N
N

N

HAL

open science

WSPAB: A Tool for Automatic Classification and
Selection of Web Services Using Formal Concept
Analysis
Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Urtado,
Sylvain Vauttier

» To cite this version:

Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Urtado, Sylvain Vauttier. WS-
PAB: A Tool for Automatic Classification and Selection of Web Services Using Formal Concept Anal-
ysis. 6th European Conference on Web Services (ECOWS), Nov 2008, Dublin, Ireland. pp.31-40,
10.1109/ECOWS.2008.27 . lirmm-00533065

HAL Id: lirmm-00533065
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00533065
Submitted on 5 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00533065
https://hal.archives-ouvertes.fr

WSPAB: A Tool for Automatic Classification & Selection of Web Services
Using Formal Concept Analysis

Zeina Azmeh, Marianne Huchard, Chouki Tibermacine
LIRMM, CNRS and Univ. Montpellier II, 161 rue Ada
34392 Montpellier Cedex 5 - France
{Zeina.Azmeh, Marianne.Huchard, Chouki.Tibermacine} @ lirmm.fr

Christelle Urtado, Sylvain Vauttier
LGI2P / Ecole des Mines d’Ales - Parc scientifique G. Besse
30035 Nimes cedex - France
{Christelle.Urtado, Sylvain.Vauttier} @ ema.fr

Abstract

The increased popularity of web services is accompanied
with an increase in both provider and service number. This
fairly large service number causes a deficiency in the selec-
tion of the most pertinent service, and makes it an effort-
ful and time-consuming task. We propose the WSPAB (Web
Service Personal Address Book) tool that aims at defining a
complete solution for facilitating the task of finding the most
pertinent web service. This includes two sub tasks, discov-
ering and selecting. In this paper, we present the first part of
the tool concerning the automation of the selection process,
taking into consideration the quality of service (QoS) and
user preferences. The WSPAB accomplishes the automatic
selection of a service by filtering web services according to
certain aspects of QoS and certain user requirements; then
classifying these services using the formal concept analy-
sis (FCA) approach, enabling users to easily select their
needed service, identify its potential substitutes and keep
trace of them either for future use, or to be shared with oth-
ers.

1. Introduction

Web services are a key concept of service-oriented archi-
tecture (SOA). They provide various functionalities that can
be accessed via the network. In the vision of SOA, the de-
velopment of software systems can be performed by rapid,
low-cost and easy composition of web services. SOA is
defined as “a paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of dif-

ferent ownership domains” [16]. It is built on the basis of
three primary roles: service provider, service registry, and
service requestor'. These primary roles define three pri-
mary operations: publishing, finding, and invoking (see fig-
ure 1). A provider publishes his services to a registry; a
requestor finds a service published on a registry and binds
to its provider to invoke it [11]. Finding the right web ser-
vice to invoke includes: discovering a set of one or more
potential web services, and selecting the most pertinent one
to be invoked. The discovery is accomplished by contact-
ing a service registry, and searching for a service that meets
search criteria. This may return a set of matching web ser-
vices. From this returned set, a service that best matches the
expected requirements will be chosen.

> Registry b

1: pubﬁSh 2 find

| Requestor

Figure 1. SOA primary roles and operations

{

Provider <«——3:invoke

The finding operation described above may become
challenging because of certain issues like:

! Along the paper, we used the term user to refer to the service requestor
role

e The absence of a unified public registry, thus the pos-
sible unawareness of some available registries, which
makes the discovery somewhat, difficult to accomplish

e The possible large number of services in a returned re-
sult set makes the selection of the most pertinent ser-
vice a hard, effortful and time-consuming task.

In this paper, we handle the problem of achieving the au-
tomatic selection of potentially pertinent web services out
of a fairly large set of services, taking into consideration
some quality of service (QoS) aspects with the validation
of user preferences. The term quality of service indicates a
service’s functional and nonfunctional attributes, thus ser-
vice’s usability and utility. There are so many aspects re-
garding the quality of service such as service’s availabil-
ity, validity, accessibility, integrity, performance, reliability,
etc. [15]. In this paper, we tried to address a few aspects
like availability and validity, in addition to other aspects that
reflect user preferences like service providers, free or paid
services, number of operations, specific signatures, etc.

The potentially pertinent services are to be classified, in a
certain way using a certain method of classification, in order
to enable the user of choosing a service and identifying its
potential substitutes clearly and easily.

Having a large set of web services may enable a better
selection of a service, but will make manual selection more
difficult, as mentioned previously. Thus, automatic selec-
tion would economize effort and time, and would give more
opportunities of a better selection, especially when consid-
ering aspects of QoS and user preferences. Furthermore,
providing the user with a few number of pertinent web ser-
vices classified in a way that shows potential services with
their potential substitutes will give the user a clearer orga-
nized view and thus will enable him to do a better selection.

The rest of the paper is organized as follows: A moti-
vating example is demonstrated in Section 2. In Section 3,
we are giving a quick definition of the adopted classification
method. The WSPAB tool is described in Section 4 with the
demonstration of its processing steps using a real web ser-
vices example, and interpreting the resulting classification.
In Section 5, we present the related work. In Section 6, we
summarize our contributions and give our conclusion and
perspectives.

2. A Motivating Example

Along our research, we carried out our experiments on
real web services. We obtained these services through-
out Seekda.com, which is a global web service search en-
gine based on focused crawling, allowing access to publicly
available web services [12]. It indexes and monitors 27K
public web services from over 6K providers [2]. In order
to understand more the problem of manual selection of web

services, we are going to demonstrate an example of a web
service that performs currency conversion. We will first ob-
tain a set of web services, by querying seekda.com using
the keywords “currency + converter”. This returns a result
set of 75 web services®.

We observed that in order to select a certain service,
users follow certain criteria during their search. These crite-
ria are on two levels: functional and nonfunctional (reflects
the QoS concept). Functional means that a service provides
(a) certain operation(s) that meet(s) the required function-
ality, and nonfunctional means that a service has certain
attributes like availability, performance, free or paid, from
specific providers, etc. To verify the functional level, a user
must verify each service interface described by WSDL, in
order to discover what a service offers.

WSDL, the Web Service Description Language is the
standard for defining web service interfaces. It describes
two different aspects of a service: its signature (name, op-
erations with their parameters), and its binding and deploy-
ment details (protocol and location) [16]. By analyzing the
WSDL file, a user can verify the existence of a required op-
eration, thus, can determine the service pertinency. After
this, a user checks the nonfunctional aspects (QoS) of a ser-
vice, whether it is available or not, its response time, etc.
And also attributes like free services, provided by specific
providers, etc. For a fairly large set of web services, this
manual QoS filtration and selection tasks requires time and
effort. The WSPAB automates these tasks, and offers the
user a reduced set of services that meet the required func-
tionality and validate a certain level of QoS. Later on, we
will demonstrate the same example, but automated using
the WSPAB tool.

3. The Adopted Classification Method

As a classification method, we adopt Formal Concept
Analysis [7], a mathematical framework which has already
been successfully applied to variants of the practical prob-
lem of similarity discovery and abstraction emergence in
a wide range of domains including software engineering
[20], machine learning [14], data mining [19] or linguistics
[18].

The classification we build is based on the partially or-
dered structure known as Galois lattice or concept lat-
tice [22] which is induced by a context K, composed of
a binary relation R over a pair of sets O (objects) and A (at-
tributes) (Figure. 2). A formal concept C'is a pair of cor-
responding sets (E, I) such that:
E={ecO|Vi€l (ei) € R}
is called extent (covered objects),
I={i€AlVe€E,(ei € R}
is called intent (shared features).

2The search result set is obtained on 12th of June 2008

For example, ({1, 2}, {b, c}) is a formal concept because
objects 1 and 2 exactly share attributes b and ¢ (and vice-
versa). On the opposite, ({2}, {b,c}) is not a formal con-
cept.

Furthermore, the set of all formal concepts C constitutes
a lattice £ when provided with the following specialization
order based on intent / extent inclusion:

(E1, 1) <¢ (E3,Is) & E; C E5 (or equivalently
I, C Ih).

Figure 3 shows the Hasse diagram of <.

a|b|lc|d|e|f]|]g]|h
1 X X
2 x| x| X X | X
3] x| x X | X | X
4 X | X
5 X | %
6 | X X

Figure 2. Binary relation of K = (O,
A, R) where O = {1,23,4,5,6} and A =
{a,b,c,d,e,f,g,h}.

(123456,)

TR

(236.ah) (123.B) (125, ¢) (145, d)

| —1 11

(23 ,abgh) (12.,bc) (15.cd) (14, de)

T~y

(3, abfgh) (2 ,abcghy (1, bcde)

\I/

(77 , abcdefgh)

Figure 3. Formal concept lattice L.

We are using the formal concept analysis method, in or-
der to classify web services. We accomplish this classifi-
cation by defining a binary relation between services and
operation signatures. Thus, the objects set represents the
services set, and the attributes set represents the operation
signatures set. Later on, we can find further details about
this classification, with an illustrating example.

4. The Web Service Personal Address Book

4.1. General Overview

The Web Service Personal Address Book is a tool that
aims at providing an environment for a simplified dealing
with web services. It consists of two parts: discovery and
selection. The discovery part means that users can search,
select, organize and share their web services. They will
form a community of web service users, in which they can
work with each other towards building a collaborative ad-
dress book of proper recommended web services. And the
selection part means that web services are well filtered and
classified, to enable users of performing an easy proper
selection of the most pertinent service, which meets their
needs and validates certain aspects of QoS, and having the
ability of finding the potential service substitute, in case of
a service failure or discontinuity.

4.2. WSPAB-Related Terminology

The WSPAB uses certain concepts during its processing
steps. These concepts are defined as follows:

e The filtration criterion is a collection of nonfunc-
tional quality attributes: mandatory and optional.
Mandatory attributes indicate the service usability.
They include attributes as availability, validity and per-
formance of a service. Optional attributes present user
preferences. They include attributes as free or paid
services, the maximum number of service operations,
documented or undocumented services, from certain
providers, etc.

e A pertinent service is a service that validates the fil-
tration criterion, thus, validates both mandatory and
optional nonfunctional quality attributes and provides
the needed functionality.

e A service substitute is a service that specializes an-
other service, in other words, it offers an extended
functionality and can replace the other service. It will
be explained further on when interpreting the lattice
that results from the formal concept analysis approach.

4.3. WSPAB in Action

In figure 4, we can see an overview of the WSPAB in
action. We can divide the execution into the following suc-
cessive steps:

e Analysis of web services set

e Filtration of web services

Web Services Set

Extraction
of signatures

Analysis
of web services set

Filtration
(Filtration criterion)

Identification
of pertinent services

Sorting
of signatures

Figure 4. WSPAB in action

Extraction of operation signatures

Identification of pertinent services

Sorting of signatures

FCA-Classification and service lattice construction

In the first step, the set of web services is analyzed so to
extract the URIs (endpoints) of web services. These URIs
are stored in a new set, and are passed to the second step,
the filtration of web services. In this step, all of the web
services specified by their URIs are filtered according to the
filtration criterion. The filtration criterion, as indicated be-
fore, contains two kinds of nonfunctional quality attributes;
mandatory and optional. Each web service is tested against
these attributes, so that, services which do not validate them
are discarded. The filtration checks the mandatory attributes
first, then if validated, it checks the optional attributes. The
filtration step also generates a set of web service URIs, but
a reduced set that contains only services that are assured to
be pure (validate the filtration criterion). In the step of op-
eration signatures extraction, the service URIs listed in the
last produced set are used to obtain the service descriptions
represented as WSDL files. Each WSDL file is parsed, and
operation signatures are extracted. An operation signature
is the combination of the operation name, its input parame-
ters, and its output. A new set is generated from this step. It
contains for each service its URI, its name and its operation

signatures. This set is used in the following step, the perti-
nent service identification step. In this step, a comparison is
carried out between the service signatures and a user given
signature of a potential pertinent operation. For now, we
will be comparing the signatures according to the number
of input parameters. But with the intention of making the
comparisons more precise and accurate later on. After the
comparison of the signatures with the user’s provided signa-
ture, we obtain a reduced set of best matching web services.
In the next step, the signatures are sorted according to the
number of input parameters in each operation. This gives us
groups of operation signatures, and for each group, a new
signature will be generated to represent the group. These
newly generated signatures are then passed to the final step,
the lattice construction step, and are used to build the bi-
nary table of the FCA, to define the binary relation between
the signatures and the services. Then finally, out of this ta-
ble, the service lattice is constructed with the help of a tool
for formal concept analysis, called Galicia (Galois Lattice
Interactive Constructor) [21] [1]. The Galicia tool offers
many lattice construction algorithms. It analyzes the binary
relation between the services and the operations, construct
the corresponding lattice and returns a graphical layout of
the constructed lattice, showing the resulting concepts with
the relations between them.

In the following Section, the WSPAB processing steps
are explained using the example of the currency conversion

web service, which was presented previously.
4.4. Example: Currency Converter

In Section 2, we demonstrated an example of the man-
ual selection of a currency conversion web service. Next,
we will use the same example to show the automatic selec-
tion of the WSPAB tool. We are assuming a user with the
following filtration criterion:

e Mandatory nonfunctional attributes: available and
valid

e Optional nonfunctional attributes: free, with no more
than 6 operations

And with a required functionality represented by the sig-
natures convert(with three input parameters: fromCurrency,
toCurrency, amount) or convert(with two input parameters:
fromCurrency, toCurrency).

We will demonstrate the automated classification and se-
lection step by step as follows:

The result set returned by Seekda.com is distributed on
many HTML pages. Thus, the analysis step in this case rep-
resents an HTML parser. Each HTML page is parsed, and
web services endpoints (URIs) are extracted and saved to a
new set. This set (in our example) contains 75 URIs, and
is passed to the filtration step. In this step, each URI from
the set is checked, so to determine the validity of manda-
tory nonfunctional attributes then the validity of optional
nonfunctional attributes.

These nonfunctional attributes as already specified above
are: available, valid, free services with maximum 6 opera-
tions. They are checked as follows:

e The “availability” attribute is verified by checking
whether the endpoint URI exists or not.

e The “validity” attribute is verified at the WSDL pars-
ing level (signature extraction step), in which the
WSDL structure is verified to be valid or not.

e The free” attribute is verified by two checks, provider
name checking and certain keywords checking. The
provider name is checked against a modifiable prede-
fined list of provider names who provide only paid ser-
vices. The keywords checking is done at the WSDL
parsing level (signature extraction step), by checking
the existence of certain keywords like: license, pass-
word, userld, etc. These keywords are also listed in a
predefined modifiable list.

e The number of operations will be checked in the sig-
nature extraction step.

e Seekda returned result set may contain some repeated
services (i.e. services provided by the same provider
and offering exactly the same operations). These ser-
vices are checked and eliminated in the filtration step
and also in the signature extraction step.

In the next step, the signature extraction step, services that
are invalid, paid, repeated, or having an operation number
higher than the user specified number (which is 6 opera-
tions) are discarded. This is done by parsing every service
WSDL, in order to extract the service signatures. This step
generates a new reduced set that contains for each service:
its URI, its name, and its operations signatures (operation
name with input and output parameter types). These ser-
vices signatures are used in the identification of pertinent
services, in which, a comparison is carried out between a
user’s given signature of a required operation and each op-
eration signature of a service. Services with matching op-
eration signatures are stored in a final set, others are dis-
carded. This final set is illustrated in figure 5, it contains

only 5 services®>.

Servicel
http://www.webservicex.com/CurrencyConvertor.asmx?wsdl
Name: CurrencyConvertor

Operations: ConversionRate (string,string)->double

Service2

http://www.mobile88.com/epayment/curconvert.asmx?wsdl

Name: CurConvert

Operations: GetCurrecySign(string)=>string
ConvertCurrency (string,string, string) > double

Service3

http://www.petermeinl.de/CurrencyConverter/CurrencyConverter.asmx?wsdl

Name: CurrencyConverter
Operations: GetConversionRate (string, string)-=>double
GetConversionRateList () 2 string

Service4
http://www.alraimedia.com/CurrencyConvertor.asmx?wsdl
Name: CurrencyConvertor

Operations: Convert (string, string)->double

Service5

http://ws.houseofdev.com/currencyrates.asmx?wsdl

Name: CurrencyRates

Operations: getConversion(string, string,double)>double
getCurrenciesList () 2 string
getCurrenciesListWithDescription ()= string
getRate (string) > double

Figure 5. List of pertinent web services

In the final step, the operation signatures of all services
are sorted according to the number of parameters, and are
assembled under a unified signature of the form:
op (types of input parameters)—type of output parameter,
as shown in figure 6.

These unified signatures are then used in the FCA binary
table with the final obtained set of services as shown in table
2, in order to build the service lattice using the Galicia tool.

3Service2 has an operation called GetCurrecySign(string), there is an
error (service provider error) in the operation name: ’Currecy’ instead of
’Currency’

0 parameters: op0()2>string
S3: GetConversionRateList ()2 string
S5: getCurrenciesList () >string
S5: getCurrenciesListWithDescription()=>string

1 parameters: opl(string)-=>string| |double
S2: GetCurrecySign (string)>string
S5: getRate(string)>double

2 parameters: op2(string,string)->double
Sl: ConversionRate(string,string)->double
S3: GetConversionRate (string,string)->double
S4: Convert(string,string)-=>double

3 Parameters: op3(string,string,string||double)->double

S2: ConvertCurrency(string,string, string)>double
S5: getConversion(string,string,double)->double

Figure 6. The signature sorting step

The resulting lattice is shown in figure 7. The interpretation
of the lattice is given in the following Section.

In table 1, we can find a summary of the outputs after
each processing step, describing the resulting set with the
obtained number of services.

Table 1. Summary of obtained service sets

In Set Out Set

Analysis Step HTML pages 75 URIs

Filtration & Signature
Extraction Steps

30 repeated, 20 un- 17 URIs, service
available or invalid, | names, operation
28 paid signatures

Pertinent Services | 17
Identification Step

5 URIs, service
names, operation
signatures

4.5. Service Lattice Interpretation & Use

The service lattice in figure 7 reflects the relation be-
tween services and signatures in table 2. It is built by the
Galicia tool as mentioned previously. It contains informa-
tion that can be interpreted using a set of rules that are com-
mon in all concept lattices. These rules are:

e The concepts are represented using the intent (I), ex-
tent (E), reduced I, and reduced E sets. The reduced
sets are deduced from the complete sets as follows:

— A service that appears in the reduced E of a con-
cept is inherited by all the concepts that are above
it, and disappears from their reduced E.

— A signature that appears in the reduced I of a con-
cept is inherited by all the concepts that are be-
low, and disappears from their reduced I.

e When the reduced E is not empty, the concept repre-
sents exactly the service(s) that is/are in reduced E with
its/their signatures in the I set.

e When the reduced E is empty, this signifies that the
concept represents a new service specification (an ab-
stract service) that does not exist in the services set.

From these rules, we can obtain the following informa-
tion from our service lattice:

e It has three concepts presented by the nodes 5, 2, 3
and are respectively:
({Service5, Service2}, {opl(string)—string||double,
op3(string,string,string||double)—double})

({Service5, Service3}, {op0()—string})

({Service3, Service4,
{op2(string,string)—double})

Servicel },

e Service4 and Servicel are equivalent because they
are in the same reduced E set, and they do offer the
same unique operation represented by the signature
op2(string,string)—double

e Service3 can substitute Servicel and Service4, be-
cause it is a specialization of these services. This
means that Service3 offers the same operation that
Servicel and Service4 offer, which has the signature
op2(string,string)—double, and also offers another op-
eration that these two services do not offer, which has
the signature opO()—string.

e Service$ is a substitute of Service2, because it is a spe-
cialization of it, for similar reasons.

e The top of our lattice (node 1) does not present an in-
teresting concept, because there are no common oper-
ations in all the services.

e The bottom of our lattice (node 7) does not present an
interesting concept either, because none of the services
group all the operations listed in I.

The specialization relations between the services are bet-
ter shown in figure 8, in which we can clearly notice the
possible substitute of each service, and the abstract service
deduced from the lattice.

In our approach, we group the operations depending on
the input parameter number of each operation, i.e. we con-
sider that the similarity factor between the operations is the
number of input parameters. Then we generate signatures
that represent these groups of operations, and we use them
to classify the services.

In our example above, in the case of Service5S and
Service2, we can observe the following: Service2 offers
the operation: getCurrecySign(string)—string. This op-
eration takes as an input a string representing a country

Table 2. Binary Relation: Services x Signatures
opo()—string | opi(string)—string||double | opaz(string,string)—double | opz(string, string, string||double)—double
Servicel X

CurrencyConverter
Webservicex.com

Service2 X x
CurConvert
mobile88.com

Service3 X X
CurrencyConverter
petermeinl.de

Service4 X
CurrencyConvertor
alraimedia.com

Service5 X X X
CurrencyRates
houseofdev.com

¥1=0

¥ E={Senviced, Serviced, Serviced, Servicel, ServiceZ}
¥ Reduced I={}

¥ Feduced E={}

<5= ks 3=
¥ |I={op1(string}--=string||double, op3(string, string, string||double)--=double} ¥ |={op0{ }--=string} ¥ |I={op2(string, string}-->double}
¥ E={Serviced, Service2} ¥ E={Serviced, Service3} ¥ E={Serviced, Serviced, Service1}
¥ Reduced [={op1{string}--=string||/double, op3(string, string, string||double)-->double} ¥ Reduced |={op0{ }--=string} ¥ Reduced |={op2(string, string)--=double}
¥ Reduced E=[Serviced} ¥ Reduced E=[} ¥ Reduced E={Serviced, Servicel}
<f= =

¥ |={op2(string, string)--=double, op0i }-=string}
¥ E=[Serviced}

¥ Reduced 1=

¥ Reduced E={Serviced}

¥ E={Services}
¥ Reduced |=0}
¥ Reduced E={Services}

¥ [={op1(string)--=>string||double, oplf }-->string, op3({string, string, string||double)--=double} /

¥ |={op2(string, string)--=double, op1istring)--=string|/double, opl{ }--=string, op3(string, string, string||double)->double}
¥E=[}

¥ Reduced 1=

¥ Reduced E=}

Figure 7. Galicia constructed service lattice

Service2 New Service Service1==Service4

op1(string) - string| |double

op3(string,string,string| | double) - double 0p0() > string

op2(string,string) - double

Service5 Service3

op0() = string
op1(string) - string| |double
op3(string,string,string| | double) - double

op0() ->string
op2(string,string) - double

Figure 8. Services and specialization rela-
tions

name, and returns as an output the currency sign used
in this country. While Service5S offers the operation:
getRate(string)—double. This operation takes as an input
a string representing a currency sign, and returns as an out-
put the currency rate between the input currency sign and
the US dollar. We grouped both of these two operations
under the same signature, op1(string)—double, while they
provide completely different functionalities. And we have
also deduced that Service5 is a substitute of Service2, de-
pending on the resulting lattice. While in fact, Service5 can-
not provide the getCurrcySign(string)—string that Service2
offers. This limitation is to be met in a further work, by us-
ing other similarity measures, such as using a thesaurus to
calculate the similarity between operation names, and simi-
larities between parameter names together with their types.
Defining an accurate similarity measure will lead us towards
optimized results, together with the service lattice structure,
which gives us a clear organized view of the pertinent ser-
vices with their potential substitutes. This enable us of a
better and easier selection of the needed service.

5. Related Work and Discussion

So far, most of the work on web services registries is
focused on their architectural styles (centralized, federated,
peer-to-peer) and the standardization of APIs to publish and
to search for web services descriptions [5]. Registries usu-
ally provide simple data models with limited capabilities for
structuring their contents. UDDI and WSDA registries for
instance [9][8] are designed essentially for the indexation
and the discovery of web services. Their entries do not con-
tain any detailed description of the web services but point
to external descriptions (generally WSDL) maintained by
the web service providers. So, the web service classifica-
tion provided by those registries consist in the use of key-
words that enable to associate web services with business
categories. On the contrary, ebXML registries [10] contain
extensive descriptions of web services, stored thanks to a
complex, extensible data model. This data model enables
the definition of multiple classifications, such as business

categories or packages of logically related web services.
However, classification is handled manually by the web ser-
vice providers, sending explicit classification information in
their web service registration requests. This leads to poorly
structured contents and erroneous web service retrievals. To
address these issues, more recent work have studied more
automatic classification schemes.

In the similarity search field, Dong et al. present a
search engine called Woogle which is able to make sim-
ilarity search between web services [4]. This similarity
search combines multiple techniques (similarity primitives)
to compare web services and their operations. These primi-
tives are applied to different levels of a web service descrip-
tion: input/output parameter names, operation description
and web service description. The authors introduce some al-
gorithms to cluster terms in these descriptions into concepts.
They use then some information retrieval metrics (such as
TF/IDF) to measure the similarity between concepts.

The work presented in the paper cited above is comple-
mentary to ours. The techniques presented are purely se-
mantic while our work is purely syntactic (signature-based).
The goal of similarity search is to find among all avail-
able service operations, which ones are semantically substi-
tutable or composable (the output of one operation is sim-
ilar to the input of another). The solution that we propose
in this paper provides complementary functionalities. In-
deed, while Dong’s solution returns flat result sets, WSPAB
provides, starting from these flat sets, reduced graphs (hier-
archical structures) of concepts.

In [17], Peng et al. present a method to classify and re-
trieve web services in a repository using formal concept
analysis. The authors propose to build a concept lattice
starting from a context where objects are web services in
a UDDI repository and attributes represent the operations
in these services. In this approach, some optimizations are
made in order to reduce the size of operation set used for
building the lattice. Similarity search techniques are used to
compare operation descriptions and input/output messages’
data types, which are extracted from WSDL files. Similar
operations are merged and only one operation among these
ones is put in the context table. References to the other sim-
ilar (merged) operations are stored in an external data struc-
ture to easily find them during web service retrieval. The au-
thors propose an algorithm for retrieving web services. This
algorithm parses the lattice in breadth-first manner from
top to bottom to find the concepts (services/operations) that
match queries defined by users. These queries are first ab-
stracted as formal sequence of operations to be handled then
by this algorithm.

The approach presented in this paper resembles our ap-
proach; there are however some differences. First, in our
approach the lattice is built starting from the (filtered) result
set returned by a web service search engine. In the paper

cited above, the lattice is defined for a whole repository of
web services. We are convinced that, even with size op-
timization of operation sets, building a concept lattice for
large repositories is a time-consuming task. The obtained
lattices are very large and their parsing slows greatly ser-
vice retrieval. Their experiments have been performed on
medium-size repositories (about 2000 web services). In our
approach, experiments have been conducted on large web
service sources with more than 25000 services. The con-
cept lattice built for the whole services present in this web
service source is very large and its parsing will be inevitably
not very efficient.

Second, in our work we give a practical view of retriev-
ing web services. Users of WSPAB can use their favorite
search engine where they can make lookups of services by
simple keywords. Optimization is made on the returned re-
sult set as explained in the previous sections. The classifi-
cation using concept lattices is performed afterwards on a
small list of web services. In Peng’s work, there is no dis-
cussion on how users define their queries. They suppose
that these queries can be abstracted as formal expressions
representing a web service composed of a sequence of op-
erations. These formal expressions are used in their tool to
parse the lattice and retrieve the services that better match
the query.

There exists in the literature some other works similar to
Peng’s one. In [13], FCA is used for component classifi-
cation based on keywords. Besides the lattice construction,
the author investigates incremental specification of queries
for refining the search space. The proposal is applied to a
large Unix system call documentation. In [3], three configu-
rations of FCA are proposed for analyzing web services and
facilitating their selection. In the first configuration a lattice
is built on services described by keywords extracted from
the documentation through a sophisticated process based on
morphological analysis and word frequency metric. In the
second configuration, a lattice emerges from the description
of operations of a given service by their input and output
parameters. In the third configuration, the lattice indicates
how complex types (in signatures) are composed of simple
types. Their case studies use downloads from UDDI reg-
istries. We propose a different FCA configuration, where
the lattice is designed for operational purpose: services are
described by their operations (including input/output pa-
rameters) and effective candidates for substitution can be
found and adapted rapidly. The tool is conceived as a com-
panion to search engines (where keyword-based search is
proposed).

6. Conclusion & Perspectives

In this paper, we presented the WSPAB tool for the au-
tomatic classification and selection of web services from an

online web service repository. This tool processes by mul-
tiple successive steps. It first analyzes the content of the
service repository, querying it to find a first set of candi-
date services. Secondly, it filters this service set according
to functional and nonfunctional criteria, considering user
preferences. It then extracts the operation signatures of
the services from the resulting set in order to further fil-
ter them according to this syntactic information. Finally,
the set of remaining services is classified into a service lat-
tice using Formal Concept Analysis. The obtained lattice
can be used to identify both the service that best adapts to
the user’s needs and its possible substitutes when needed.
WSPAB conforms to the Web 2.0 philosophy as organized
and trusted web service address books enhances sharing and
collaborations among web service user communities.

The main originality of our work lies in the fact that we
use syntactic information on web services where most ex-
isting approaches use manually set quality criteria. This en-
ables our solution to be fully automatic even if some of the
information provided on each service indexed in the repos-
itory is incorrect or incomplete.

Perspectives for this work are numerous. We plan to re-
fine the process proposed in this paper using a thesaurus to
better identify matching services that do not have the exact
searched name. We also intent to extend the proposed tool
in order to deal with semantic web services. At last, we plan
to work on web service discovery, as a preliminary phase of
the process described in this paper, in order not to depend
on some service repository.

References

[1] Galois lattice interactive constructor -
http://galicia.sourceforge.net/.

[2] Seekda.com, a web services search engine:

www.seekda.com.

[3] L. Aversano, M. Bruno, G. Canfora, M. Di Penta, and
D. Distante. Using concept lattices to support service se-
lection. [International Journal of Web Services Research,
3(4):32-51, 2006.

[4] X.Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. In Proceedings of
the Thirtieth International Conference on Very Large Data
Bases (VLDB’04), pages 372-383. VLDB Endowment,
2004.

[5] S. Dustdar and M. Treiber. A view based analysis on
web service registries. Distributed and Parallel Databases,
18:147-171, 2005.

[6] B. Ganter, G. Stumme, and R. Wille, editors. Formal Con-
cept Analysis, Foundations and Applications, volume 3626
of Lecture Notes in Computer Science. Springer, 2005.

[7] B. Ganter and R. Wille. Formal Concept Analysis: Math-
ematical Foundations. Springer-Verlag New York, Inc. Se-
caucus, NJ, USA, 1997.

(8]

(9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

W. Hoschek. The web service discovery architecture. In
I. C. S. Press, editor, Int’l. IEEE/ACM Supercomputing Con-
ference (SC 2002), 2002.

http://uddi.xml.org/. Universal Description, Discovery and
Integration (UDDI) v3.0.2, Fev 2005.
http://www.oasis-open.org/. ebXML Registry Services Spec-
ification (RS) v3.0, May 2005.

N. M. Josuttis. SOA In Practice, The Art of Distributed Sys-
tem Design. O’REILLY, August 2007.

H. Lausen and T. Haselwanter. Finding web services. In
Proc. of the st European Semantic Technology Conference
(ESTC), Vienna, Austria, 2007.

C. Lindig. Concept-based component retrieval. In J. Kohler,
F. Giunchiglia, C. Green, and C. Walther, editors, Working
Notes of the IJCAI-95 Workshop: Formal Approaches to the
Reuse of Plans, Proofs, and Programs, pages 21-25, 1995.
M. Liquiere and J. Sallantin. Structural machine learning
with galois lattice and graphs. In J. W. Shavlik, editor,
ICML, pages 305-313. Morgan Kaufmann, 1998.

A. Mani and A. Nagarajan. Understanding qual-
ity of service for web services, improving the per-
formance of your web services - IBM. Techni-
cal report, http://www.ibm.com/developerworks/library/ws-
quality.html, January 2002.

M. P. Papazoglou. Web Services: Principles and Technol-
ogy. Prentice Hall, 2008.

D. Peng, S. Huang, X. Wang, and A. Zhou. Management
and retrieval of web services based on formal concept analy-
sis. In Proceedings of the The Fifth International Conference
on Computer and Information Technology (CIT’05), pages
269-275. IEEE Computer Society, 2005.

U. Priss. Linguistic applications of formal concept analysis.
In Ganter et al. [6], pages 149-160.

G. Stumme. Efficient data mining based on formal
concept analysis. In A. Hameurlain, R. Cicchetti, and
R. Traunmiiller, editors, DEXA, volume 2453 of Lecture
Notes in Computer Science, pages 534-546. Springer, 2002.
T. Tilley, R. Cole, P. B. 0002, and P. W. Eklund. A survey
of formal concept analysis support for software engineering
activities. In Ganter et al. [6], pages 250-271.

P. Valtchev, D. Grosser, C. Roume, and M. R. Hacene.
GALICIA: an open platform for lattices. In A. d. M. B. Gan-
ter, editor, Using Conceptual Structures: Contributions to
ICCS’03, pages 241-254, Aachen (DE), 2003. Shaker Ver-
lag.

R. Wille. Restructuring lattice theory: an approach based
on hierarchies of concepts. Ordered Sets, 83:445-470, Sept.
1982.

