semantic Wiki that should help the

Assessment Community develop Web Services in this

context.

4.1 Developing the Use Cases

The first part of the FREMA project was to elicit

practice from a number of members of the e-assessment

community via workshops and semi-formal interviews,

including the UK Centre for Educational Technology

Interoperability Standards (CETIS), Qualification

agencies such as SQA and Edexcel, and a number of

Higher Education Institutions. While the resulting view

of assessment was very broad, the most common

scenario was one of Computer Aided Assessment

(CAA); this concerns a lecturer or teacher who can set

summative assessments to be taken digitally. We call

this the End-to-end Summative Assessment Scenario.

Figure 1 shows a part of the Use Case diagram

constructed for this scenario. The granularity of the

Use Cases translates directly to the granularity of the

Service Profiles (although there is not necessarily a

one-to-one mapping of Use Case to Service Profile).

Broadly speaking it has three parts: The first models

the authoring of the assignment (and potentially of the

items within the assignment). The second represents the

run-time system, including the assessment event itself.

The last part models the post-assessment process of

marking and grading. There is no clear distinction

between the parts. For example, scheduling is part of

authoring and the run-time, and feedback is part of the

run-time and the marking/grading

4.2 Constructing the SRCs

Deriving SRCs from Use Cases is a complex

process:

1. Work through each use case. A traditional noun

and verb analysis is a useful technique; verbs

can indicate the responsibilities of the services

that fulfill the use case, and nouns imply a data

model and inform the narrative. From the verb

analysis write down all of the operations needed

for a use case.

2. Consider which operations might be common

with other SRCs and move them from the

responsibilities column to collaborations.

3. Group the operations into responsibilities and

collaborations.

4. Identify which responsibilities would benefit

from which collaboration.

5. Test the completeness/accuracy of the design by

working various scenarios.

6. Re-visit the SRC and re-factor as necessary as

other SRCs are developed, and as common

collaborations become apparent.

Figure 2 shows this process applied to the “Take

Assessment” Use Case (the numbers above each card

refer to the stages described above). The Use Case

description is used to derive the initial list of

operations, which are consequently factored into a set

of responsibilities and collaborations. Sometimes the

operations that are moved to collaborations also remain

as responsibilities (for example, Choose Assessment

spawns a collaboration called Schedule, but remains as

one of the responsibilities of the Service), because the

service still has a responsibility to allow users to

choose an assessment, even if this is done via a

collaboration. On the other hand, Tracking is removed

as a responsibility because it is not something that this

service offers to others.

4.3 Building a Sequence Diagram

A sequence diagram is the way to which a group of

services can interact to fulfill the original scenario. It

cannot be a definitive representation of service

interaction in general, as services are asynchronous,

and some of the communication can be reordered

without affecting the performance of the system as a

whole. So a sequence diagram acts as a demonstration

and validation of the SRCs, rather than as a definitive

template for service interaction. Figure 3 shows a

sequence diagram for the part of the scenario related to

“Take Assessment”, and in particular the interactions

around the candidate actor. Collaborations are

modelled, although in this diagram they are grouped

together into one column to aid clarity.

The sequence diagram describes how the core

services interact so no collaborations are shown; this is

because at this level the services do not need to know

how other services are implemented, merely that they

fulfill their responsibilities. The diagram shows which

services interact, and in what order, in order to make

the scenario happen

State is not shown, because that is an

implementation detail, and the data passed around is

described verbally, but not formally, for the same

reason. The SRCs and Sequence diagrams are not

intended to provide a complete description of

interacting services; it is a reference model, and not an

interface description or detailed process model.

However, we would expect systems builders to be able

to use them to describe their particular implementations

and to aid the construction of interoperable interfaces.

Developers can use the SRCs to decide what

Figure 2: The factoring of the “Take Assessment” Use Case into a SRC

responsibilities their service implementations will take,

and the sequence diagrams to see what consequences

this will mean for interfaces to other services.

4.4 Presenting the Design

Figure 4 shows the final set of SRCs that we derived

after several iterations of the factoring and the re-

factoring process (note that this overview diagram does

not contain the full details for each SRC). The core

services that we believe are needed to support this

activity are shown within the large Summative End-to-

end (FREMA) bubble, with services that may be used

via collaborations around the outside. The core services

are divided into the three parts identified within the use

case earlier (authoring, run-time, and post-assessment),

although this is purely to add clarity to the diagram and

has no engineering consequences.

In the re-factoring process we identified a number of

core services that seemed to be involved in many

collaborations: these were Notify, Track and Metadata

Tagger, these are shown in a separate layer at the

bottom of the bubble. The other collaborations that lie

around the outside of the main bubble seemed less

important, but may well be core services for another

scenario. We have tried to group these into likely areas,

such as Grading and Previewing, but again this

grouping is purely to add clarity.

5. Validation and Discussion

Our validation strategy has been to ensure that the

designs produced via SRI-DM are sensible, accessible

and intuitive. To this end we have undertaken a formal

evaluation of our scenarios and our methods of

presenting them. For our formal evaluation we

presented versions of our e-Assessment research and

resulting scenarios at the CETIS Assessment Special

Interest Group (SIG). This is a self-selecting group

which includes early adopters, developers, and

representatives of standards bodies. The reaction of the

group was encouraging, they believed that the

Figure 3: Sequence Diagram from the Take Assessment Use Case

scenarios that we had developed were accurate and

important to the e-Assessment domain, and the use case

diagrams that we presented captured the scenarios well.

We have also presented the CETIS group with the

SRC and interaction diagrams for the CAA scenario.

Reaction to the cards and the interaction diagram was

good. All delegates agreed that it was a sensible

granularity at which to model services, and that the

SRC and interaction diagrams were suitably expressive.

Many believed that this lightweight modelling would

be useful in their existing service design practice.

Based on this we are now in a position to engage more

directly with community members, in particular with a

group of developers at Kingston University, to

undertake a more formal evaluation of the SRI-DM,

both in terms of its representation (via a formal design

review, evaluating the effectiveness of the model

compared to its aspirations), and as a service design

process (using the SRI-DM to guide the development

of a mini-project at Kingston with a formal evaluation

at the project’s close).

We already use SRI-DM ourselves to create a set of

services for several core assessment scenarios

(including CAA), and as a result have a number of

personal reflections on the design method.

We believe that one of the most difficult challenges

with service design is choosing an appropriate

granularity at which to define services. With SRI-DM

we have chosen a top-down approach that is firmly

built on a starting scenario and use-case diagram.

These are typically high level views of a problem

space, and translating them almost directly into service

profiles produces a high level design But because SRI-

DM does not capture business logic or interfaces in a

detailed way, it becomes easy to re-factor services in

order to break down that high level design to a level at

which the designers are comfortable

This approach is agile, as it requires only a little

modelling overhead, and produces a stable service

design before the expensive process of agreeing data

models and interfaces is undertaken. It also produces

design documentation as part of the design process,

rather than adding a separate task of recording an

external design process.

In addition, the feedback from the domain experts

assures the relevance of the scenarios and the re-

factored service profiles.

Figure 4: SRCs for Summative End-to-End CAA

Another challenge with service design is agreeing

on a service workflow. SRI-DM does not attempt to

define the full rules of interaction (causal relations,

points of synchronization, critical paths, etc). This is

another way in which SRI-DM is an agile approach; a

full model of all the ways in which services can interact

is not needed to produce a working system of services,

and so SRI-DM does not make designers create this.

Instead it demonstrates the validity of a service design

by showing one example of how a set of services could

interact to fulfill the scenario. Our major observation

while developing services with SRI-DM is the paucity

of traditional flat-file documentation for linking

evidence with decision making. This inflexibility in

justifying design decisions may be a real problem with

SOAs due to the distributed way in which services are

often created. To cope with this we have been

developing the notion of a Community Reference

Model alongside SRI-DM, this is a community Web

site, where the scenarios and their evidential resources

can be described, linked and discussed1. We hope that

by explicitly supporting the use-cases, service profiles

and interaction diagrams of SRI-DM we can also

encourage the community to start building common

models of how services can interact to fulfill scenarios,

leading eventually to common services themselves. We

are currently developing this idea using a Semantic

Wiki, and plan to hand this resource over to the e-

assessment community through the CETIS SIG later

this year.

6. Conclusions

In this paper we have presented the Service

Responsibility and Interaction Design Method (SRI-

DM), an agile approach to designing Web Services.

The SRI-DM is a process of factoring abstract service

profiles from formal domain scenarios. In the method

1 For an example see the FREMA Web site:

www.frema.ecs.soton.ac.uk

the scenarios are modelled as use-case diagrams, and

the profiles as Service Responsibility and

Collaboration cards (SRCs). SRCs capture the

granularity of a service by defining the set of

responsibilities that it holds, and the collaborations that

it uses to fulfill those responsibilities. Because SRCs

only model atomic service profiles the SRI-DM also

uses a UML 2.0 sequence diagram to show how the

SRCs interact to fulfill the original scenario. The

sequence diagram is not intended as a full model of all

possible interactions, but as an example of one

interaction that demonstrates the validity of the service

design.

The SRI-DM focuses on the rapid factoring of a set

of services given a well-understood scenario. We are

currently evaluating SRI-DM through an independent

project, and plan to take the method forward to the e-

assessment development community through a Web-

based Community Reference Model.

As SOAs become more reliable, and the standards

underlying them more stable, it seems inevitable that

they will form the basis of many distributed systems. If

these systems are to be created as quickly and as

flexibly as current software deployments then we must

use design methodologies that are agile enough to cope

with rapid turnaround, yet create designs that are fit-

for-purpose, and leave a documentation trail strong

enough to support software throughout its lifetime.

7. References

1. Baresi, L., Heckel, R., Thöne, S., and Varró, D. (2003).

Modeling and validation of service-oriented

architectures: application vs. style. In Proceedings of

the 9th European Software Engineering Conference

held jointly with 11th ACM SIGSOFT International

Symposium on Foundations of Software Engineering

(Helsinki, Finland, September 01 - 05, 2003).

ESEC/FSE-11.

2. Beck, K. and Cunningham, W. (1989). A laboratory for

teaching object oriented thinking. ACM SIGPLAN,

Notices, 24(10):1-6, October 1989.

3. Benatallah B., Sheng Q., and Dumas M. (2003). The

Self-Serv environment for Web services composition.

IEEE Internet Computing, 7(1):40-48, Jan/Feb. 2003.

4. Curbera, F.; Duftler, M.; Khalaf, R.; Nagy, W.; Mukhi,

N.; Weerawarana, S. (2002). "Unraveling the Web

services Web: an introduction to SOAP, WSDL, and

UDDI," Internet Computing, IEEE , vol.6, no.2, pp.86-

93, Mar/Apr 2002.

5. Dijkman, R. and Dumas, M. (2004). Service-oriented

Design: A Multi-viewpoint Approach. International

6. Journal of Cooperative Information Systems 13(4),

December 2004.

7. Fielding, R. T. and Taylor, R. N. 2002. Principled

design of the modern Web architecture. ACM Trans.

Inter. Tech. 2, 2 (May. 2002), 115-150.

8. Foster, I., Kesselman, C., and Tuecke, S. (2001). The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations. Int. J. High Perform. Comput. Appl. 15,

3 (Aug. 2001), 200-222.

9. Highsmith, J. and Cockburn, A. (2001). “Agile

software development: the business of innovation”.

Computer, Sep 2001, Volume: 34, Issue: 9, pg 120-

127, ISSN: 0018-9162.

10. Martin J., Arsanjani A., Tarr P., and Hailpern B.

(2003). "Web Services: Promises and Compromises,"

Queue vol. 1, pp. 48-58, 2003.

11. Mukhi N. K. and Plebani P. (2004). "Supporting

policy-driven behaviors in Web services: experiences

and issues" in proceedings of the 2nd international

Conference on Service Oriented Computing ICSOC

'04, (New York, NY, USA, 2004).

12. Olivier B., Roberts T., and Blinco K., (2005). "The e-

Framework for Education and Research:An Overview".

DEST (Australia). Downloaded 10 March 2007 from

http://www.e-

framework.org/Portals/9/Resources/eframeworkrV1.pd

f

13. Quartel D.A.C., Dijkman R.M., and van Sinderen M.J.

(2004). Methodological Support for Service-oriented

Design with ISDL. In: Proceedings of the 2nd ACM

International Conference on Service Oriented

Computing (ICSOC), New York City, NY, USA, pp. 1-

10, 2004.

14. Wada, H., Suzuki, J., and Oba, K. (2005). Modeling

turnpike: a model-driven framework for domain-

specific software development. In Companion to the

20th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and

Applications (San Diego, CA, USA, October 16 - 20,

2005). OOPSLA '05. ACM Press, New York, NY, 128-

129.

15. Weatherley J. (2005). "A Web service framework for

embedding discovery services in distributed library

interfaces," in proceedings of the 5th ACM/IEEE-CS

Joint Conference on Digital Libraries JCDL '05,

Denver, CO, USA, 2005.

16. Wilson, S., Blinco, K. and Rehak, D. (2004). Service-

Oriented Frameworks: Modeling the infrastructure for

the next generation of e-Learning Systems. A Paper

prepared on behalf of DEST (Australia), JISC-CETIS

(UK), and Industry Canada. Downloaded 10 March

2007 from

http://www.jisc.ac.uk/uploaded_documents/AltilabServ

iceOrientedFrameworks.pdf

17. Larman, C. (2004). Agile and Iterative Development: A

manager’s guide. Pearson Education.

18. JISC (2007). http://www.e-framework.org/.

