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Abstract

This paper presents a general framework for analyzing

and designing embedded systems with energy and timing

requirements. A set of realistic assumptions is considered

in the model in order to apply the results in practical real-

time applications. For example, the processor is assumed

to have as a set of discrete operating modes, each charac-

terized by speed, power consumption. The transition delay

between modes is considered. To take I/O operations into

account, task computation times are modeled with a part

that scales with the speed and a part having a fixed dura-

tion. Given a set of real-time tasks, the proposed method

allows to compute the optimal sequence of voltage/speed

changes that approximates the minimum continuous speed

which guarantees the feasibility of the system. The analysis

is performed both under fixed and dynamic priority assign-

ments.

1. Introduction

The number of embedded systems operated by batteries

is increasing in different application domains. In these sys-

tems, reducing the energy consumption is of primary impor-

tance to prolong their lifetime. For this reason, a new gener-

ation of processors [13, 21, 30, 12] allow the application to

dynamically vary the voltage and the operating frequency to

balance computational speed versus energy consumption.

At the operating system level, suitable scheduling poli-

cies have been proposed in the literature to exploit voltage

variable processors. Such policies are referred to as Dy-

namic Voltage Scheduling (DVS), because the scheduler, in

addition to selecting the executing task, has also to select

the operating voltage and frequency.

We distinguish between static and dynamic DVS. Static

techniques use off-line parameters, such as periods (or min-

imum interarrival times) and worst-case execution cycles

(WCECs), to select the appropriate voltage/speed operat-

ing mode to be used. Dynamic techniques (based on slack

reclamation) take advantage of early completions of tasks

to further reduce the speed and save more energy [3, 27].

Static DVS can be further divided in two classes. In

the first class, a single optimal speed is computed off-line

and never changed. Pillai and Shin [22] derived the mini-

mal speed that can make a task set schedulable under EDF,

and proposed a near-optimal method under RM. Saewong

and Rajkumar provided an algorithm to find the optimal

speed value for fixed priority assignments [26], assuming

that the speed of the processor can be varied continuously

in a given range. In practice, however, processors provide a

finite number of discrete speeds. If the optimal speed is not

available on a processor, it has to be approximated with the

closest available discrete level higher than the optimal one.

This solution, however, may cause a waste of computational

capacity and, consequently, of energy, especially when the

number of available speeds is small. For this reason, Ishi-

hara and Yasuura [14] modeled processors with a limited

number of operating frequencies. However they did not

consider speed switching overhead and task preemptions.

In a second class of static DVS methods, the processor

speed is not fixed but statically decided before system ex-

ecution based on the task parameters. Some of these meth-

ods propose to assign a different speed to each task [3, 26].

Some others adopt a more general scheme, where the speed

switching instants are more freely chosen and, typically, oc-

cur at the activation/deadline of some job [31, 19]. The

energy saved by these methods is higher because the pro-

cessor speed can be tightly shaped in order to provide the

minimum number of cycles needed in every interval.

A major drawback of this approach, which prevents its

use in real-world applications, derives from the tight rela-

tionship established between the schedule and the power

management scheme. If, for some reason, some task ac-

tivation is lost or delayed, the entire speed assignment is

affected, resulting in a potential domino effect on the other

tasks in the system, which could miss their deadlines. In this

sense, such a speed assignment scheme is fragile because it

is affected by the misbehavior of a task. Running always

at a fixed speed is a more robust design practice, because it

avoids this potential problem.

Another weakness of many energy-aware algorithms

proposed in the literature is due to the set of assumptions,

often not realistic, which are made to simplify the solution.

Besides considering continuous voltage scaling, most meth-

ods neglect the delay due to a voltage transition. In some

approaches [15, 20] such a delay is considered in the pro-

cessor model, but the methods have been developed only for
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dynamic techniques aimed at reducing the slack time.

Another simplifying hypothesis usually made for reduc-

ing the complexity of the schedulability analysis is to con-

sider tasks with relative deadlines equal to periods [22], so

that task set feasibility can be checked using the simple

Liu and Layland utilization bound [18], both under RM and

EDF scheduling. Notice that, under fixed priority schedul-

ing, the use of the utilization bound is even more restrictive,

because the Liu and Layland schedulability test is only suf-

ficient, leaving many feasible task sets out of consideration,

thus preventing optimal solutions.

1.1. Contributions of the paper

In this paper, we present a general framework for analyz-

ing and designing embedded systems with energy and tim-

ing requirements. The proposed approach allows minimiz-

ing energy consumption while guaranteeing task deadlines.

Our method can be classified as a static DVS algorithm, in

that it is able to compute off line the optimal sequence of

voltage/speed changes that minimize energy consumption

while guaranteeing the absence of deadline misses. In addi-

tion, a major contribution of this work is to consider more

realistic assumptions in the model, which allow the method

to be used in practical applications. In particular, the pro-

posed method presents the following characteristics:

• The algorithm applies to a set of periodic (or sporadic)

tasks, where deadlines are allowed to be less than or

equal to periods (or minimum interarrival times).

• The algorithm is independent of the task schedule, so

it is robust against potential domino effects due to the

misbehavior of one or more tasks.

• It does not assume a continuous range of available

speeds in the processor, but a set of discrete operating

modes, each characterized by speed, power consump-

tion, and transition delay.

• A more accurate task model, introduced by Seth et

al. [28], is considered in the analysis to take into ac-

count the effects of modern processors with variable

speed. According to this model, task computation

times consist of a part that scales with the speed and

a part having a fixed duration (typically due to the in-

structions accessing the external bus).

• The analysis is presented both for fixed and dynamic

priority systems, and it is easily extendible to any other

scheduling policy.

• The minimal energy solution within the proposed

scheme is found, since the algorithm is based on ex-

act schedulability analysis.

• The proposed method provides a general framework to

describe the schedulability domain, thus enabling the

user to select the appropriate design parameters based

on a given cost function.

2. System model

We consider a set of n periodic or sporadic tasks that

have to be scheduled on a single processor with voltage

control capabilities. A task τi is a sequence of jobs τi,k

(k = 1, 2, . . .), each characterized by a number Ci of worst-

case execution cycles (WCECs), a minimum interarrival

time Ti (often referred to as the task period), and a relative

deadline Di ≤ Ti. Tasks are fully preemptive and do not

perform blocking operations. Note that intertask commu-

nication can still be performed using non-blocking mecha-

nisms, as Cyclic Asynchronous Buffers [7].

As observed by Seth et al. [28], not all execution cy-

cles scale with the processor speed, because some opera-

tions deal with memory or other I/O devices, whose access

time is fixed. The typical example is provided by a memory

read: if the data to be read is present in the cache, then the

instruction runs at the speed of the processor and so it scales

with it. On the other hand, if a cache miss occurs the data

is read from the bus. In this case, the duration of the opera-

tion is imposed by the bus clock that does not scale with the

processor speed.

To take this into account, the number Ci of worst-case

execution cycles required by a task is split in two portions:

ci (processor cycles) scales with the clock frequency and

mi (seconds) does not. Thus we have [28]:

Ci = ci + α mi (1)

where α is the speed in cycles per second (cyc/sec).

2.1. Modeling the processor

In CMOS circuits, the power consumption due to dy-

namic switching dominates the power lost by leakage cur-

rents, and the dynamic portion of power consumption is

modelled by well known polynomial relationships [8, 11].

However, as the integration technology advances, it is ex-

pected that the leakage will significantly affect, if not dom-

inate, the overall energy consumption in integrated circuits

(ICs) [10, 25]. Very recently, some work addressed the is-

sue of scheduling a real-time application while reducing the

leakage power as well [24]. Also, an important fraction of

the consumed energy depends on the memory. It has been

shown [23] that at low frequencies the energy consumption

is dominated by the memory. At high frequencies the pro-

cessor core dominates the power consumption.

All these remarks have led us to formulate a model for

the processor energy consumption, which generalizes all

the former works. Throughout the paper we assume that

a power-aware processor is characterized by a set M =
{Λ1, Λ2, . . . ,Λp} of p operating modes, where each mode

Λk = (αk, pk) is described by two parameters: αk is the

processor speed in mode k and it is measured as number of

cycles per second (cyc/sec); pk is the power consumed in

mode k, measured in Watts.

In a recent work, AbouGhazaleh et al. [1] proposed a
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detailed model for the speed switching overhead, consider-

ing software causes, due to the new speed computation, and

hardware causes, due to power management circuits.

Following their scheme, in this paper, the overhead is

taken into account through a matrix of overheads O, where

each element oi,j , i �= j, is the time overhead required to

switch from the operating mode Λi to Λj . Moreover, we as-

sume that the power consumption during the transition from

Λi and Λj is pj . Note that, assuming a more detailed model

(such as considering the additional power for the DC-DC

regulator) is possible and it does not affect the schedulabil-

ity analysis, nor the validity of the presented results.

To handle the complexity of our system model we

make use of some recent results in the field of hierarchi-

cal scheduling [2, 9, 17, 29]. The advantage of using such

an approach is that the mechanism managing the processor

speed may be seen as a server providing processor cycles

to the requesting application. In this way, the speed man-

agement can be decoupled from the application events, thus

achieving a higher degree of robustness. Using this notion,

the problem is split in two separate subproblems: (1) the

characterization of the number of cycles demanded by the

application and (2) the characterization of the number of

cycles provided by the server mechanism.

3. Application demand analysis

In this section we present a model for expressing the

computational demand of the application to the processing

unit. We consider two major scheduling strategies: Earliest

Deadline First (EDF) and Fixed Priority (FP) scheduling.

3.1. EDF analysis

The feasibility of a periodic task set under EDF can

be analyzed through the Processor Demand Criterion, pro-

posed by Baruah, Howell and Rosier [4], according to

which a set of periodic tasks simultaneously activated at

time zero can be feasibly scheduled by EDF if and only if:

∀t ∈ dSet

n
∑

i=1

jobsi(t)Ci ≤ t (2)

where jobsi(t) is the number of jobs of task τi having arrival

time and deadline in the interval [0, t] and dSet is the set of

all time instants where the test has to be performed.

It has been proved that, given a value of α, the set dSet

can be effectively computed and it is the set of deadlines

within the first busy period [4]. Unfortunately, the length of

the busy period depends on α, as well. Hence we assume

dSet to be equal to the entire set of all deadlines before the

hyperperiod. It is still an open question whether the set of

points in dSet can be tightly reduced. However the validity

of the presented results is not affected by this improvement.

If the processor runs at a constant fraction α of the nomi-

nal speed (α ≤ 1), only αt cycles are available in [0, t] and,

considering the execution model given in equation (1), the

schedulability condition becomes:

∀t ∈ dSet

n
∑

i=1

jobsi(t) (ci + α mi) ≤ α t. (3)

We can derive the condition that α has to satisfy in order

to guarantee the schedulability of the task set:

∀t ∈ dSet α ≥

∑n

i=1 jobsi(t) ci

t −
∑n

i=1 jobsi(t)mi

. (4)

Then, the minimum speed αopt that ensures feasibility is

αopt = max
t∈dSet

∑n

i=1 jobsi(t) ci

t −
∑n

i=1 jobsi(t)mi

. (5)

When relative deadlines are equal to periods, it is known

that the maximum occurs when t is equal to the hyperperiod

H = lcm(T1 T2, . . . , Tn), thus we have that:

αopt =

∑n

i=1 ci/Ti

1 −
∑n

i=1 mi/Ti

(6)

which is equivalent to the result provided in [28].

3.2. FP analysis

When using a fixed priority assignment, the necessary

and sufficient feasibility condition is:

∀i = 1, . . . , n ∃t ∈ tSeti Ci +
i−1
∑

j=1

⌈

t

Tj

⌉

Cj ≤ t

where tSeti is the set of schedulability points [16, 6] relative

to task τi, where the test has to be performed.

Considering a processor running at speed α and using the

more complete model for the task computation times [28],

we have

ci + α mi +

i−1
∑

j=1

⌈

t

Tj

⌉

(cj + α mj) ≤ α t.

Hence, the optimal speed αopt is given by:

αopt = max
i=1,...,n

min
t∈tSeti

ci +
∑i−1

j=1

⌈

t
Tj

⌉

cj

t − mi −
∑i−1

j=1

⌈

t
Tj

⌉

mj

, (7)

which provides the minimum speed the processor can run

to feasibly schedule the task set with fixed priorities.

4. Power management

Once the application demand has been characterized

and the ideal speed αopt computed, different techniques

can be adopted to minimize the power consumption. In

the unlikely case of availability of an operating mode Λk

running exactly at the desired speed αopt, we simply se-

lect it. Otherwise we have to properly manage the pro-

cessor operating modes to minimize the energy consump-

tion. To characterize the effects of the management scheme

onto the application, we will follow the demand/supply ap-

proach [2, 9, 17, 29]. This framework has been successfully
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proposed to model a hierarchical scheduler for an applica-

tion that uses a fraction of the computational resource. The

key idea is that the time demanded by the application must

never be greater than the time supplied.

Following this approach the number of cycles supplied

by the processor is modeled using a function Z(t), defined

as the minimum number of cycles the processor can provide

in every interval of length t. More formally, if α(t) denotes

the processor speed at time t, Z(t) can be defined as

Z(t) = min
t0

∫ t0+t

t0

α(x) dx. (8)

We now consider the problem of expressing the proper

supply function Z(t) when a specific speed handling policy

is adopted for the processor.

If we fix the operating mode Λk such that αk ≥ αopt and

pk is minimum, then the switching overhead is not consid-

ered, because the speed is never changed. In this case the

supply function Z(t) is simply given by

Z(t) = αk t. (9)

Note that this is the most used method among the static ap-

proaches. However, if the gap between the selected speed

αk and the optimal one αopt is too high and the power con-

sumption is a critical design parameter, it is better to adopt

a different approach.

As suggested by Ishihara et al. [14], we propose to

switch between two operating modes, ΛL and ΛH , such

that αL < αopt < αH . Such a switching scheme will be re-

ferred to as the PWM-mode, for the similarity with the pulse

width modulation technique used to drive DC servomotors.

When using a PWM-mode, however, the speed switching

overhead has to be considered. An example of the speed

alternation scheme is illustrated in Figure 1.

oL,HoH,LQH QL

αH

αL

αopt

α(t)

t

Figure 1. An example of PWM-mode.

The effective speed αeff achieved by the processor stay-

ing for QL in mode ΛL and QH in mode ΛH can be com-

puted as follows:

αeff =
αH QH + αL QL

QH + QL

−
αH oL,H + αL oH,L

QH + QL

. (10)

Notice that the overheads oH,L, oL,H are included within

the length of QL, QH respectively.

In Equation (10) we can clearly notice the ideal term and

the loss due to the switching overhead. Notice that, the pres-

ence of the overhead does not allow QL and QH to be arbi-

trarily small, hence we need to specifically impose αeff to be

greater than αL (it would not make sense to use this scheme

if the effective speed is less than αL). Thus, imposing the

condition αeff > αL we find that

QH >
αH oL,H + αL oH,L

αH − αL

.

In addition, QL and QH need to be greater than oH,L and

oL,H , otherwise no useful processor cycles are available for

the task set. The power consumed in the PWM-mode can

also be expressed as a function of QL and QH as1:

peff =
pH QH + pL QL

QH + QL

(11)

which is less than pH , the power that would be consumed if

the processor were continuously running in mode ΛH , since

QL > 0 and QH > 0. The power saving of the PWM-mode

can be explicitly computed as follows:

psave = pH − peff =
1

1 + QH/QL

(pH − pL). (12)

Equation (12) shows that the power saving increases as the

ratio QH/QL decreases.

4.1. Selecting ΛL and ΛH

In this section we show how to select the two modes

to reduce power consumption. Due to the convexity of

the power-speed relationship [25], the speed pair (αL, αH)
which minimizes the power consumption in the PWM-

mode is given by the two speeds closest to αopt. However

the power-speed relationship may be different than the ideal

polynomial function [25] and there may be modes with the

same speed, but different power consumption (due to differ-

ent voltage). Also the presence of switching overhead alters

the ideal speeds because some processor cycles are wasted

during the speed transition time.

A convenient way to illustrate how to derive the mode

pair (ΛL, ΛH) which minimizes the power consumption

is to represent the operating modes of the processor in a

power/speed graph.

A qualitative example is shown in Figure 2, where the

black dots represent the operating modes and the dashed

lines contain all the possible pairs (αeff, peff) achievable by

varying QL and QH , which can reproduce the speed αopt.

For the moment the influence of the overheads is not shown

in the figure.

Among the possible pairs, the one which provides the de-

sired speed αopt and, at the same time, minimizes the power

consumption can be obtained by the lowest intersection be-

tween the dashed lines (representing the mode pairs) and the

vertical line at speed αopt. It is worth noticing that, due to

the convexity of the power/speed relationship, the optimal

pair (ΛL, ΛH) is always given by the two points closest to

αopt [14]. We now show how to consider the overhead due

1Remember we are assuming that the power consumed in mode Λk is

equal to pk for the entire duration of Qk .
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pk

αk

αL αHαopt

ideal power/speed curve

peff

Figure 2. The operating modes in the
power/speed space.

to speed switching.

If we set f = 1
QL+QH

as the frequency of the PWM-

mode scheme, and λL = QLf as the portion of the period

1/f running at mode ΛL, Equation (10) can be rewritten as

follows:

αeff = λLαL + (1 − λL)αH − (oH,LαL + oL,HαH)f

αeff = λL(αL − ∆L,Hf) + (1 − λL)(αH − ∆L,Hf)
(13)

where ∆L,H = oH,LαL + oL,HαH is the number of pro-

cessor cycles we lose because of the transition delay.

From Equation (13) the effect of the overhead is high-

lighted: the introduction of the overhead oH,L, oL,H

in the PWM-mode (ΛL, ΛH) is equivalent to left-

translating the dashed lines in the power/speed space by

an amount equal to ∆L,Hf . Since the optimal choice of

the two modes depends on the frequency f , it may happen

that a particular pair is only optimal for some range of fre-

quency f .

The optimal pair (ΛL, ΛH) for a given frequency f can

be found using a simple polynomial algorithm implemented

by means of a Matlab code prototype [5]. From now on we

assume the two operating modes (ΛL, ΛH) are fixed. Note

that due to the presence of the overheads, mode ΛL and ΛH

may not be adjacent.

4.2. Processor supply function

This section describes how to derive the processor sup-

ply function Z(t) when the CPU operates according to the

PWM-mode illustrated in Figure 1. Since α(t) has period-

icity P = QL + QH , we can restrict the study of Z(t) in

the interval [0, P ), in fact:

Z(t) = Z(t − kP ) + k αeffP (14)

so that the Z(t) only needs to be defined in [0, P ).
Due to the speed switching overhead, the longest

time where no processor cycles are available is omax =
max{oL,H , oH,L}. For this reason Z(t) = 0 for t ∈
[0, omax). Then, for t ≥ omax some cycles are available. In

the worst case, the available cycles increase with the speed

of αL. This amount of processor cycles is provided for

QL − oH,L. Then the second (shorter) switching overhead

occurs. Finally, in the last part of the period P , the cycles

are provided at the maximum speed αH . The resulting pro-

file of Z(t) in the interval [0, P ) is the following:

Z(t)=















0 t ∈ [0, omax)
αL(t − omax) t ∈ [omax, omax + QL − oH,L)
αL(QL−oH,L) t ∈ [omax+QL−oH,L, QL+oL,H)
αH(t − P ) + αeffP t ∈ [QL + oL,H , P )

(15)

where:

P = QL + QH

αeff =
αL(QL − oH,L) + αH(QH − oL,H)

QL + QH

omax = max{oH,L, oH,L}

The supply function Z(t) for the PWM-mode is also il-

lustrated in Figure 3.

Z(t) − k αeffP

t − kP

ominomax QL−oH,L QH−oL,H

αL(QL−oH,L)

αeffP

Figure 3. The supply function Z(t).

5. Computing the optimal QL and QH

In this section the results achieved in Sections 3

and 4 are merged to identify the schedulability region

in the (QL, QH) space, for determining the optimal pair

(Qopt
L , Qopt

H ) that guarantees the feasibility of the task set

while minimizing energy consumption.

We first notice that a necessary schedulability condition

for the task set is:

αeff ≥ αopt

meaning that the effective speed cannot be smaller than the

optimal speed required by the application, otherwise some

deadline will be missed. To derive the necessary and suf-

ficient schedulability region, however, we need to compute

the exact supply function Z(t) according to Equation (8).

When adopting the EDF scheduling algorithm, the exact

schedulability condition based on the demand bound func-

tion becomes:

∀t ∈ dSet Z(t) ≥

n
∑

i=1

jobsi(t)Ci (16)

meaning that the demanded cycles must not exceed the pro-
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vided cycles, which are modeled by the function Z(t) of

Equation (15).

In a similar fashion, when tasks are scheduled by fixed

priorities, the exact schedulability condition is:

∀i = 1, . . . , n ∃t ∈ tSeti Z(t) ≥ Ci +

i−1
∑

j=1

⌈

t

Tj

⌉

Cj .

Notice that in both scheduling algorithms the basic con-

dition that needs to be checked can be expressed in the form:

Z(t) ≥ W (17)

where the scheduling algorithm only affects the way in

which W is defined and the instants t where the inequal-

ity has to be verified to ensure schedulability.

We now proceed by computing the optimal pair

(Qopt
L , Qopt

H ) that minimizes energy consumption. To do that

we assume the two speeds αL and αH are fixed, as derived

by the procedure explained in Section 4.1. We first intro-

duce the notion of basic Q-domain:

Definition 1 The basic Q-domain Q(t, W ) is the set of

pairs (QL, QH) such that

Z(t) ≥ W, (18)

where Z(t) is the cycle supply function, which depends on

(QL, QH), of the related PWM scheme. Formally:

Q(t, W ) = {(QL, QH) : Z(t) ≥ W} (19)

Using the last definition, it follows from Equation (16)

that a task set scheduled by EDF will never miss a deadline

in a PWM scheme iff:

∀t ∈ dSet (QL, QH) ∈ Q

(

t,

n
∑

i=1

jobsi(t)Ci

)

(QL, QH) ∈
⋂

t∈dSet

Q

(

t,
n

∑

i=1

jobsi(t)Ci

)

. (20)

For the same reasoning, when fixed priorities are used,

the set of admissible (QL, QH) is:

(QL, QH) ∈
⋂

i=1,...,n

⋃

t∈tSeti

Q



t, Ci +

i−1
∑

j=1

⌈

t

Tj

⌉

Cj



 .

(21)

We first focus our attention on finding the basic Q-

domain Q(t, W ) in general, so that Equations (20) and (21)

can be computed by combining them.

The analytical expression of the set is found by invert-

ing Equation (17), assuming Z(t) as in Equation (15), thus

expressing (QL, QH) as function of W , t, αL, oH,L, αH

and oL,H . First we set k =
⌊

t
P

⌋

. Using the property in

Equation (14), the condition of Equation (17) becomes:

Z(t − kP ) + k αeffP ≥ W (22)

As we can see from Equation (15), the possible values of

Z(t) are four and they need to be considered ad hoc. In the

first case, from the expansion of Equation (22), we have

k αeff P ≥ W

αLQL + αHQH ≥
W

k
+ ∆L,H . (23)

In the second case (i.e. when the slope of Z(t) is αL):

αL(t − kP − omax) + k αeffP ≥ W

QH ≥
W + k∆L,H − αL(t − omax)

k(αH − αL)
. (24)

When Z(t) is constant and equal to αL(QL − oH,L):

αL(QL − oH,L) + k αeffP ≥ W

(k + 1)αLQL + kαHQH ≥ W + αLoH,L + k∆L,H .
(25)

In the fourth and last case we have:

αH(t − (k + 1)P ) + (k + 1)αeffP ≥ W

QL ≤
αHt − (k + 1)∆L,H − W

(k + 1)(αH − αL)
. (26)

Thanks to Equations (23), (24), (25) and (26) the region

of all the feasible pairs (QL, QH) is constructed.

5.1. Example of applicability

In order to clarify the design strategy we propose two

examples of PWM-mode design.

The case of one task. Let us suppose we have only one

task whose data are:

• scalable computation time c1 = 240 · 103cyc;

• non-scalable computation time m1 = 400 µsec;

• period and deadline T1 = 9.6 msec.

From Equation (6) we find that:

αopt =
c1/T1

1 − m1/T1
= 26.087MHz. (27)

We suppose this speed is not available and the two clos-

est available operating modes are ΛL = (20MHz, 480mW),
ΛH = (40MHz, 810mW) and the overheads oH,L =
160µsec, oL,H = 240µsec. Since we do not know when

the non-scalable computation time occurs during task ex-

ecution (that is, when running at αL or at αH ), we must

maximize the worst-case execution cycles by setting

C1 = c1 + m1αH = 256 · 103cyc. (28)

However we remind that, as shown in [28], the impact of mi

vs. ci is minor, meaning that this overestimation is tight.

In order to schedule the task, the PWM-mode must sup-

ply at least C1 cycles in every interval T1. So it must be:

Z(T1) ≥ C1.

where the overhead is already included in Z(t). Notice that

this condition ensures the task schedulability in both the

scheduling algorithms (FP and EDF), because the two al-
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gorithms coincide when only one task is in the system. The

resulting set Q(T1, C1) is shown in Figure 4.
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=
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k
=
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Figure 4. Schedulability region in the Q-

Space.

For each value of k (remember that k = ⌊t/P ⌋) the do-

main boundary is composed by four segments, since Z(t) is

defined on four different intervals.

As expected, for small values of (QL, QH), the region

Q(T1, C1) approximates the ideal fluid allocation. How-

ever, a greater amount of power is saved for big values of

(QL, QH), as shown by the power savings level curves.

For this reason, the pair within the admissible region that

achieves the greatest power saving is at the vertex with

QL = 5.76 msec and QH = 3.84 msec.

Three tasks scheduled by FP. In the second more re-

alistic example (also available in [5]), we assume to

have a processor whose operating modes are listed in Ta-

ble 1. Tasks are scheduled by FP and their parameters

(ci[Kcycles], mi[µsec], Ti[msec]) are: τ1 = (10, 0, 2.2),
τ2 = (20, 100, 10) and τ3 = (20, 20, 35).

k 1 2 3 4 5 6 7 8 9
ak 0 0 2 5 10 20 40 50 80
pk 0 1 10 20 50 50 50 200 500

Table 1. An example of processor operating

modes.

Our goal is to find the pair of operating modes which

guarantees feasibility and minimizes the energy consump-

tion. By means of Equation (7) we compute the optimal

speed, which results to be αopt = 74.124 MHz. Applying

the rules explained in Section 4.1, we find that the two op-

erating modes to be alternated are Λ7 and Λ9. Note that due

to the parameters of the operating modes, Λ8 is not the best

choice for ΛL. For the selected pair the speed switching

overhead are o7,9 = 20 µsec and o9,7 = 0.2 msec.

Then we maximize the number of cycles required by the

non-scalable computation time mi assuming it runs at the

higher speed αH :

Ci = ci + mi αH (29)

and we obtain C1 = 100 000 cycles, C2 = 208 000 cycles

and C3 = 201 600 cycles.

For task τ1, the set of schedulability points tSet1 only

contains the deadline D1 = 2.2 msec. Hence the pairs

(QL, QH) that can feasibly schedule task τ1 are within

Q(D1, C1) = Q(2.2 · 10−3, 105), which is above the line

labeled by “τ1”, in Figure 5.

Task τ2 has two schedulability points at D2 = 10 msec

and
⌊

D2

T1

⌋

T1 = 8.8 msec. The region of the admissible

pairs (QL, QH), also plotted in Figure 5, is then given by

the union of the two basic Q-domains resulting from each

schedulability point. Similarly, the set of schedulability

points for τ3, in msec, is tSet3 = {35, 33, 30, 28.6} and

the region of admissible pairs is above the boundary labeled

by “τ3”.

In Figure 5, we plot the Q-domain of the admissible

pairs (QL, QH), as found from Equation (21). This final

region is the intersection of the three regions previously

found, because all the tasks must be schedulable. The thick

black dashed line is the final domain containing the admis-

sible pairs. As depicted in the plot, the pair that minimizes

the energy corresponds to the point QL = 1.2 msec and

QH = 8.8 msec. The power consumed at this working point

is 446 mW, as given by Equation (11), which is 10.8% less

than always running in the mode ΛH = Λ9.
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Figure 5. The Q-domain for Example 2.

6. Conclusions and future work

In this paper we presented a method for minimizing the

energy consumption in periodic/sporadic task systems ex-

ecuting in processors with a discrete number of operating

modes, each characterized by speed, power consumption,

and transition delay. The proposed approach allows the user

to compute the optimal sequence of voltage/speed changes

that minimize energy consumption while guaranteeing the
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feasibility of the schedule.

The analysis has been carried out under a set of realistic

assumptions and the increased complexity has been handled

through a hierarchical scheduling approach [2, 9, 17, 29],

which considers the processor speed manager as a server

providing processor cycles to the requesting application. By

means of this separation of concerns, the problem has been

divided into the analysis of the number of cycles demanded

by the application and the analysis of the number of cycles

provided by the processor.

This approach has the benefit of proposing a general

framework to describe the schedulability domain, applica-

ble under fixed as well as dynamic priority assignments,

thus enabling the user to select the appropriate design pa-

rameters based on a given cost function.

In the future we plan to combine our static analysis to dy-

namic algorithms, in order to combine the advantages of our

PWM-mode management with the greater amount of power

savings due to reclamation of unused processor cycles.
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