
Spare CASH: Reclaiming Holes to Minimize Aperiodic
Response Times in a Firm Real-Time Environment∗

Deepu C. Thomas† Sathish Gopalakrishnan‡ Marco Caccamo‡

Chang-Gun Lee§

Abstract

Scheduling periodic tasks that allow some instances to be skipped produces spare
capacity in the schedule. Only a fraction of this spare capacity is uniformly distributed
and can easily be reclaimed for servicing aperiodic requests. The remaining fraction
of the spare capacity is non-uniformly distributed, and no existing technique has been
able to reclaim it. We present a method for improving the response times of aperiodic
tasks by identifying the non-uniform holes in the schedule and adding these holes as
extra capacity to the capacity queue of the CASH mechanism. The non-uniform holes
can account for a significant portion of spare capacity, and reclaiming this capacity
results in considerable improvements to aperiodic response times.

1 Introduction

Real-time systems execute periodic and aperiodic tasks, and each of these tasks has a

deadline. Periodic tasks are recurring, and each instance of such a task is called a job. A

periodic task τi is typically characterized by computation time ci and period pi; the relative

deadline of an instance of a periodic task is assumed to be equal to the period of the task.

Aperiodic tasks are executed only occasionally but often require short response times.

The terms aperiodic task and aperiodic job are used interchangeably in this discussion.

Real-time tasks can be classified based on the consequences of a missed deadline as

follows:

Hard. If a hard real-time task misses its deadline, it is assumed that consequences for

the system are catastrophic. It is therefore imperative that a priori guarantees of

not missing the deadlines be provided for all hard real-time tasks.
∗This work is supported in part by the NSF grant CCR-0237884, and in part by NSF grant CCR-0325716.
†Microsoft Corporation, Redmond, WA 98052, USA; formerly with the University of Illinois at Urbana-

Champaign
‡Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
§Department of Electrical and Computer Engineering, The Ohio State University, Columbus OH 43210,

USA

1

Soft. A soft real-time task may miss deadlines, and missed deadlines lead to degraded

performance or lower quality of service.

Firm. Firm real-time tasks are allowed to miss deadlines or even skip some instances

occasionally. All other instances should complete before their deadlines. When a job

of a firm task is skipped, the processor gains some capacity for executing some other

job.

Liu and Layland [14] were the first to address the problem of scheduling periodic

hard real-time tasks; they developed simple schedulability tests for periodic task sets

scheduled by the Rate Monotonic algorithm or the Earliest Deadline First algorithm.

The RM algorithm assigns higher priorities to tasks with higher rates (lower periods)

and the EDF algorithm assigns higher priorities to tasks with earlier absolute deadlines.

Systems that assign the same priority to every job of a task are called fixed priority real-

time systems; systems that might assign different priorities to different instances of the

same task are called dynamic priority systems. The RM assignment is fixed priority and

EDF is a dynamic priority assignment.

Later research on real-time systems extended Liu and Layland’s analysis to derive

schedulability conditions for hard real-time task sets under more general settings. Feasi-

bility analysis with resource sharing among periodic tasks [18, 4, 3] and in the presence

of aperiodic tasks [13, 19, 12, 20, 9, 21] are important generalizations that have been

studied.

While it is true that there are some safety-critical systems that cannot tolerate a

single deadline miss, many systems (e.g. multimedia systems) are capable of tolerating

some missed deadlines. Moreover, even in safety-critical systems, not all tasks are hard

tasks; some are soft and others are firm real-time tasks. For optimal resource allocation,

soft and firm real-time tasks need to be handled differently.

Skipping a few instances of a firm real-time task allows a scheduler to utilize resources

better and schedule task sets that would otherwise overload the system. Hamdaoui and

Ramanathan [17] proposed the (m, k)-model for representing a firm real-time task where

at least m out of k consecutive jobs must meet their deadlines. They described a heuristic

priority assignment scheme for such tasks but did not develop an exact schedulability

analysis. Bernat and Burns [5] described a technique for utilizing the (m, k)-model in

2

the presence of aperiodic tasks along with an offline guarantee test using a worst-case

formulation for fixed priority scheduling. Koren and Shasha [11] made important contri-

butions when they proved that making optimal use of skips is NP-hard and described two

(efficient, but non-optimal) skip-over algorithms for exploiting skips and increasing the

feasible periodic load and schedule task sets that are slightly overloaded. One skip-over

algorithm is fixed priority and extends RM scheduling; the other algorithm is dynamic

priority and is based on the EDF algorithm. Koren and Shasha modeled a firm real-time

task, τi, using a skip factor, si, which indicates that one instance of τi can be skipped

every si instances. Liu et al. [15] introduced a novel QoS model for networked feedback

control systems: the authors showed that their QoS constraint can directly be related to

the control system’s performance.

Buttazzo and Caccamo [6] proposed a technique for minimizing aperiodic response

times in a firm real-time environment using the model proposed by Koren and Shasha;

the underlying scheduler was the EDF scheduler. Buttazzo and Caccamo reclaimed a por-

tion of the spare time created by skipping jobs to improve the response time for aperiodic

tasks. They, however, were unable to reclaim all the spare time and observed that a sig-

nificant fraction of the spare time created by skipping jobs has a “granular” distribution

across the schedule. They called these non-uniformly distributed capacities holes. Re-

claiming those holes has been an open issue. Marchand and Silly-Chetto [16] developed

two new algorithms, named EDL-RTO and EDL-BWP, which are able to exploit the skip

model to enhance the response time of soft aperiodic requests. Since these algorithms are

based on an optimal server like EDL, their runtime overhead increases on the order of

O(N2) where N is the number of tasks in the system.

In this paper, we propose a novel technique for reclaiming all the spare time, includ-

ing both uniformly distributed and non-uniformly distributed fractions, created when

jobs are skipped in a firm real-time environment; jobs are prioritized using EDF. The

non-uniformly distributed holes are identified offline, and they are utilized for servicing

aperiodic jobs online by the Spare CASH mechanism that provides an aggressive resource

reclamation technique, building upon the CASH mechanism [8]. Experimental results

indicate that the reclamation of the non-uniformly distributed holes leads to significant

improvements in the response time of aperiodic tasks.

3

2 Preliminaries

2.1 Terminology and Assumptions

Each firm periodic task, τi, is characterized by its worst-case computation time, ci, its

period, pi, a relative deadline that is equal to the period, and a skip parameter, si, 2 ≤
si ≤ ∞. The skip parameter specifies the minimum distance between two consecutive

skips. For example, if si = 6, 1 in every 6 instances of task τi can be skipped. When

si = ∞, no skips are allowed and the task is a hard periodic task. The skip parameter can

be viewed as a quality of service measure; higher the s, the better the QoS. τi,j is used to

denote the jth instance of task τi.

Using the terminology introduced by Koren and Shasha [11], every instance of a firm

periodic task can either be red or blue. A red instance must be completed before its

deadline; a blue instance can be aborted at any time. When a blue instance is aborted, we

say that it is skipped. If a blue instance is skipped, then the next s − 1 instances must be

red. On the other hand, if a blue instance completes successfully, the next task instance

is also blue.

2.2 Firm Periodic Task Scheduling

In the hard periodic model, where all task instances are red (no skips are permitted), the

schedulability of a periodic task set can be tested using a simple necessary and sufficient

condition based upon cumulative processor utilization. Liu and Layland [14] showed that

a periodic task set is schedulable by EDF if and only if its cumulative processor utilization

is no greater than 1. That is,

Up =
n∑

i=1

ci

pi
≤ 1. (1)

Analyzing the feasibility of firm periodic tasks is not equally easy. Koren and Shasha [11]

proved that determining whether a set of skippable periodic tasks is schedulable is NP-

hard. They also found that, given a set Γ = {Ti(pi, ci, si)} of firm periodic tasks that allow

skips, then

Ufirm =
n∑

i=1

ci(si − 1)
pisi

≤ 1 (2)

is a necessary condition for the feasibility of Γ, since it represents the utilization based

on the computation that must take place.

4

The concepts mentioned above can be clarified with an example. Consider the task set

shown in Table 1 and the corresponding feasible schedule, obtained by EDF, illustrated

in Figure 1. Notice that the cumulative processor utilization, Up, is greater than 1 (Up =

1.25), but condition (2) is satisfied.

Task Task1 Task2 Task3
Computation 1 2 5

Period 3 4 12
Skip Parameter 4 3 ∞

Up 1.25

Table 1: A schedulable set of firm periodic tasks.

Using the processor demand criterion, Jeffay and Stone [10] showed that a set of hard

periodic tasks is schedulable by EDF if and only if, for any interval L ≥ 0,

L ≥
n∑

i=1

⌊
L

pi

⌋
ci. (3)

Based on this result, Koren and Shasha [11] proved the following theorem, which provides

a sufficient condition for the schedulability of a set of skippable periodic tasks under EDF.

240

1

12

skip

skip skip

skip

15

4 8 16 2012 240

12 2118 27240 963

3τ

2τ

τ

Figure 1: Feasible schedule for tasks in Table 1.

Theorem 1 A set of firm (i.e., skippable) periodic tasks is schedulable if

∀L ≥ 0 L ≥
n∑

i=1

D(i, [0, L]) (4)

where D(i, [0, L]) =
(⌊

L

pi

⌋
−
⌊

L

pisi

⌋)
ci. (5)

In their theorem, D(i, [0, L]) represents the effective time demanded by the periodic task

set over the interval [0, L]. Koren and Shasha [11] also proposed two online scheduling

5

algorithms, Red Tasks Only and Blue When Possible, to handle tasks with skips under

EDF.

Red Tasks Only RTO always skips blue instances, whereas red ones are scheduled ac-

cording to EDF.

Blue When Possible BWP is more flexible than RTO and schedules blue instances when-

ever there are no ready red jobs to execute. Red instances are scheduled according

to EDF.

It is easy to find examples to demonstrate that BWP improves upon RTO in the sense

that it is able to schedule task sets that RTO cannot schedule. In the general case, the

above algorithms are not optimal, but they are optimal under a special task model, called

the deeply-red model.

Definition 1 A system is deeply-red if all tasks are synchronously activated and the first

si − 1 instances of every task τi are red.

In the same paper, Koren and Shasha showed that the worst case for a periodic skip-

pable task set occurs when tasks are deeply-red. This means that, if a task set is schedu-

lable under the deeply-red model, it is also schedulable without this assumption. For this

reason, all results in this paper will be proved using the deeply-red assumption.

Buttazzo and Caccamo [6] defined the equivalent processor utilization, U∗
p , for a set of

firm periodic tasks to be

U∗
p = max

L≥0

{∑
i D(i, [0, L])

L

}
. (6)

They then used the remaining (uniformly distributed) capacity, 1 − U∗
p , to schedule ape-

riodic tasks. However, the equivalent processor utilization over-estimates the system

utilization, and there is some processor capacity that is not reclaimed because it has a

“granular” distribution [6].

The total spare capacity in the system can be calculated and it is given by

Uspare = 1 − Ufirm = 1 − Up +
n∑

i=1

ci

pisi
. (7)

This spare capacity can be categorized into two portions Usa and Ush. A portion of this

capacity Usa = 1 − U∗
p is uniformly distributed and is assigned to the aperiodic server.

6

The remaining portion of the spare capacity is non-uniformly distributed among many

holes [6], and can be calculated as Ush = Uspare − Usa.

Table 2 shows a set of skippable tasks that can be feasibly scheduled under the RTO

model with U∗
p = 0.80. Notice that the capacity distributed among the holes in the sched-

ule accounts for 27 percent of the processor utilization. Being able to reclaim more than

a quarter of the processor capacity can result in marked reductions in response times for

aperiodic tasks.

In this paper, we provide a mechanism for identifying the spare capacity that is irreg-

ularly spaced and for using this capacity to improve response times of aperiodic tasks.

We concentrate on the RTO scheduling approach and defer work on BWP scheduling to a

future paper.

Task Task1 Task2
Computation 2 2

Period 3 5
Skip Parameter 2 2

Up 1.07
U∗

p 0.8
Usa = 1 − U∗

p 0.2
Uspare 0.47
Ush 0.27

Table 2: Illustrating the existence of holes.

2.3 The CASH Mechanism

Using the basic results on firm periodic task scheduling, we address the feasibility anal-

ysis of hybrid task sets, consisting of firm periodic tasks and soft aperiodic requests. In

order to minimize aperiodic response times, aperiodic tasks are handled by the Spare

CASH mechanism. Spare CASH builds upon the CASH algorithm [8]; non-uniformly dis-

tributed spare capacities (holes) for a given firm periodic task set are calculated offline

and placed in the global capacity queue of the CASH server. Before proceeding further,

we provide an outline of the CASH mechanism.

The capacity sharing mechanism (CASH) works in conjunction with the Constant

Bandwidth Server (CBS) [2]. CBS provides isolation between tasks in a system; each

task is allocated a bandwidth and a server to ensure that it does not use more than the

7

allotted bandwidth. CASH was proposed as an approach to handling overruns in systems

executing periodic tasks while preserving isolation. The primary motivation for capacity

sharing was the observation that only a few instances of a task execute for the worst-case

duration and reserving resources using the worst-case consumption is expensive. CASH

advocates a resource budget based on the bandwidth allocated to each task; when a task

exceeds the allocated budget, residual capacities from jobs that finished before their bud-

gets expired can be utilized to handle the overrun. CASH was proposed for periodic task

sets with hard deadlines; if Up is the processor utilization, the unused bandwidth, 1−Up,

can be assigned to an aperiodic task server. A global capacity queue, or a CASH queue, is

used to keep track of the available excess capacity.

The CASH algorithm is specified by the following rules:

1. Each CBS server Si is characterized by the current remaining budget ci and by an

ordered pair (Qi, Ti), where Qi is the maximum budget and Ti is the period. The

ratio Ui = Qi/Ti is the server bandwidth. At each instant, a fixed deadline di,k is

associated with the server. At the beginning di,0 = 0,∀i.

2. Each task instance, τi,j with release time ri,j , handled by server Si is assigned a

dynamic deadline equal to the current server deadline di,k.

3. A server Si is said to be active at time t if there are pending instances. A server is

said to be idle at time t if it is not active.

4. When a task instance τi,j arrives and the server is idle, the server generates a new

deadline di,k = max(ri,j , di,k−1) + Ti and ci is recharged to the maximum value Qi.

5. When a task instance, τi,j , arrives and the server is active the request is queued

with other pending jobs according to a given (arbitrary) discipline.

6. Whenever instance τi,j is scheduled for execution, the server Si uses the capacity cq

in the CASH queue (if there is one) with the earliest deadline dq, such that dq ≤ di,k,

otherwise its own capacity ci is used.

7. Whenever job τi,j executes for δ time units, the used budget cq or ci is decreased by

δ. When cq becomes zero, it is deleted from the CASH queue and the next capacity

in the queue with deadline less than or equal to di,k can be used.

8

8. When the server is active and ci becomes zero, the server budget is recharged at the

maximum value Qi and a new server deadline is generated as di,k = di,k−1 + Ti.

9. When a task instance finishes, the next pending instance, if any, is served using the

current budget and deadline. If there are no pending jobs, the server becomes idle,

the residual capacity ci > 0 (if any) is inserted in the CASH queue with deadline

equal to the server deadline, and ci is set equal to zero.

10. Whenever the processor becomes idle for an interval of time ∆, the capacity cq (if

it exists) with the earliest deadline in the CASH queue is decreased by ∆ until the

CASH queue becomes empty.

CASH was originally developed for hard real-time task sets; our new work pushes the

envelope further by dealing with firm real-time tasks. The holes that occur in a schedule

are identified and added (at the appropriate time) to the CASH queue and can be utilized

by all tasks, especially aperiodic tasks.

3 Spare CASH

In this section, we formally describe the Spare CASH technique assuming that each task,

τi, is handled by a dedicated CBS server, Si, running on a uniprocessor system. Spare

capacities for a given task set are identified offline and added to the global capacity queue

online. Holes are identified over the meta-hyperperiod for the given task set.

Definition 2 Given a set Γ = {Ti(pi, ci, si)} of n periodic tasks that allow skips, the meta

hyper-period, H = lcm(p1 × s1, p2 × s2, . . . , pn × sn), is defined as the period after which the

task schedule repeats itself.

As an example, the meta hyper-period of the task set in Table 2 is 30.

3.1 An Algorithm to Locate Holes

Definition 3 The total activity duration in an interval [t1, t2] is defined as

A[t1, t2] =
∫ t2

t1

f(t)dt where

f(t) =
{

1 processor is busy at t
0 otherwise

.

9

Algorithm 1 LOCATE HOLES AND DETERMINE CAPACITIES

Require: A set Γ = {Ti(pi, ci, si)} of n firm periodic tasks with an equivalent processor
utilization U∗

p .
k ⇐ 0
d−1 ⇐ 0
H ⇐ lcm(c1 × s2, c2 × s2, . . . , cn × sn) {meta hyper-period}
for all tasks Ti do

c∗i = ci/U∗
p ; inflate ci to c∗i to include uniformly distributed portion of spare capacity

end for
Schedule the task set Γ∗ = {Ti(pi, c

∗
i , si)} using the EDF-RTO scheduler

for all time t where (t is a task skip-deadline) and (t ≤ H) do
Ek ⇐ (t − A[0, t]) × U∗

p −∑k−1
j=0 Ej ; amount of a hole

rk ⇐ dk−1 ; hole release time
dk ⇐ t ; hole deadline
Add hole (Ek, rk, dk) to the hole capacity list
k ⇐ k + 1

end for

Remark. It is trivial to observe that A[t1, t2] ≤ t2 − t1. Moreover, since D(i, [0, L]) is the

effective time demand for a firm periodic task Ti, when a task set is schedulable, we must

have the activity duration over any time interval greater than the effective time demand

over that interval. In effect, we can restate Theorem 1 as: a set of firm periodic tasks is

schedulable if

∀L ≥ 0 L ≥ A[0, L] ≥∑n
i=1 D(i, [0, L]) (8)

Definition 4 A time instant t is called a skip deadline if it is the deadline for a task

instance that is skipped.

The algorithm 1 to locate holes in the schedule first inflates the utilization of the task

set by the factor 1/U∗
p . Note that a fraction, Usa = 1 − U∗

p , of the processor capacity is

uniformly distributed and can be reclaimed simply by using an aperiodic task server of

bandwidth Usa. Thus, inflating the execution times accounts for the known uniformly

distributed spare capacity Usa = 1 − U∗
p . The task schedule after this inflation gives us

only the non-uniformly distributed spare capacities, i.e., holes, which are identified in

the second for loop. Spare capacities (the holes) are calculated at every skip deadline

in Algorithm 1 and are characterized by the three-tuple (Ek, rk, dk) with Ek being the

capacity, rk the release time and dk the hole deadline. Capacities can also be calculated

and placed at every task deadline. The algorithm has a complexity of O(Hn) where H is

the meta hyper-period and n represents the number of tasks.

10

In the next section, we will first describe how the identified holes can be reused in

the RTO model. Following the description, we will formally prove that the capacities

identified by Algorithm 1 are indeed holes and that the schedulability of the periodic task

set is preserved.

3.2 Scheduling with the RTO model

In the RTO model, all the blue instances are rejected. Since all blue instances are skipped

uniformly the task schedule repeats every meta hyper-period. The extra capacities are

calculated offline according to Algorithm 1.

skip skip skip skip skip

skip skip skipτ
2

τ
1

�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

0 12 24

0 20

27211815 303 6 9

5 10 15 25 30

0.8 1.2

10

2.8

30

0.8

246 18

2.4

Aperiodic bandwidth (inflation amount)Periodic execution

Hole
Capacities

Figure 2: Task set (Table 2) scheduled using the RTO model with inflated computation
times.

Figure 2 shows the hole capacities for the task set in Table 2. Holes are identified at

every skip deadline. The hole capacity at t = 6 is calculated as E0 = (L − A[0, L]) × U∗
p =

(6 − 5) × 0.8 = 0.8 since A[0, 6] = 5 and U∗
p = 0.8. Similarly, the hole capacity at t = 10 is

E1 = (10 − 7.5) × 0.8 − 0.8 = 1.2. The hole capacity E0 is assigned a deadline d0 = 6, and

released at time 0, while E1 is assigned a deadline d1 = 10 and released at time 6. The

hole capacities for the entire meta hyper-period are calculated offline. They are released

online according to Algorithm 2.

It is important to note that holes correspond to idle intervals in the task schedule with

inflated execution times; however, identifying holes makes it extremely efficient to exploit

spare capacity in the system – this approach is far better than background execution. The

keystone for this work on exploiting holes is to transform background time into reserved

bandwidth by reclaiming resources. In fact, each CBS server is able to reclaim bandwidth

by consuming spare capacity while preserving its own budget. A formal discussion of this

11

Algorithm 2 HOLE CAPACITY RELEASE

k ⇐ 0
loop

t = current time()
if rk = t mod H then

Insert (Ek,
(� t

H � × H
)

+ rk,
(� t

H � × H
)

+ dk) into the global capacity queue.
k ⇐ (k + 1) mod listSize

end if
end loop

intuition follows.

3.3 Theorems and Proofs

Theorem 2 Given a set Γ = {Ti(pi, ci, si)} of n firm periodic tasks with an equivalent

processor utilization factor U∗
p ≤ 1, the inflated task set Γ∗ = {Ti(pi, c

∗
i , si)} where c∗i =

ci/U∗
p is schedulable.

Proof. We need to prove that

∀L ≥ 0 : L ≥
n∑

i=1

D(i, [0, L])

where D(i, [0, L]) =
(⌊

L

pi

⌋
−
⌊

L

pisi

⌋)
× c∗i .

Since c∗i = ci/U∗
p , alternatively, we need to prove that

∀L ≥ 0 : L ≥
(

n∑
i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
∗ ci

U∗
p

)
.

By the definition of U∗
p (Equation (6)), we have

U∗
p ≥

(
n∑

i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
× ci

L

)
⇒

L ≥
(

n∑
i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
× ci

U∗
p

)
. �

Theorem 3 Algorithm 1 preserves the aperiodic bandwidth, i.e., Usa = 1 − U∗
p over any

time interval [t1, t2].

Proof. We will consider three cases.

12

Case 1: Processor is fully occupied during interval [t1, t2] Algorithm 1 assumes

that the time between [t1, t2] is divided into discrete time units such that each unit

resembles Figure 3.

���
���
���
���
���

���
���
���
���
���

U∗
p1 − U∗

p

Figure 3: A single unit of time.

Hence for every ∆ = t2 − t1, Usa × ∆ is available as aperiodic bandwidth. This

however increases the computation for task Ti to ci/U∗
p ; the schedulability for which

is proved in Theorem 2.

Case 2: Processor is idle during interval [t1, t2] In Algorithm 1, when hole capacity

is calculated at every skip deadline, only a fraction, U∗
p , of it is identified. The

remaining spare capacity is the aperiodic bandwidth Usa = 1 − U∗
p . Therefore, for

any idle interval, [t1, t2], the aperiodic bandwidth is conserved.

Case 3: Processor is partially busy during interval [t1, t2] This case is a combina-

tion of Case 1 and Case 2. Since the theorem holds for Case 1 and Case 2, it holds

for this case. �

Theorem 4 Addition of hole capacities does not affect the schedulability of the original

task set Γ = {Ti(pi, ci, si)} .

Proof. We need to prove

∀L :≥
n∑

i=1

D(i, [0, L]) + (1 − U∗
p)L +

∑
k,dk≤L

Ek (9)

where D(i, [0, L]) is the effective time demanded by Ti(pi, ci, si), (1 − U∗
p)L is the total

aperiodic bandwidth in [0, L] and Ek is the hole capacity with deadline dk.

By taking the (1−U∗
p)L term to the left-hand side and in (9) and then dividing through-

out by U∗
p , we need to show

L ≥
∑n

i=1 D(i, [0, L])
U∗

p

+

∑
k,dk≤L Ek

U∗
p

. (10)

13

Algorithm 1 uses the task set with inflated computation times, Γ∗. However, since

U∗
p ≤ 1, Γ∗ is schedulable. From (8), we have:

A[0, L] ≥
{

n∑
i=1

(⌊
L

pi

⌋
−
⌊

L

pisi

⌋)
× ci

U∗
p

}

=
∑n

i=1 D(i, [0, L])
U∗

p

.

Using the above inequality in (10), to prove the theorem, we need to show that (L −
A[0, L]) × U∗

p ≥ ∑k,dk≤L Ek. This, however, follows directly from Algorithm 1 when L is a

skip deadline because Ek,dk=L = (L−A[0, L])×U∗
p −
∑

j,dj<L Ej . If L is not a skip deadline,

let L′ be the greatest skip deadline such that L′ < L (L′ can be 0.) Then, we have

(L′ − A[0, L′]) × U∗
p =

∑
k,dk≤L′

Ek. (11)

Rewriting L − A[0, L] as (L − L′) − A[L′, L] + L′ − A[0, L′], we need to show that ((L −
L′) − A[L′, L] + L′ − A[0, L′]) × U∗

p ≥∑k,dk<L Ek. Using (11), we simply need to prove that

(L − L′) − A[L′, L] ≥ 0. This is trivial because the activity over a time interval cannot

exceed the length of the interval. �

3.4 Scheduling with the BWP model

Having discussed scheduling of firm periodic tasks and aperiodic tasks under the RTO

model, we turn our attention to the BWP model. Before we can do this, we need to

introduce the notion of task patterns.

Definition 5 A task pattern is defined as a fixed series of skipped and red instances such

that the minimum distance between two skipped instances is equal to the skip parameter

s.

It is easy to see that the total number of unique task patterns for a task τi is equal to

si – any one of the first si jobs may be skipped, and depending on which job is dropped a

pattern is created. For task set with n tasks, the total number of pattern combinations is

Ψ = s1 × s2 × · · · × sn. The total number of unique task patterns for a hard task is equal

to 1.

For the task set in Table 2 the total number of task pattern combinations is Ψ =

s1 × s2 = 2× 2 = 4. One example of these task pattern combinations is shown in Figure 2.

Another example is shown in Figure 4.

14

skip skip skip skip skip

skip skip skipτ
2

τ
1

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

0 12 24

0 20

27211815 303 6 9

5 10 15 25 30

0.4

30

0.4

3 9

2.8

15

0.8 2.0

20 27

1.6

Capacities

Periodic execution Aperiodic bandwidth

Hole

Figure 4: A combination of task patterns for the task set shown in Table 2.

The BWP model schedules blue instances when there are no ready red instances of

periodic tasks or aperiodic jobs to schedule. This causes the blue instances to always

execute in background. When a blue instance completes successfully, the next task in-

stance is also blue; which leads to a change in the task pattern impacting the way the

hole capacities are distributed across the schedule.

The spare capacity is calculated by Algorithm 1 under the assumption that all blue in-

stances are rejected. We could recalculate the extra capacities each time a blue instance

completes successfully but the operation has to performed online unlike in Section 3.2

leading to an overhead O(Hn). We propose a scheme that has lower computational over-

head but requires extra storage.

Given a set Γ = {Ti(pi, ci, si)} of n periodic tasks that allow skips, the distribution of

the hole capacity is calculated for all Ψ = s1 × s2 × · · · × sn combinations. Each pattern

combination results in a unique hole capacity distribution which is stored in a hash table

indexed by the corresponding pattern combination.

When a blue instance completes successfully, the task pattern change is detected and

• The current hole capacity (from the old pattern combination) present in the global

capacity queue is deleted.

• Hole capacities computed offline for the new pattern combination are released start-

ing from the nearest skip deadline of the new pattern combination.

The online cost is minimal since the cost of pattern lookup is O(1) (hash table). Rules

for entering holes into the CASH queue are identical to those specified in Algorithm 2.

The pattern remains unchanged until a blue instance is completed.

15

An example

skip skip

skipτ
2

τ
1

��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

0 12

0

153 6 9

5 10 15

0.8 1.2

106

Periodic execution

Aperiodic bandwidth

Hole
Capacities

(a) Pattern combination 1

skip skip skip

skipτ
2

τ
1

��
��
��
��
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

���
���
���
���

0 12

0

153 6 9

5 10 15

0.4

3 9

2.8

15Capacities

0.8

Periodic execution

Aperiodic bandwidth

Hole

(b) Pattern combination 2

Figure 5: Task pattern combinations for task set in Table 2

Figure 5 shows the hole capacities for two pattern combinations for the task set in

Table 2. Notice that the total time duration of each pattern combination is equal to the

hyper-period of the task set in Table 2, namely H = 15.

Let us now consider a schedule in which a blue instance of a task is able to complete

successfully. Figure 6 shows such a schedule: the blue instance of task τ2 released at time

t = 15 completes execution. This triggers a pattern switch from the current pattern com-

bination shown in Figure 5(a) to the new pattern combination illustrated in Figure 5(b)

at the nearest skip deadline of Pattern combination 2, time t = 18.

A blue instance executes with background priority, since both periodic and aperiodic

tasks can preempt it. The execution time of a blue instance is analogous to idle time and

idle time rules of CASH apply. This results in the hole capacity placed at time t = 18

decreasing from 2.4 to 2.4 − c2 = 0.4, and being deleted when the pattern switches. The

schedule continues to release hole capacity from the nearest skip deadline, t = 18, of

Pattern combination 2.

Theorem 5 A task pattern switch, which leads to a new hole capacity distribution, does

not cause a deadline miss for periodic tasks.

Proof. The task set Γ is schedulable with the addition of hole capacities across all Ψ task

patterns by Theorem 4.

Let T c be the time at which a blue instance completes and T s be the time at which the

16

skip skip

skip

Blue instance
completes

skip skip

skip

skip

Pattern switch

(deleted)

τ
2

τ
1

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�

�
�
�
�

��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

0 12 24

0 20

27211815 303 6 9

5 10 15 25 30

0.8 1.2

10 30246 18Capacities

2.8 0.82.4 ==> 0.4

Aperiodic bandwidth

Hole

Periodic execution

Figure 6: Schedule produced by BWP for the task set shown in Table 2.

task pattern switch occurs.

We consider two cases:

• Case A: ∀t, T c ≤ t ≤ T s: The execution time of a blue instance is analogous to idle

time and we can apply the Idle Interval Lemma to conclude that events occurring

at time t ≤ T c do not impact the schedule beyond T c. Since the active hole capacity

is deleted at time instant T c, there exists no hole capacity for the time interval

T c ≤ t ≤ T s. Since the BWP algorithm can find a schedule when test condition (2) is

satisfied [11], the task set remains schedulable in the range [T c, T s].

• Case B: ∀t, ≥ T s: This time interval belongs exclusively to the new task pattern.

This case follows directly from Theorem 4. �

It is also possible to store only a subset of pattern combinations. Then, successful

completion of a blue instance may not lead to the next instance being blue. In such

situations, the overhead is reduced because there are fewer pattern switches, but this

will produce sub-optimal results.

4 Experimental Results

Spare CASH has been simulated using RTSIM [1] to evaluate the performance of the pro-

posed technique. In this section, we present the results of our experiments. To evaluate

the performance improvement, the Spare CASH algorithm is compared against the CASH

algorithm that utilizes only uniformly distributed portion of space capacity. Periodic tasks

are handled using the RTO scheduling policy.

17

The six experiments described in this section can be grouped into two sets. The first

set shows the performance of the algorithms as a function of the aperiodic load, for three

different values of hole capacity (Ush). The second set of experiments tests the sensitivity

of the algorithms to the average computation time of aperiodic requests.

The performance of the algorithms were measured by computing the average aperiodic

response time as a function of the mean aperiodic load. Each aperiodic response time has

been normalized with respect to the average aperiodic computation time. Thus, a value of

5 on the y-axis actually means an average response time five times longer than the task

computation time; a value of 1 corresponds to the minimum achievable response time.

The results have been averaged over 20 runs, each of duration 1,000,000 time units.

The 98% confidence interval is tight (but not plotted) and demonstrates the accuracy

of the simulations. Execution times of aperiodic requests were chosen from a uniform

distribution over a predefined interval, whereas their inter-arrival times were generated

according to an exponential distribution, with the mean computed to impose a specific

aperiodic load ρa. The periodic task set consists of five periodic tasks with U∗
p = 0.90

and different hole capacities, Ush. The objective of the experiments is to measure the

improvement in the response time of aperiodic tasks when using Spare CASH. We use

the CASH mechanism to queue holes that result from skips and our intention is not to

model early completions that motivated the initial development of CASH [8].

4.1 Varying Aperiodic Load

The first set of experiments includes three simulations which show the performance of

the algorithms as a function of the aperiodic load for low, medium and high values of

Ush. Execution times of aperiodic requests were chosen to be uniformly distributed in the

interval [2, 10]. Periods, computation times, and skip parameters of the tasks for every

simulation are shown in Table 3. Notice that the value of Ush is increased from the first to

the third simulation which means that more instances are skipped in the second and third

experiment. The equivalent processor utilization, U∗
p , is kept constant at 0.90 for all three

experiments and thus the aperiodic server has a fixed bandwidth Usa = 1 − U∗
p = 0.10.

Figure 7 shows the results of the first experiment, with Ush = 0.12, in which very few

periodic instances are skipped and includes a periodic hard task. Uspare represents the

total spare capacity, which is Usa +Ush. As the reader can see, the Spare CASH algorithm

18

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.05 0.1 0.15 0.2 0.25

N
or

m
al

iz
ed

 a
pe

rio
di

c
re

sp
on

se
 ti

m
e

Average aperiodic load

U*
p = 0.90, Ush = 0.12, Uspare = 0.22

CASH
SCASH

Figure 7: Performance results of simulation 1.

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.05 0.1 0.15 0.2 0.25 0.3

N
or

m
al

iz
ed

 a
pe

rio
di

c
re

sp
on

se
 ti

m
e

Average aperiodic load

U*
p = 0.90, Ush = 0.20, Uspare = 0.30

CASH
SCASH

Figure 8: Performance results of simulation 2.

 0

 5

 10

 15

 20

 25

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
or

m
al

iz
ed

 a
pe

rio
di

c
re

sp
on

se
 ti

m
e

Average aperiodic load

U*
p = 0.90, Ush = 0.27, Uspare = 0.38

CASH
SCASH

Figure 9: Performance results of simulation 3.

19

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
or

m
al

iz
ed

 a
pe

rio
di

c
re

sp
on

se
 ti

m
e

Average aperiodic load

U*
p = 0.90, Ush = 0.27, Uspare = 0.38, ACT = [5-10]

CASH
SCASH

Figure 10: Performance results of simulation 4.

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
or

m
al

iz
ed

 a
pe

rio
di

c
re

sp
on

se
 ti

m
e

Average aperiodic load

U*
p = 0.90, Ush = 0.27, Uspare = 0.38, ACT = [15-20]

CASH
SCASH

Figure 11: Performance results of simulation 5.

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
or

m
al

iz
ed

 a
pe

rio
di

c
re

sp
on

se
 ti

m
e

Average aperiodic load

U*
p = 0.90, Uh = 0.27, Usmax

 = 0.38, ACT = [25-30]

CASH
SCASH

Figure 12: Performance results of simulation 6.

20

Simulation # Task Task1 Task2 Task3 Task4 Task5
Computation 8 5 35 15 20

I Period 90 100 150 60 60
Skip Parameter 5 3 ∞ 5 5

Computation 12 5 50 20 25
II Period 90 100 150 60 60

Skip Parameter 2 3 3 2 2
Computation 10 2 46 18 26

III Period 90 100 150 55 55
Skip Parameter 2 2 2 2 2

Table 3: Parameters: first set of simulations.

outperforms CASH for values of ρa in the range [0.08,0.22]. This range is approximately

equal to Ush. For values of ρa outside this range the aperiodic response behavior for both

the algorithms are similar. The aperiodic response time under the CASH algorithm grows

at a moderate pace after an initial spurt since aperiodic requests continue to be serviced

during the holes with deadlines periodically postponed according to CBS rules.

Figure 8 refers to the second experiment, in which Ush = 0.20. More periodic instances

are skipped which results in a lower aperiodic response when compared to the first ex-

periment, as aperiodic load remains identical. Spare CASH improves aperiodic response

time for values of ρa in the range [0.08,0.28]. This range is higher than the first exper-

iment since Ush = 0.20 > 0.12. Again, the performance of both algorithms is seen to be

similar for values outside this range.

The results of the third experiment is shown in Figure 9. In this case, Ush = 0.27, the

highest value in all the experiments. The improvement in aperiodic response time occurs

over a larger range [0.08-0.33]; thus the Spare CASH algorithm performs best for higher

values of hole capacities.

The Spare CASH algorithm works by locating hole capacities and placing them in

the global capacity queue. Thus the aperiodic server can prevent unnecessary deadline

postponements while executing in the hole region, enabling a better aperiodic response

time.

According to the first set of experiments, three distinct zones can be identified in terms

of achieved performance:

1. ρa ≤ Usa: In this zone, aperiodic response of CASH and Spare CASH are identical.

21

If aperiodic load is less than Usa, CASH can be as competitive as Spare CASH is

scheduling aperiodic tasks. The hole capacity, Ush, is not utilized much in this traffic

zone.

2. Usa < ρa ≤ Uspare: Here Spare CASH outperforms CASH. The workload is consis-

tently greater than Usa and therefore the holes are necessary and Spare CASH is

able to serve aperiodic tasks better.

3. ρa > Uspare: Aperiodic response is identical again. When the aperiodic workload

exceeds Usa + Ush, the response times increase rapidly for both CASH and Spare

CASH. The aperiodic tasks saturate all capacity and this leads to the convergence

in performance.

Moreover, we observe that when the number of skips increases, the gap between CASH

and Spare CASH decreases. This might seem to be counter-intuitive but the reason is

straightforward: when more jobs are skipped, Usa also increases and reclamation of holes

is overshadowed by the increase in Usa. Thus the gap between CASH and Spare CASH

reduces when we increase the skips. In our experiment, when all tasks have a skip factor

of 2, the effect is almost the same as doubling the period of the tasks. A lot of spare

capacity is uniformly distributed and can be reclaimed quite easily by a simple CASH

server.

4.2 Analysis of Sensitivity to Aperiodic Computation Times

To test the sensitivity of the algorithms with respect to the length of aperiodic tasks,

three simulations were carried out using task sets with short, medium, and long aperi-

odic computation times (ACT). In particular, execution times of aperiodic requests were

chosen from the uniform distribution over the interval [5, 10] for Simulation 4, [15, 20] for

Simulation 5, and [25, 30] for Simulation 6. To limit the total number of graphs, the peri-

odic tasks used were only those used in Simulation 3. The results of these experiments

are shown in Figures 10, 11, and 12 respectively.

The improvement in performance achieved by Spare CASH over CASH is more signif-

icant when aperiodic requests have short computation times. As the ACTs become longer,

the performance of Spare CASH tends to be similar to the one achieved by CASH. This

is because, for long aperiodic tasks, advancing the position of small slack intervals in the

22

schedule does not create a great impact on the response times.

5 Conclusion

In this paper, we presented an algorithm for reclaiming holes that are created when

scheduling tasks that allow skips. The holes are identified offline, and are introduced

online as capacities in the CASH [8] queue. These holes are then utilized for minimizing

the response times of aperiodic tasks.

To the best of our knowledge, this is the first work that describes a technique for

reclaiming holes in a firm periodic real time environment. Identifying and reclaiming

holes transforms background capacity into reserved capacity; this transformation results

in improved behavior of Constant Bandwidth Servers. In this work, we push the envelope

on the applications of the CASH technique by utilizing it in a firm real time environment.

We have considered the RTO (Red Tasks Only) and the BWP (Blue When Possible)

strategy for scheduling periodic tasks. Extensive experimentation with the RTO strategy

reveals that our approach can significantly improve response times for aperiodic tasks.

In our future investigations, we will seek for algorithms that are more efficient, and

continue experiments with the BWP strategy. We would also like to improve the idle

time handling of the CASH algorithm to obtain even better response times. So far, we

have dealt with only the deeply-red task model and we need to generalize our approach

to systems with arbitrary offsets because our approach requires us to know how holes

are distributed in a schedule and this distribution will change when tasks have different

offsets. Finally, we note that we can improve response times by advancing hole deadlines

(using techniques similar to TB* [7]) and plan to study this extension and present our

results in a subsequent publication.

References

[1] Real-time system simulator (RTSIM). http://www.rtsim.sssup.it.

[2] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time sys-

tems. In Proceedings of the IEEE Real-Time Systems Symposium, December 1998.

23

[3] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new

scheduling theory to static priority preemptive scheduling. Software Engineering

Journal, 5(8):284–292, September 1993.

[4] T.P. Baker. Stack-based scheduling of real-time processes. The Journal of Real-Time

Systems, 1(3):67–100, 1991.

[5] G. Bernat and A. Burns. Combining (n, m)-hard deadlines and dual priority schedul-

ing. In Proceedings of the IEEE Real-Time Systems Symposium, pages 46–57, De-

cember 1997.

[6] G. Buttazzo and M. Caccamo. Minimizing aperiodic response times in a firm real-

time environment. IEEE Transactions on Software Engineering, 25(1):22–32, Jan-

uary/February 1999.

[7] G.C. Buttazzo and F. Sensini. Optimal deadline assignment for scheduling soft

aperiodic tasks in hard real-time environments. IEEE Transactions on Computers,

48(10):1035–1052, October 1999.

[8] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. In

Proceedings of the IEEE Real-Time Systems Symposium, December 2000.

[9] T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline scheduling environ-

ment. Real-Time Systems, pages 21–36, 1995.

[10] K. Jeffay and D. Stone. Accounting for interrupt handling costs in dynamic priority

task systems. In Proceedings of the 14th IEEE Real-Time Systems Symposium, pages

212–221, December 1993.

[11] G. Koren and D. Sasha. Skip-over: Algorithms and complexity for overloaded sys-

tems that allow skips. In Proceedings of the IEEE Real-Time Systems Symposium,

pages 110–117, December 1995.

[12] J.P. Lehoczky and S.R. Ramos-Thuel. An optimal algorithm for scheduling soft-

aperiodic tasks in fixed-priority preemptive systems. In Proceedings of the 13th IEEE

Real-Time Systems Symposium, pages 110–123, December 1992.

[13] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic responsiveness in

hard real-time environments. In Proceedings of the IEEE Real-Time Systems Sym-

posium, pages 261–270, December 1987.

[14] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard

real-time environment. Journal of the ACM, 1(20):40–61, 1973.

24

[15] D. Liu, X.S. Hu, M.D. Lemmon, and Q. Ling. Firm real-time system scheduling

based on a novel QoS constraint. In Proceedings of the IEEE Real-Time Systems

Symposium, December 2003.

[16] A. Marchand and M. Silly-Chetto. QoS and aperiodic tasks scheduling for real-time

linux applications. In Proceedings of the 6th RTL Workshop, November 2004.

[17] M.Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for

streams with (m, k)-firm deadlines. IEEE Transactions on Computers, 12(44):1443–

1451, December 1995.

[18] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach

to real-time synchronization. IEEE Transactions on Computers, 9(39):1175–1185,

September 1990.

[19] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic scheduling for hard real-time sys-

tem. Journal of Real-Time Systems, (1):27–60, 1989.

[20] M. Spuri and G.C. Buttazzo. Efficient aperiodic service under earliest deadline

scheduling. In Proceedings of the IEEE Real-Time System Symposium, pages 2–11,

December 1994.

[21] M. Spuri and G.C. Buttazzo. Scheduling aperiodic tasks in dynamic priority systems.

Real-Time Systems, 2(10):179–210, 1996.

25

