WCET-Centric Software-controlled Instruction Caches
for Hard Real-Time Systems

Isabelle Puaut

Université de Rennes I/IRISA
Campus Universitaire de Beaulieu, 35042 RENNES Cedex - France

Abstract

Cache memories have been extensively used to bridge
the gap between high speed processors and relatively
slower main memories. However, they are sources of pre-
dictability problems because of their dynamic and adaptive
behavior, and thus need special attention to be used in hard
real-time systems. A lot of progress has been achieved in
the last ten years to statically predict worst-case execution
times (WCETs) of tasks on architectures with caches. How-
ever, cache-aware WCET analysis techniques are not al-
ways applicable due to the lack of documentation of hard-
ware manuals concerning the cache replacement policies.
Moreover, they tend to be pessimistic with some cache re-
placement policies (e.g. random replacement policies) [6].
Lastly, caches are sources of timing anomalies in dynami-
cally scheduled processors [13] (a cache miss may in some
cases result in a shorter execution time than a hit).

To reconciliate performance and predictability of
caches, we propose in this paper algorithms for software
control of instruction caches. The proposed algorithms stat-
ically divide the code of tasks into regions, for which the
cache contents is statically selected. At run-time, at ev-
ery transition between regions, the cache contents computed
off-line is loaded into the cache and the cache replacement
policy is disabled (the cache is locked). Experimental re-
sults provided in the paper show that with an appropriate
selection of regions and cache contents, the worst-case per-
Sformance of applications with locked instruction caches is
competitive with the worst-case performance of unlocked
caches.

1 Introduction

Extensive studies have been performed on schedulability
analysis to guarantee timing constraints in hard real-time
systems. Many of these schedulability analysis methods
rely on the knowledge of an upper bound for the task ex-
ecution times (WCETs, for Worst-Case Execution Times).
WCET estimates have to be safe (i.e. greater than any pos-
sible execution time) and as tight as possible (as close as
possible as the execution time of the longest path). Safe

bounds for task execution times can be computed using
static WCET analysis methods that obtain WCETs through
a static analysis of task source and/or object code [18].

WCET of programs is obviously influenced by the hard-
ware in use, in particular the presence of caches. Caches
are small and fast buffer memories containing recently ref-
erenced memory blocks. These blocks are likely to be ac-
cessed by the CPU in the near future thanks to temporal and
spatial locality in reference streams. They are a very effec-
tive means of speeding up the memory accesses for the aver-
age case. However, the worst-case behavior of applications,
which is of prime importance in hard real-time systems, is
harder to predict in a safe and precise way when caches are
used. The difficulty comes from intra-task and inter-task in-
terferences. Intra-task interferences occur when a task over-
rides its own blocks in the cache due to conflicts for cache
blocks. Inter-task interferences arise in multitasking sys-
tems because of preemptions and imply a so-called cache-
related preemption delay to reload the cache after a task has
been preempted.

If caches are used without any restriction, real-time ap-
plications can fully benefit from the performance enhance-
ment they provide. However, special attention is required
to obtain deterministic guarantees for the system schedula-
bility. At the task level, WCET analysis must be aware of
the presence of caches. In order to have safe but accurate
estimations of WCETs, WCET computation methods have
to safely classify memory accesses into categories (for in-
stance, for architectures without timing anomalies, hit when
a memory access is guaranteed to be in the cache or miss
otherwise). Cache-aware WCET computation methods
have been designed during the last ten years [15, 1, 11, 12].
At the multitasking level, cache-related preemption delays
have to be estimated as precisely as possible [9].

Other ways to face the predictability issue raised by
caches are to find trade-offs between performance and pre-
dictability. Two main classes of methods may be used:
cache partitioning and cache locking.

Cache partitioning techniques (e.g. [8, 19]) assign re-
served portions of the cache (partitions) to certain tasks in
order to guarantee that their most recently used code or data
will remain in the cache despite preemptions. The dynamic

behavior of the cache is kept within partitions. These tech-
niques thus eliminate the inter-task interferences, but one
must still tackle intra-task interferences.

Cache locking techniques exploit hardware support al-
lowing software to control the cache contents: load in-
formation into the cache and disable the cache replace-
ment policy (lock or freeze the cache). This ability to lock
cache contents is available in several commercial proces-
sors (ColdFire MCF5249, PowerPC 440, IDT79RC64575,
ARM 940 and ARM 946E-S). The contents of the locked
cache can be fixed for the whole execution of a task or
changed at run-time. When cache reload points and con-
tents of locked cache are computed off-line, cache accesses
can be easily predicted statically.

Cache-aware WCET estimations methods provide tight
estimations for direct-mapped caches, and for set associa-
tive caches with known and easy to predict cache replace-
ment policy, such as the Least Recently Used (LRU) re-
placement policy. However, some replacement policies are
not easily amenable to static WCET analysis, resulting is
much less tight WCET estimates. For instance, Heckmann
et al report in [6] that only 1/4 of the cache of the ColdFire
MCEF 5307 cache can be modeled, because of its pseudo-
round-robin policy.

Moreover, in dynamically-scheduled processors, it is not
safe to consider that a cache miss is the worst-case scenario
anymore. Lundqvist and Stenstrom have exhibited in [13]
timing anomalies, according to which a cache miss may
in some cases result in a shorter execution time than a hit.
Timing anomalies imply that to be safe, WCET estimation
methods have to consider all outcomes for a memory access
(hit/miss) when it cannot be guaranteed that the outcome is
either a hit or a miss. Timing anomalies thus introduce some
extra-complexity in the WCET estimation process.

When using static software control of caches, all mem-
ory accesses can be statically predicted whatever the re-
placement policy is. Furthermore, the timing anomalies de-
scribed above do not occur anymore since cache contents is
known off-line. The issue to be addressed then is to decide
when the cache is reloaded as well as the associated con-
tents, to obtain the “best performance”. In the context of
hard real-time systems, the most suited performance metric
is worst-case performance since it serves at temporal vali-
dation and dimensioning of hardware resources. Thus we
focus, at the task-level, at optimizing the task worst-case
performance (WCET estimate).

Selecting cache reload points and associated cache con-
tents in a blind manner (without any knowledge of applica-
tion references) raises complexity issues even for very small
programs (it would mean exploring all possible locations
for reload points and all possible cache contents). Thus,
information on memory access patterns of applications is
helpful. Using profile data in the selection process may not
always be appropriate since worst-case and average-case
execution paths need not be the same. A more promising
approach is to use worst-case execution path (WCEP). The

difficulty in WCET-guided content selection is that when
selecting information to be locked along the WCEP, a new
path may become the WCEP (instability of WCEP). As a
result, locally optimizing along the current worst-case path
may not lead to the globally optimal solution.

Algorithms have been proposed to select the cache con-
tents of locked cache in the case of a unique locked region
spanning the whole task/system lifetime [14, 17, 4]. Obvi-
ously, the WCETs of programs using such locking schemes
is comparable to the WCETs using unlocked caches only
when the code/data size is of the same order of magnitude
as the cache size. When the code/data size are much larger
than the cache size, the WCET estimate increases dramati-
cally [16]. These algorithms lack scalability with respect to
code/data size.

In this paper, we propose two algorithms for software
control of instruction caches, using cache locking. They
introduce multiple reload points in the code of a program
and select the values to be loaded into the cache such that
the WCET estimate of the program is minimized. Multiple
reload points are introduced for the sake of scalability of
worst-case performance with the program code size. Two
different algorithms are proposed:

— The first algorithm is a greedy algorithm with low
complexity (linear with the number of basic blocks).
It selects cache contents by exploiting execution fre-
quencies of basic blocks along the WCEP. The stabil-
ity issue is dealt with using a regular and customizable
re-evaluation of the worst-case execution path.

— The second algorithm is a genetic algorithm exploring
the search space (reload points + cache contents) in a
blind manner.

Both algorithms place reload points at natural places for
reuse in streams of references to instructions: loop and
function entries. Both algorithms can be configured to
select the maximum number of reload points: the larger
the number, the better the worst-case performance, but the
larger the memory occupied by reload points. This config-
urability allows to find a trade-off between consumed mem-
ory and worst-case performance.

Experimental results provided in the paper show that the
worst-case WCET estimates of applications with locked in-
struction caches is close to the WCET estimates consider-
ing caches without software control (and in some cases even
better), as far as applications exhibit temporal locality. The
greedy algorithm yields acceptable WCET estimates with a
very low run time. The genetic algorithm used as stand-
alone is not very efficient when the initial population is
selected at random, because of its long convergence time.
However, it proves to be very efficient at improving the
WCET estimate of applications using a locked cache those
contents was selected by the greedy algorithm. Beyond
worst-case performance considerations, locking techniques
are an effective mean to limit the variability of execution
times in architectures with caches. Locking techniques also

eliminate timing anomalies coming from caches, which re-
sult in extra-complexity in the WCET estimation process.

In summary, the main contribution of this work is in de-
veloping efficient techniques for allocating code portions in
locked caches guided by the goal of reducing the program
WCET estimate. Cache contents are changed at run time
to ensure performance competitive with non-locked caches.
Reload points and cache contents are computed off-line to
ensure predictability.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the two algorithms for cache-contents se-
lection. Their performance is evaluated in section 3. We
compare our work with related work in Section 4. Finally,
we conclude in Section 5 with a summary of the paper con-
tributions and directions for future work.

2 Algorithms for software control
of instruction caches

This section describes two algorithms for selecting the
contents of locked instruction caches. A low-complexity
greedy algorithm is presented in § 2.2. A more compute-
intensive genetic algorithm is described in § 2.3.

2.1 Notations and assumptions

Without loss of generality, we consider a CPU with
fixed-size instructions, with a W-way set-associative in-
struction cache and no prefetch mechanism. The cache is
of size S¢ and comprises a total of B blocks of Sp bytes
each (Sc¢ = B * Sp). Blocks are grouped into S sets of
W cache blocks; an instruction at address ad is loaded into
one of the W blocks of set L% Jmod S. There are ipcl
instructions per cache block.

We consider that there exists a mechanism to load and
lock blocks into the instruction cache, inhibiting cache re-
placement on those blocks until they are unlocked. In prac-
tice, hardware support for locking may provide means for
locking either individual cache blocks or ways or the entire
cache. Since we reload the whole cache at reload points,
our algorithms can be used for these 3 classes of hardware
support.

Our work considers an isolated task, represented by its
control flow graph (CFQG), statically extracted from its exe-
cutable code. The task binary code is split into cache block-
sized units named instruction lines hereafter. We term pre-
header nodes the set of nodes directly preceding loop head-
ers in the CFG. The body of every function is represented
by an abstract loop with a number of iterations of one. Only
reducible loops are currently supported.

The algorithms splits the task’s code into regions. Each
region has a unique associated cache contents. The cache
contents is loaded and the cache is locked when entering
the regions (at so-called cache reload points), until a subse-

quent cache reload point is encountered'. Reload points are
placed at loop pre-headers, and cache contents comprizes
only program lines of these loops. Furthermore, the locked
regions altogether cover all the code of the task. As a con-
sequence, it can be known statically if a given instruction
line is a hit or a miss.

The user is offered the possibility to specify a maximum
number of reload points, named max_reload_points here-
after, to find a balance between a low WCET estimate and
and the space requirements to store the reload points.

The algorithms use the following constants. tp;; and
tmiss are the hit/miss latencies; ¢; and ¢; represent the time
required to reload the cache and lock it, expressed in num-
ber of misses; ¢; + t; * pl cache misses are required to load
and lock pl instruction lines into the instruction cache.

2.2 Greedy algorithm

To minimize the WCET estimate, the greedy algorithm
relies on the knowledge of the number of executions of
every basic block along the worst-case execution path
(WCEDP) at a given stage of the selection procedure. f(bb)
(resp. f(pl)) denote the total number of executions of basic
block bb (resp. instruction line pl) along the WCEP.

The algorithm is made of two independent parts: selec-
tion of reload points (§ 2.2.1) and selection of cache con-
tents (§ 2.2.2). The algorithm is illustrated on a small ex-
ample in § 2.2.4.

2.2.1 Selection of reload points

Reload points are placed at loop pre-headers to exploit tem-
poral locality. A cost function CF(L), given in Equa-
tion 1, decides whether or not the cache should be reloaded
at the pre-headers of a loop L. CF(L) uses approxi-
mate values of the WCET of loop L respectively with
a locked cache (WCET_locked(L)) and with an unlocked
cache (WCET _cache(L)). WCET_cache(L) (see below) is an
approximate version of the WCET of loop L, assuming only
spatial locality is exploited. WCET _locked(L) is an approx-
imate estimation of the loop WCET assuming the cache is
loaded at the loop pre-headers with the most frequently ex-
ecuted instruction lines of the loop. It accounts for the ex-
ecution frequencies of the instructions within the loop (hit
or miss depending on whether the loop is larger or smaller
than the cache) and the frequency of the reload point(s).
mfpl(L) contains the B most frequently executed instruc-
tion lines of loop L on the worst-case execution path in a
system without any cache, with B the cache size. pl(L)
contains all instruction lines of L.

WCET _cache(L) = Z F(pli) * (tmiss + (ipcl — 1) * thit)
pl; €pl(L)

!In multi-task applications, cache reloads occur at context switch times
as well.

WCET locked(L) =

>

ply€mfpl(L)
DY
pl; €pl(L)—mfpl(L)

+ D feh) s+t mfplD))

ph€pre—head(L)

F(pl) * ipel x tht

f(plz) *4pcl * tmiss

CF(L) = WCET-cache(L) — WCETlocked(L) (1)

A positive value of C'F (L) means that the WCET of the
loop whose content is locked at the loop pre-header(s) is ex-
pected to be lower than the WCET with an unlocked cache.
The pre-headers of the max_reload_points loops with the
maximum positive values of C'L(L) are selected as reload
points.

2.2.2 Selection of cache contents

Selection of cache contents is based on frequency informa-
tion along the WCEDP. Since loading and locking a value into
the instruction cache may change the WCEP, the WCEP is
re-evaluated regularly, in a customizable manner. The algo-
rithm for selection of cache contents is sketched below.

ToBePlaced = ListBasicBlocs;
evaluate WCET(WCET,WCEP);
ListBB = SelectMostBeneficialBB(ToBePlaced,N);
while | ListBB | # 0 do
for each BB in ListBB do
ListReloadPoints = getPoints(BB);
for each rp in ListReloadPoints do
for each instruction line pl in BB do Load(pl,rp);
end for
10 end for
11 evaluate WCET(WCET,WCEP);
12 if WCET > WCET,rcvious_iteration Teturn;
13 ListBB = SelectMostBeneficialBB(ToBePlaced,N);
14 end while

O 01NN AW —

The algorithm fills progressively the cache contents as-
sociated with the regions identified in § 2.2.1, by consider-
ing successively all the program basic blocks. Initially (line
1), the set of basic blocks to be considered (ToBePlaced)
includes all basic blocks of the program. All reload points
initially have an empty cache contents and will be filled-in
progressively as explained below.

The algorithm proceeds iteratively. At a given iteration,
the group formed by the N most beneficial basic blocks
are considered for locking. The notion of benefit of a ba-
sic block for locking (function SelectMostBeneficialBB) is
based on a cost function C'F'(bb, L) given in equation 2. In
the equation, L is a reload point where bb may be loaded
and |bb| denotes the size of basic block bb in bytes. The cost
function C'F'(bb, L) is positive when the locking of basic
block bb is expected to have a lower WCET estimate than in

a system without a cache (first line of the equation) and do
not degrade too much the WCET estimate as compared to a
system with a cache (second line in the equation).

>

pl; € PL(bb)

WCET_cache(bb, L) = fli) * (tmiss + (ipcl — 1) * tp4e)

WCET nocache(bb, L) = Z F(pli) * ipel * tmiss

pl; P L(bb)

WCET locked(bb, L) =

DY

ph€pre—head(L)

> Fl) « ipel x e
pl; EPL(bb)
B
F(ph) = (t; = M + ¢ * |bb])

CF(bb, L) = (WCET nocache(bb, L) — WCET locked(bb, L)) +
(WCET_cache(bb, L) — WCET locked(bb, L))

The inner loop of the algorithm (lines 6 to 9) evaluates
the locking of all instruction lines of the basic block bb un-
der consideration. First we get the list of reload points at
which bb may be loaded (line 6); function getPoints, not de-
tailed here for space considerations, returns the list of reload
points corresponding to loops/functions in which bb is in-
cluded. For every instruction line pl of bb and every reload
point 7p the line is loaded and locked (line 8).The algorithm
iterates until locking new instruction lines do not result in
improvements of WCETs anymore (line 11 and 12).

The WCEP and the cost function are re-evaluated regu-
larly, after having considered the placement of group of N
basic blocks (line 13). The lower the value of N the better
the estimation of the WCEP along the whole algorithm and
the better the quality of the cache contents (but the longer
the execution time of content selection). Parameter N may
then serve to find a balance between the quality of the solu-
tion and the computation time required to obtain it.

2.2.3 Optimality and complexity considerations

Although not proven formally, the similarity of the problem
of reload point and cache contents selection with the prob-
lem of register allocation in compilers make us suspect the
problem to be NP-hard. As a consequence, the method we
propose is based on heuristics. Moreover, it can be shown
on a simple example that the selected cache contents, al-
though resulting in tight WCET estimates in practice, is not
optimal.

The most time consuming operation of the greedy algo-
rithm is the evaluation of the WCET and WCEP (this op-
eration is complex because it requires an in-depth analysis
of the program structure and as well as its interaction with
the underlying architecture). As a consequence, it is natu-
ral to express the complexity of our algorithms in terms of
number of WCET estimations. Selection of reload points
requires exactly one WCET estimation. Selection of cache

(@)

@ Basic block

@ Basic block on WCEP

Reload point

= Cache contents

100 iter 100 iter

: i 90 iter

1 iter (function) 1 iter (function)

100 iter

} i 90 iter Loop

1 iter (function) 10 iter

Initial state After iteration 1

After iteration 2

Figure 1. The greedy algorithm on an example

contents require LI?B WCEP estimations, where NbBB
is the number of basic blocks and N is number of basic
blocks considered before re-evaluating the WCEP. Thus at
worst, NbBB WCEP estimations are required for cache
content selection, corresponding to the most frequent re-
evaluation of the WCEP. Measured execution times of the
selection procedure will be given in section 3.

2.2.4 Example

Figure 1 depicts two iterations of the greedy algorithm on
a toy example, with N = 1 (the WCEP is evaluated every
time a basic block is considered for locking). The initial
view depicts the locations where reload points are placed
by the algorithm presented in 2.2.1. The initial WCEP is
assumed to traverse the loop at the left. Assuming the ba-
sic block with the largest value of CF(bb,l) is BB number
3, its instruction lines (3a, 3b and 3c) are locked in the re-
gion starting at BB 2 (loop pre-header). Due to the effect of
locking 3a, 3b and 3c, the WCEP then changes. Assuming
the BB with the highest value of CF(bb,]) is then BB 7, its
instruction lines are locked, etc.

2.2.5 Implementation considerations

Code must be executed at every reload point to load the
cache with a new cache contents and lock it. Two imple-
mentation alternatives may be considered for invoking the
cache reload code. One alternative is to use the processor
debugging capabilities, if any, to trigger the execution of
the cache reload routine. It exploits the processor ability to
raise an exception (breakpoint exception) when a specified
instruction, whose address is loaded in the processor debug
register(s) is encountered. No compiler support is required,
and the task’s memory map is not changed, but the approach
is not portable. Another alternative is to use compiler sup-
port. One way is to insert a call to a cache reload routine
at every reload point. Inserting function calls changes the
task’s memory map, but this is not a problem since cache
reload points and cache contents are selected independently.

Another way is to modify the task binary code at the reload
point, in such a way that the original code is replaced by
a call to the cache reload routine; the cache reload routine
reloads and locks the cache and then executes the original
code.

2.3 Genetic algorithm

The second algorithm we have devised for cache control
does not use any knowledge about the software memory ac-
cess pattern. It uses a genetic algorithm for both selection of
reload points and selection of cache contents. Genetic algo-
rithms are inspired by Darwin’s theory of evolution, and are
particularly suited to the resolution of optimization prob-
lems with a very large search space, which is the case in the
problem under consideration. Genetic algorithms operate
on a population of potential solutions applying the principle
of survival of the fittest to produce better and better approx-
imations of a solution. At each generation, a new set of
approximations is created by the process of selecting indi-
viduals according to their level of fitness in the problem do-
main and breeding them together using operators borrowed
from natural genetics.

The use of genetic algorithm in any search problem re-
quires the definition of a set of elements and operators: rep-
resentation of the solutions (codification), a fitness function
to evaluate the different solutions, a selection scheme to sort
candidate individuals for breeding, cross-over and mutation
operators to transform the selected individuals.

Codification. Each individual, representing a possible
solution, is an array of chromosomes each of them being
a pair (rp, contents). rp is an identification of the reload
point and contents is the associated cache contents.

Fitness. The fitness function is simply the WCET.

Selection. The probability to select one individual for
breeding is a linear function of its fitness value (here,
WCET).

Crossover and mutation. One point crossover is ap-
plied: an index into the parents chromosomes (array of
pairs (reload point, contents)) is randomly selected. All

Name Description Code size | WCRN
(bytes)

des des and triple-des encryption/decryption algorithm 11068 41407400

adcpm Adaptive differential pulse code modulation 8504 124240

minver Matrix inversion for 3x3 floating point matrices 4520 113540

fft Fast Fourier Transform 3524 822880

compress | Compression of a 128 x 128 pixel image using discrete cosine transform 3056 138129850

nsichneu | Simulation of an extended Petri Net. Automatically generated code containing large | 45720 1940910
amounts of if-statements

flight Control code (flight control) mixing floating point computation, switches and condi- | 9944 180350
tional statements, automatically generated code from the SCADE suite.

Table 1. Task characteristics

data beyond that point in the chromosomes are swapped
between the two parent organisms, defining the children
chromosomes. Three types of mutations have been intro-
duced and are applied to individuals with a user-selected
probability: M,..,, (removal of one reload point selected
randomly, M4, (addition of one reload point selected ran-
domly), M., (change of the contents of a reload point se-
lected randomly). A fixed number of instruction lines are
replaced by other (not yet locked) instruction lines selected
randomly.

Initial population. The initial population is made of a
fixed number of individuals. Every individual has a random
number of (unique) reload points. For each reload point
the associated cache contents is selected randomly (without
duplicated program lines). The higher a loop in the loop
nesting hierarchy, the higher the probability for selecting
the loop as a reload point. The lower a loop in the loop
nesting hierarchy, the higher the probability for the selec-
tion of its basic blocks in a locked cache contents. We
also tested an initial population the individuals are results
of greedy algorithm presented before for different values of
max_reload_points.

An interest of genetic algorithms is that the produced re-
sults (here, cache contents) can be used at any time. Their
limit is their computation time, as we will be shown in Sec-
tion 3.

3 Experimental results
3.1 Experimental setup

Our interest here is to evaluate the predictability of
programs with respect to the memory hierarchy. As a
consequence, in order to not interfere with other micro-
architecture elements, our performance metrics are limited
to the number and/or ratios of hits/misses in the instruction
cache. All the numbers given in this section are worst-case
numbers, obtained using a static WCET analysis tool. The
term miss ratio will then denote the miss ratio obtained by
a cache-aware WCET estimation tool and not a measured
miss ratio.

Our experiments were conducted on MIPS
R2000/R3000 binary code, but we are actually inde-
pendent of any specific MIPS-compatible processor since
our focus is on instruction caches only. We consider an
instruction cache with blocks of size Sp = 16 bytes
(ipcl=4 instructions), and an associativity degree of 4. The
cache replacement policy is either Least Recently Used
(LRU), tightly analyzable by cache-aware WCET analysis
tools, or Pseudo-Round Robin (PRR), shown in [6] to be
analyzable for 1/4 of the cache only. By default, the cache
size is].KB, thit =]., tmiss =].0, t; = 0, t; = 1.

The WCETs of tasks are computed by the Heptane?
static WCET analysis tool [5]. One may configure Hep-
tane to estimate WCETS using either: a tree-based method,
through a bottom-up traversal of the syntactic tree of the
analyzed C programs; an IPET (Implicit Path Enumera-
tion Technique) method, generating a set of linear con-
straints from the program control-flow graph. Here, the
IPET WCET estimation method is used.

Heptane includes hardware modeling capabilities to es-
timate WCETs for programs running on architectures with
instruction caches. The technique used in Heptane to esti-
mate the worst-case behavior of applications with respect
to the instruction cache (see [5] for details) is based on F.
Mueller’s static cache simulation [15]. The cache analysis
technique computes abstract cache states (representation of
all the possible cache contents considering all the possible
execution paths in the program) using data-flow analysis
on the program control flow graph. Abstract cache states
are then used to safely classify the instructions according
to their worst case behavior regarding the instruction cache
(i.e. hit, miss, first-hit, first-miss the latter two categories be-
ing used for instructions in loop bodies [5]). Heptane was
modified by replacing its cache analysis module by a mod-
ule classifying instructions according to their presence in a
locked region.

The experiments were conducted on seven benchmark
tasks, whose features are summarized in Table 1. The last
column (WCRN) counts the number of references to in-
structions along the WCEP. This information gives an in-

2Heptane is an open-source static WCET analysis tool available at
http://www.irisa.fr/aces/software/software.html.

dication of the amount of loops in the benchmark.

All benchmarks but flight and compress are benchmarks
maintained by the Milardalen WCET research group’.
Compress is from the UTDSP Benchmark suite®*.

The default parameters for the greedy algorithm is
N = 10 (re-evaluation of WCEP after placing 10%)
of the basic blocks. By default, unless explicitly stated,
we do not restrict the maximum number of reload points
(max_reload_points=20).

3.2 Evaluation of the greedy algorithm

Table 2 and Figure 2 compare hit and miss ratio for
locked and unlocked caches, as well as the percentage of

memory accesses required for cache reload (Zmiss—reload)
Nhit+Nmiss

Task Hit Miss Reload | Nb
ratio ratio ratio points
des LRU 92.1% | 7.9% 0.0% -
des PRR 83.0% | 17.0% | 0.0% -
des locked 86.8% | 13.2% | 3.7% 14
adcpm LRU 922% | 7.8% 0.0% -
adcmp PRR 91.8% | 82% 0.0% -
adcpm locked 71.3% | 28.7% | 2.5% 15
minver LRU 92.4% | 7.6% 0.0% -
minver PRR 82.1% | 17.9% | 0.0% -
minver locked 70.0% | 30.0% | 15.9% 16
fft LRU 91.7% | 8.3% 0.0% -
fft PRR 753% | 24.7% | 0.0% -
fft locked 90.8% | 9.2% 7.6% 8
compress LRU 99.7% | 0.3% 0.0% -
compress PRR 95.5% | 4.5% 0.0% -
compress locked | 96.8% | 3.2% 0.8% 13
nsichneu LRU 732% | 26.8% | 0.0% -
nsichneu PRR 732% | 26.8% | 0.0% -
nsichneu locked | 2.2% 97.8% | 0.0% 1
flight LRU 73.4% | 26.6% | 0.0% -
flight PRR 733% | 26.7% | 0.0% -
flight locked 16.0% | 84.0% | 0.4% 1

Table 2. Hit/miss/reload ratios for locked &
unlocked caches (ratios="r=2/"it/rcload "of)

NmisstTNhit

For applications with both temporal and spatial locality
(all but the last 2 ones), in all cases the hit ratio for locked
cache is close to the hit ratio with an unlocked cache. When
a predictable replacement policy is considered (LRU), the
miss ratio with an unlocked cache is always lower than with
a locked cache. When a hard to predict replacement policy
is used (PRR) for most applications the miss ratio with an
locked cache is lower than with an unlocked cache. This
shows the interest of locking schemes when using caches
with hard-to-predict replacement policies.

For applications with mostly spatial locality and poor
temporal locality (no loops or loops whose body is much
larger than cache size), the miss ratio with a locked cache
is high. It comes from the locations where reload points

3http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
“http://www.eecg.toronto.edu/

are placed, which exploit temporal locality only®. The idea
behind restricting reload points to loop entries is that the
cost for cache reload (which is necessarily high since cache
reload is under software control) is masked by the multiple
iterations of the loop. Placing reload points inside loop bod-
ies would not necessarily exploit spatial locality because of
the cost of cache reloading, which would be prohibitive if
the cache was reloaded at every loop iteration. How to bet-
ter exploit spatial locality is left as future work. Perhaps
minimal hardware support (an instruction line-size buffer
intended to take benefit of spatial locality) would be a good
trade-off between predictability and performance.

The percentage of extra memory accesses required for
cache reload (W) is depicted as black bars in Fig-
ure 2. The percentage'é% extra memory accesses is in gen-
eral low. This indicates that the cost function used for
selecting of reload points succeeds in detecting loops for
which the cache reload overhead is minimal. The highest
percentage of memory accesses due to cache reloads is for
applications with nested loops (minver and fft) for which
the algorithm places reload points inside the outer loop to
exploit temporal locality within the inner loops.

Notice that the number of reload points actually inserted
is always lower than max_reload_points, because reload
points are inserted only if they result in a WCET improve-
ment.

Stability issues.

The task’s WCET estimate depends on how often the
WCERP is re-evaluated during the contents selection process
(parameter N in the algorithm). The impact on parameter
N is studied in tables 3 and 4.

[Task [100 50 [30 [20 [10 [5 [2 [0]
des 184 | 174 | 163 | 16.6 | 163 | 163 | 16.7 | 199
adcpm 45.6 | 45.6 | 456 | 45.6 | 429 | 41.0 | 41.1 | 41.1
minver 373 | 364 | 36.8 | 374 | 395 | 443 | 340 | 340
fft 157 | 156 | 157 | 158 | 156 | 12.7 | 153 | 153

compress | 4.2 4.2 4.2 4.2 4.0 39 33 33
nsichneu | 97.8 | 97.8 | 97.8 | — - - - -
flight 84.1 | 84.1 | 84.1 | — - - - -

Table 3. Miss ratio (n NmisstNmiss_reload

o,
) i miss TNhit+Nmiss_reload A)
in function of vV

Table 3 gives the miss ratio (reload accesses included)
for different values of N. To be application independent,
N is expressed as the percentage of basic blocks consid-
ered between two re-evaluations of the WCEP (a value of
0 means that the WCEP is re-evaluated every time a basic
block is considered for locking). The numbers in table 3
show that re-evaluating the WCEP in the course of contents
selection is required. However, a too frequent re-evaluation

3It’s a coincidence that the applications with the worse WCET estimate
are those with the larger code size. Smaller applications with the same
kind of memory access patterns had the same bad WCETs.

15.9%

120% 3.7% 2.5% B 7.6% 0.8% 0.0% 0.4%
100% - = m —E=

80% 1| m [U st d i Ign W Reload
60% H - H H H — — A HHHHHHHH |(oMiss
0% 4H4f4MP—+4T - 1T -1 T -4 49-t 9Pt T-—1T 44441444 HHHHHH BHit
20% -

0%

PELRPLELPLELPE L L PE L PES

o R 3 6‘\/ S RN KL & & T & R RN \)Q &L F

NS 0@@‘\@‘4@?} ‘&",&\ & & o L @ oSS
FFFE &8¢ FTEFFE T T
& S S 006‘ O&Q & @ ({,;_,\0
(9

Figure 2. Hit/miss/reload ratios for locked & unlocked caches (ratios="ri=2/hit/rcload

of the WCEP results in a negligible decrease of the miss ra-
tio, when considering the extra-time required to re-evaluate
the WCEDP (see table 4, showing that time for content selec-
tion is approximately linear with V).

0,
NMmisst+Nhit %)

[Appli [20 [15 [10 [7 [5 [3 [2 [1
des 163 | 163 | 166 | 17.5 | 199 | 32.1 | 457 | 59.5
adpcm 304 | 304 | 36.1 | 41.0 | 423 | 469 | 478 | 49.1
minver 39.5 | 384 | 33.8 | 35.1 | 37.1 | 449 | 46.8 | 52.0
fft 156 | 156 | 156 | 142 | 13.1 | 13.7 | 344 | 340
compress | 4.0 4.0 4.0 4.0 4.3 3.8 3.8 3.8

Table 6. Miss ratio (—misstlmiss_reload %)

Nmiss TNhit +miss_reload

[Appli [100 [50 [30 [20 [10 [5 [2 [0
des 63 98 141 140 | 224 | 308 | 556 | 833
adcpm 63 101 190 237 | 453 | 229 | 613 | 1635
minver 19 30 40 37 37 36 84 145
fft 28 45 79 78 129 | 195 | 105 | 186
compress | 19 26 47 58 57 57 102 | 189
nsichneu | 455 830 1586 | — - - - -
flight 1365 | 1964 | 3225 | - - - - -

Table 4. Running time of contents selection
(seconds) in function of N

Space vs worst-case performance trade-off.

As cache contents is under software control, the instruction
lines to be loaded at run time have to be stored in the ap-
plication binary. Thus it may be interesting to control the
amount of memory required to store cache contents. Ta-
bles 5 and 6 address this issue. Tables 5 and 6 give respec-
tively the required memory and miss ratio when the max-
imum number of reload points (max_reload_points) varies
between 20 and 1 (one unique locked region per task).

in function of max_reload_points

The numbers given in Tables 5 and 6 show that reduc-
ing the number of regions increases the miss ratio but saves
memory. The function linking memory savings and miss ra-
tio decrease is not linear. On some applications like des, one
can largely reduce memory consumption with only a small
increase of miss ratio. For embedded systems where mem-
ory demand is as important as real-time performance, the
results given in Tables 5 and 6 can be exploited to find the
best trade-off between space and worst-case performance.

Table 6 indirectly shows that the locking scheme pro-
posed in the paper takes benefit of caches even if the code
size is larger than the cache size. For instance, there are
83.7% of hits for the des application whose code size is 11
times the cache size. In contrast, locking techniques that
lock the cache using one unique region for the whole ap-
plication exhibit a much lower hit ratio (40.5% for des if a
unique locked region is used).

3.3 Evaluation of the genetic algorithm

The parameters of the genetic algorithm used for the ex-

[Appli [20 [15 [1T0 T7 [5 [3 [2 [1 |
des 11424 11424 | 4784 | 2672 | 2752 1136 1184 1024
adcpm 3728 3728 2400 | 1376 1296 1120 1104 1024
minver 8032 5888 3952 | 2736 | 2256 1664 1328 1024
fft 4944 4944 4944 | 2640 | 1616 1440 1136 1024
compress 1344 1344 1344 1312 1312 1024 1024 1024

perimental evaluation of the genetic algorithm are: a popu-

Table 5. Space for storing cache contents

(Bytes) in function of max_reload_points

lation of 32 individuals, 40 generations, and probabilities of
mutations of 10% (mutation M,..,,), 10%(mutation M),
80% (mutation M.4). We have tested the genetic algorithm
with two initial populations: (i) a population of individuals

selected randomly; (ii) a population of individuals made of
solutions given by the greedy algorithms, for different val-
ues of parameter max_reload_points.

We did not further investigate the first alternative:
roughly 2 hours of computation were required to find a so-
lution as good as the one given by the greedy algorithm for
the des application, against one minute for the greedy algo-
rithm. The results of the second alternative are given in Ta-
ble 7. The columns give the miss ratio for unlocked caches
(LRU and PRR in col. 1 and 2), locked caches (greedy and
genetic in col. 3 and 4). Column 5 gives the execution time
of the genetic algorithm.

Appli Cache LRU | Cache PRR | Greedy | Genetic | Time (mn)
des 79 17.6 16.3 14.1 323
adpcm | 7.8 8.2 30.4 30.2 300
minver | 7.8 17.9 39.5 24.1 181
fft 8.3 24.7 15.6 11.8 217

Table 7. Performance of genetic algorithm
(miss ratio NmisstNmiss_reload %)

Nmiss T Nhit+Nmiss_reload

In all applications the miss ratio obtained using the
greedy algorithm has been significantly reduced by using
the genetic algorithm. The drawback is the time required
to execute the genetic algorithm. Thus, genetic algorithms
should be reserved to fine-tune performance in the last steps
of software production.

4 Related work

Several cache-aware WCET computation techniques
have been designed in the last decade, mainly for instruc-
tion caches. For architectures without timing anomalies,
their objective is to determine for every memory access if it
will certainly cause a cache hit or may cause a miss. Cache-
aware WCET computation methods can be based on data-
flow analysis [15], abstract interpretation [6], integer linear
programming techniques [11], or symbolic execution [12].
In comparison, much less work has tackled data caches be-
cause of the presence of dynamic references (i.e. arrays and
pointers).

As mentioned in the introduction, cache-aware WCET
analysis techniques reach their limit for some cache replace-
ment policies (e.g. random, pseudo round-robin, pseudo
LRU), which cannot be tightly predicted, and for dynam-
ically scheduled processors, for which timing anomalies
arise. In such situations, a statically-decided software con-
trol of the cache, provided by cache locking techniques, is
of interest.

Work on locking techniques has been done for instruc-
tion caches [17, 4] and data caches [22]. [17, 4] study lock-
ing techniques of instruction caches in the case the cache
contents for a given task does not change at run-time. While
such techniques provide good worst-case performance for
small tasks, their performance decreases dramatically when

the task working set exceeds the cache size. The work pre-
sented in this paper is a follow-up of this line of research
and provides a much better scalability with task code size.

Vera et al introduce in [22] a set of methods for making
data caches predictable. Instead of using locked caches all
over the execution of tasks like in our proposal, they com-
bine the use of dynamic caches (together with cache anal-
ysis) with a localized use of cache locking for the parts of
code where cache analysis fails (e.g. data-dependent condi-
tionals). The selection of cache contents for locked regions
is achieved using an extension of Cache Miss Equations.
Their approach for cache contents selection is different to
our approach in the sense their objective is predictability
only, without any further attempt to reduce the WCET esti-
mate. Moreover, since they make a localized use of cache
locking, knowledge of the cache replacement policy is re-
quired in their approach.

A last approach to address the predictability issue raised
by caches is to design more predictable caches. For in-
stance, [7] proposes to extend the cache hardware and to
introduce new instructions to control cache replacement
(kill or keep cache blocks). In contrast to this class of ap-
proaches, our work uses standard hardware support to load
and lock the cache rather than defining new ways to control
the cache contents and cache replacement.

The predictability issue raised by caches may lead some
designers of hard real-time systems to avoid the use of
caches, or to employ on-chip static RAM (scratchpad mem-
ories) instead [2]. The amount of on-chip scratchpad mem-
ory available is often small compared to the total amount of
cache memory available in (potentially multi-level) cache
hierarchies. However, accesses to scratchpads are pre-
dictable since transfers to and from scratchpad memories
are under software control, and the power consumption of
the system is definitely lower than that of a system using a
cache [3]. Scratchpad are thus an interesting alternative to
the use of caches.

The issue of selecting which information is loaded into
scratchpad is very close to deciding which information has
to be locked into a cache. The issue has been studied
from different perspectives: reduction of energy consump-
tion [23, 20], average execution time [10], worst-case ex-
ecution time. To the best of our knowledge, only [21] ad-
dresses the problem of allocating information in scratchpad
memory with the objective of reducing the WCET estimate.
Their method allocates data for the whole lifetime of a pro-
gram, which should result in scalability problems for pro-
gram whose data size is larger than scratchpad memory size.

5 Concluding remarks

We have proposed algorithms to use instruction caches
in a predictable manner in real-time systems. The proposed
algorithms statically divide the code of tasks into regions,
for which a cache contents is statically selected. At run-
time, for every transition between regions, the cache con-

tents computed off-line is loaded into the cache and the
cache replacement policy is disabled (the cache is locked).
Performance results provided in the paper show that the
worst-case performance of applications with locked instruc-
tion caches is close to the worst-case performance of caches
without software control for programs with temporal local-
ity, but fails at fully exploiting spatial locality.

Dealing with hierarchies of instruction caches is a
straightforward extension of our work that we intend to ex-
plore in the near future. Extending the work to data caches
is trickier, in particular detecting locality regions for scalars.
A similar problem we are interested in is the loading of
code/data into scratchpad memories to improve worst-case
performance. More generally, compiling for predictability
and worst-case performance is an interesting research area
we wish to explore.

Acknowledgments

Many thanks to André Seznec, Jan Staschulat and Eric
Petit for fruitful feedback on earlier drafts of this paper. The
genetic algorithm was developed by Gael Legargeant during
a summer internship.

References

[1] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache be-
havior prediction by abstract interpretation. In Static Anal-
ysis Symposium (SAS’96), volume 1145 of Lecture Notes in
Computer Science, pages 51-66, Sept. 1996.

[2] O. Avissar, R. Barua, and D. Stewart. Heterogeneous mem-
ory management for embedded systems. In Proceedings of
the International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, Atlanta, USA, Nov.
2001.

[3] L.Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Mar-
wedel. Scratchpad memory : a design alternative for cache
on-chip memory in embedded systems. In Proceedings of
Tenth International Workshop on Hardware/Software Code-
sign (CODES 2002), May 2002.

[4] A. M. Campoy, 1. Puaut, A. P. Ivars, and J. V. B. Mataix.
Cache contents selection for statically-locked caches: An al-
gorithm comparison. In Proceedings of the 17th Euromicro
Conference on Real-Time Systems, pages 49-56, Palma de
Mallorca, Spain, July 2005.

[5] A. Colin and I. Puaut. A modular and retargetable frame-
work for tree-based WCET analysis. In Proceedings of the
13th Euromicro Conference on Real-Time Systems, pages
37-44, Delft, The Netherlands, June 2001.

[6] R.Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and the
results of WCET tools. Proceedings of the IEEE, 91(7), July
2003.

[7] P. Jain, S. Devadas, D. W. Engels, and L. Rudolph.
Software-assisted cache replacement mechanisms for em-
bedded systems. In ICCAD, pages 119-126, 2001.

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

D. B. Kirk. Smart (strategic memory allocation for real-
time) cache design. In Proceedings of the 10th IEEE Real-
Time Systems Symposium (RTSS89), pages 229-237, Santa
Monica, California, USA, Dec. 1989.

C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.
IEEE Transactions on Computers, 47(6), June 1998.

L. Li, L. Gao, and J. Xue. Memory coloring: A compiler
approach for scratchpad memory management. In Proc. of
the 14th International Conference on Parallel Architectures
and Compilation Techniques, 2005.

Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for
real-time software: Beyond direct mapped instruction cache.
In Proceedings of the 17th IEEE Real-Time Systems Sympo-
sium (RTSS96), pages 254-263. IEEE, Dec. 1996.

T. Lundqvist and P. Stenstrom. An integrated path and tim-
ing analysis method based on cycle-level symbolic execu-
tion. Real-Time Systems, 17(2-3):183-207, Nov. 1999.

T. Lundqvist and P. Stenstrom. Timing anomalies in dy-
namically scheduled microprocessors. In IEEE Real-Time
Systems Symposium, pages 12-21, 1999.

A. Marti-Campoy, A. P. Ivars, and J. V. Busquets-Mataix.
Static use of locking caches in multitask preemptive real-
time systems. In IEEE/IEE Real-Time Embedded Systems
Workshop (Satellite of the IEEE Real-Time Systems Sympo-
sium), London, UK, Dec. 2001.

F. Mueller. Timing analysis for instruction caches. Real-
Time Systems, 18(2):217-247, May 2000.

I. Puaut, A. Arnaud, and D. Decotigny. Performance anal-
ysis of static cache locking in hard real-time multitasking
systems. Technical Report 1568, IRISA, Oct. 2003.

I. Puaut and D. Decotigny. Low-complexity algorithms for
static cache locking in multitasking hard real-time systems.
In Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS02), pages 114-123, Austin, Texas, Dec. 2002.
P. Puschner and A. Burns. A review of worst-case execution-
time analysis. Real-Time Systems, 18(2-3):115-128, May
2000. Guest Editorial.

J. E. Sasinowski and J. K. Strosnider. A dynamic pro-
gramming algorithm for cache/memory partitioning for real-
time systems. /[EEE Transactions on Computers, 42(8):997—
1001, Aug. 1993.

S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Bal-
akrishnan, and P. Marwedel. Reducing energy consumption
by dynamic copying of instructions onto onchip memory. In
Proceedings of the 15th International Symposium on System
Synthesis (ISSS 2002), pages 213-218, Kyoto, Japan, 2002.
V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
WCET centric data allocation to scratchpad memory. In
Proceedings of the 26th IEEE Real-Time Systems Sympo-
sium (RTSS05), Dec. 2005.

X. Vera, B. Lisper, and J. Xue. Data cache locking for higher
program predictability. In ACM International Conference on
Measurement and Modeling of Computer Systems (Sigmet-
rics 2003), 2003.

M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware
scratchpad allocation algorithm. In Proceedings of Design
Automation and Test in Europe (DATE), Paris, France, Feb.
2004.

