
Extending Rate Monotonic Analysis with Exact Cost of Preemptions for Hard
Real-Time Systems

Patrick MEUMEU YOMSI
INRIA Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France
Email: patrick.meumeu@inria.fr

Yves SOREL
INRIA Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

Email: yves.sorel@inria.fr

Abstract

In this paper we study hard real-time systems com-
posed of independent periodic preemptive tasks where we
assume that tasks are scheduled by using Liu & Layland’s
pioneering model following the Rate Monotonic Analy-
sis (RMA). For such systems, the designer must guaran-
tee that all the deadlines of all the tasks are met, other-
wise dramatic consequences occur. Certainly, guarantee-
ing deadlines is not always achievable because the pre-
emption is approximated when using this analysis, and
this approximation may lead to a wrong real-time exe-
cution whereas the schedulability analysis concluded that
the system was schedulable. To cope with this problem
the designer usually allows margins which are difficult to
assess, and thus in any case lead to a waste of resources.
This paper makes multiple contributions. First, we show
that, when considering the cost of the preemption during
the analysis, the critical instant does not occur upon si-
multaneous release of all tasks. Second, we provide a
technique which counts the exact number of preemptions
of each instance for all the tasks of a given system. Fi-
nally, we present an RMA extension which takes into ac-
count the exact cost due to preemption in the schedulabil-
ity analysis rather than an approximation, thus yielding
a new and stronger schedulability condition which elimi-
nates the waste of resources since margins are not neces-
sary.

1 Introduction

This paper deals with the problem of executing hard
real-time systems found in the domains of automobiles,
air traffic control, process control, telecommunications,
etc, on a single processor. Such systems often consist
of independent periodic preemptive tasks that must meet
their deadlines in order to avoid the occurrence of dra-
matic consequences [1, 2]. Certainly, guaranteeing dead-
lines cannot always be achieved because the scheduling
of the tasks is based on the assumption that the cost of the

preemption is approximated within the worst case execu-
tion time (WCET) of tasks [3, 4, 5]. In fact, this approx-
imation may be wrong because it is difficult to count the
exact number of preemptions of each instance for a given
task even though the cost α of one preemption is easy to
know for a given processor. Actually, this cost α repre-
sents the context switching time that the processor needs
when a preemption occurs. The context switch includes
the storage of the context as well as the restoration of the
context. Since we are interested in embedded systems we
only consider predictable processors without a cache or
complex internal architecture (e.g. ARM2, etc.) [6, 7].
Therefore, this approximation may lead to a wrong real-
time execution whereas the schedulability analysis con-
cluded that the system was schedulable. To cope with this
problem the designer usually allows margins which are
difficult to assess, and which in any case lead to a waste
of resources since the worst case response time is larger
than the WCET when an instance of a task has been pre-
empted [8, 9]. Note that the worst-case response time of
a task is the longest time it takes, among all instances of
that task, to execute each instance from its release time
[10]. There have been very few studies addressing this is-
sue of counting the exact number of preemptions. Among
them, the most relevant ones are the following. A. Burns,
K. Tindell and A. Wellings in [11] presented an analysis
that enables the global cost due to preemptions to be fac-
tored into the standard equations for calculating the worst
case response time of any task, but they achieved that by
considering the maximum number of preemptions instead
of the exact number. Juan Echagüe, I. Ripoll and A. Cre-
spo also tried to solve the problem of the exact number
of preemptions in [12] by constructing the schedule using
idle times and counting the number of preemptions. But,
they did not really determine the execution overhead in-
curred by the system due to these preemptions. Indeed,
they did not take into account the cost of each preemption
during the analysis. Hence, this amounts to considering
only the minimum number of preemptions because some
preemptions are not considered: those due to the increase
in the execution time of the task because of the cost of

preemptions themselves.
In this paper, we first show that the critical instant [3]

does not occur when all tasks are released simultaneously
if we consider the cost of the preemption during the anal-
ysis. Second, we propose a new scheduling algorithm
which counts the exact number of preemptions of each
instance for all tasks. Finally, we propose a new and
stronger schedulability condition than Liu & Layland’s
condition, which takes into account the exact cost due to
preemption in the schedulability analysis. This new condi-
tion always guarantees a correct execution and eliminates
any waste of resources since no margins are necessary.

We assume that tasks are scheduled by using Liu &
Layland’s pioneering model according to Rate Monotonic
Analysis (RMA) [3, 13]. That is to say, we are in the fixed
priority context and the highest fixed priority is assigned
to the task with the shortest period [14, 15]. When two
tasks have the same period they are scheduled arbitrarily
[16]. We consider a set of n independent periodic preemp-
tive tasks τi,1 ≤ i ≤ n. Each task τi is an infinite sequence
of instances 1 τk

i , k ∈N
+, and is characterized by a WCET

Ci, not including the approximation of the cost of the pre-
emption, a period Ti, and a release time relative to 0, ri.
This means that instances corresponding to task τi are re-
leased at times ri + kTi, k ≥ 0. The instance released at
time ri + kTi has ri +(k + 1)Ti as its deadline, i.e. the re-
lease time of the next instance. We re-index tasks in such
a way that T1 ≤ T2 ≤ ·· · ≤ Tn. Consequently, τi receives
priority i 2 and we assume that tasks are ready to run at
their release times (idle time is forbidden in the presence
of ready tasks).

For the sake of readability and without any loss of gen-
erality, from now on, although it is not realistic, we con-
sider the cost of one preemption for the processor to be
α = 1 time unit in all the examples. This high cost of pre-
emptions in terms of the execution time of tasks is used
to illustrate the impact of not accounting for preemptions
correctly.

In addition, it is worth noticing that the analysis per-
formed here would work even if the preemption cost is
not a constant.

The remainder of this paper is structured as follows:
section 2 gives a counterexample on the critical instant
when the cost of preemption is considered. Section 3 de-
scribes the model and gives the notations used through-
out the paper. Section 4 provides the definitions we need
to take into account the exact cost of preemption in the
schedulability analysis presented in section 5. That sec-
tion explains in detail, on the one hand, our scheduling
algorithm which counts the exact number of preemptions
and, on the other hand, derives the new schedulability con-
dition. The complexity of our algorithm is discussed in
section 6. We conclude and propose future work in sec-
tion 7.

1Throughout the paper all subscripts refer to tasks whereas all super-
scripts refer to instances.

21 represents the highest priority.

2 Critical instant

The critical instant when the cost of the preemption is
approximated within the WCET of tasks is such that the
release time of the first instance of tasks occurs simultane-
ously [3], that is to say ri = 0 for all 1 ≤ i ≤ n. However,
this is not necessarily the critical instant when the cost
of preemptions is considered, see the counterexample de-
picted in figure 1 (the “¥” represents the preemption cost).

Tasks ri Ci Ti
τ1 0 2 5
τ2 0 2 8

Figure 1. Schedule under RMA with the cost
of preemption considered, ri = 0

In figure 1 the response time (4 time units) of task τ2
in its first instance (corresponding to the critical instant) is
shorter than the response time (5 time units) of its fourth
instance. This is because τ2 has been preempted in the
fourth instance and then, the cost of the preemption has
been added to the WCET without any approximation, and
used to compute the response time in that instance.

If the first instances of all tasks are released simultane-
ously, then this is repeated every hyperperiod H, thus as
stated in [3, 1] it is sufficient to perform the schedulability
analysis in the interval [0,H]. H is the least common mul-
tiple of the periods of the tasks: H = lcm{T1,T2, · · · ,Tn}.
For this reason, in this paper, we assume that all tasks are
released simultaneously. Since the worst case response
time of a task may not occur in the first instance (see figure
1), we consider all instances of a task within a hyperpe-
riod, and perform the schedulability analysis only within
the first hyperperiod.

Because we intend to take into account the exact cost
of the preemption, and because all tasks, except the first
one, may be preempted, the proposed technique gives a
schedulability condition for each task individually accord-
ing to tasks with higher priority. Our scheduling algorithm
calculates the exact number of preemptions per instance of
every task. This individual analysis leads, at the end, to a
schedulability condition for all the tasks.

3 Model and Notations

Throughout this paper, all timing characteristics in our
model are assumed to be non-negative integers, i.e. they

are multiples of some elementary time interval (for ex-
ample the “CPU tick”, the smallest indivisible CPU time
unit).

Since all tasks except the one with the highest priority
may be preempted, the execution time of a task may vary
from one instance to another. We call preempted execution
time (PET) the WCET augmented with the exact cost due
to preemptions for each instance of a task within a hyper-
period. Thus, the PET denoted Ck

i for instance τk
i of task

τi is greater than or equal to its WCET Ci. It depends on
the instance and on the number of preemptions occuring
in that instance. Its calculation will be detailed below.

The following model (depicted in figure 2) is an exten-
sion, with the exact cost of preemption, of the classical
model [3] for systems of tasks executed on a single pro-
cessor.

Figure 2. Model

τi = (Ci,Ti): A task
Ti: Period of τi
Ci: WCET of τi not including the preemption
approximation, Ci ≤ Ti
α: Temporal cost of one preemption for a given processor
τk

i : The kth instance of τi
Np(τk

i): Exact number of preemptions of τi in τk
i

Ck
i = Ci +Np(τk

i) ·α: PET of τi with its preemption cost
in τk

i
rk

i = (k−1)Ti: Release time of τk
i

Rk
i : Response time of τk

i
Ri: Worst-case response time of τi

From the point of view of task τi, since it may
only be preempted by higher priority tasks, we define
the hyperperiod at level i, Hi, which is given by Hi =
lcm{Tj}τ j∈hep(τi), where hep(τi) is the set of tasks with
a priority higher than or equal to task τi. Hence, task τi
is released σi times in each hyperperiod at level i starting
from 0, with

σi =
Hi

Ti
=

lcm{Tj}τ j∈hep(τi)

Ti
(1)

The total utilization factor is usually given by

Un =
n

∑
i=1

Ci

Ti
(2)

Recall that in (2) Ci does not include the approximation
of the cost of the preemption for task τi. If Un > 1 then the

task set is not schedulable with any algorithm [17]. Thus,
a set of n tasks may be schedulable if and only if Un ≤ 1
[18, 19]. Indeed, Un can be lower than or equal to 1 and
the system not schedulable.

According to the number of preemptions Np(τk
i) of task

τi = (Ci,Ti) in each instance τk
i , its PET Ck

i may be dif-
ferent from one instance to another, except for the task
with the highest priority τ1 which can never be preempted.
However, because task τi may only be preempted by the
set of tasks with a priority higher than τi denoted hp(τi)
3, then there are exactly σi different PETs for task τi. In
other words, from the point of view of any task τi, 1 ≤
i ≤ n, there exists a function π : N

+ ×N
+ −→ N

+σi ×
N

+, defined as π(Ci,Ti) = π(τi) = ((C1
i ,C2

i , · · · ,Cσi
i),Ti),

which maps the WCET Ci of task τi into its respective PET
Ck

i in each instance τk
i . Therefore, each task τi = (Ci,Ti)

has an image τ′

i =
(
(C1

i ,C2
i , · · · ,Cσi

i),Ti
)
. Consequently,

we define the exact total utilization factor to be

U∗
n =

n

∑
i=1

1
σi

(
σi

∑
k=1

Ck
i

Ti

)

= Un +
n

∑
i=1

1
σi

(
σi

∑
k=1

Np(τk
i) ·α

Ti

)

(3)
Remark that if α = 0, then equation (3) reduces to the

classical total utilization factor Un when the global cost
due to preemption is approximated within the WCET of
tasks. Therefore, the global cost due to preemptions in-
curred by the system is

εn =
n

∑
i=1

1
σi

(
σi

∑
k=1

Np(τk
i) ·α

Ti

)

(4)

Now we have to calculate Np(τk
i) for all k = 1, · · · ,σi and

for all i = 1, · · · ,n. To do so, let us recall some useful
algebra that we need to achieve this goal.

4 Definitions

For a given set of n tasks, we define the exact total
utilization factor at level j, 1 ≤ j ≤ n to be

U∗
j =

j

∑
i=1

1
σi

(
σi

∑
k=1

Ck
i

Ti

)

= U j +
j

∑
i=1

1
σi

(
σi

∑
k=1

Np(τk
i) ·α

Ti

)

(5)
It is worth noticing that since we are in a fixed prior-

ity context, and thus we carry out the schedule from the
highest priority task towards lower priority tasks, then to
every instance τk

i of a task τi = (Ci,Ti) is associated an
ordered set of Ti time units where some are already ex-
ecuted because of the execution of a higher priority task,
and the others are still available for the execution of task τi
in that instance. We call this ordered set which describes
the state of each instance τk

i a Ti-mesoid. We denote a
time unit already executed by an “e” and a time unit still
available by an “a”. Obviously, the switch from an a to
an e represents a preemption if the WCET of the task un-
der consideration is strictly greater than the cardinal of the

3hp(τi) is the set of tasks with a priority higher than task τi.

sub-set corresponding to the first sequence of a. Accord-
ing to the remaining execution time this situation may oc-
cur again. For example, {e,e,e,a,a,a,e,e,a,a,e,a,a} is a
mesoid where the first 3 time units have already been ex-
ecuted, the next 3 time units are available, followed again
by 2 already executed, then 2 available followed by one
already executed and which ends with 2 available. For
the sake of clarity and without any loss of generality, we
call a sub-set corresponding to a sequence of consecutive
time units already executed a consumption, and we rep-
resent it by its cardinal inside brackets (c), with c ∈ N

+.
In addition, we enumerate the sequence of available time
units according to the natural numbers. This enumeration
is done from the end of the first sequence of time units
already executed in that instance. Each of these natural
numbers corresponds to the number of available time units
since the end of the first consumption. They represent all
the possible PETs of the task under consideration in the
corresponding instance. Each of these natural numbers
is called an availability. Thus, the previous 13-mesoid
can be re-writen as: {(3),1,2,3,(2),4,5,(1),6,7}. It has
three consumptions 3, 2, 1, and seven availabilities 1, 2,
3, 4, 5, 6, 7. If the PET of the task under consideration
is equal to 6 then there are two preemptions. Notice that
the sum of all the consumptions of a mesoid and the high-
est availability in that mesoid, is equal to the period of the
task under consideration. From the point of view of task
τi = (Ci,Ti), there are as many Ti-mesoids as instances in
the hyperperiod Hi at level i, because task τi may only
be preempted by tasks in hp(τi). Therefore, there are
σi Ti-mesoids in Hi which will form a sequence of Ti-
mesoids. We call Lb

i =
{

M b,1
i ,M b,2

i , · · · ,M b,σi
i

}

the se-
quence of σi Ti-mesoids before τi is scheduled. For exam-
ple, Lb

i = {{(5),1,2,3,(2),4} ,{1,2,(3),3,4,(3),5}} is a
sequence of σi = 2 11-mesoids. The process for building
the sequence Lb

i of task τi will be detailed later on in this
paper.

Still, from the point of view of task τi, we define for
each mesoid M b,k

i ,1 ≤ k ≤ σi of the sequence Lb
i the cor-

responding universe X k
i of τi to be the set which con-

sists of all the availabilities of M b,k
i . That is to say,

all the possible values that Ck
i can take in M b,k

i . Re-
call that Ck

i denotes the PET of τi in τk
i , the kth instance

of τi. For the previous example of a sequence of 11-
mesoids, M b,2

i = {1,2,(3),3,4,(3),5}, and thus we have
X2

i = {1,2,3,4,5}.
Task τi will be said to be potentially schedulable if and

only if






U∗
i−1 +

Ci

Ti
≤ 1

Ci ∈ Xk
i ∀k ∈ {1, · · · ,σi}

(6)

The first equation of (6) verifies that the minimum
exact total utilization factor at level i is less than or
equal to 1. Indeed, U∗

i−1 +
Ci

Ti
≤ U∗

i because all WCET

Ci ≤ Ck
i , ∀k ≥ 1, and when task τi is shedulable U∗

i ≤ 1
must hold. The σi other equations verify that Ci belongs
to all the universes.

Since Ci ∈ {1,2, · · · ,Ti}, ∀1 ≤ i ≤ n, let us define the
following binary relation on each instance

R : “WCET Cγ1 leads to the same number of preemptions
as WCET Cγ2 ”, Cγ1 ,Cγ2 ∈ {1,2, · · · ,Ti}

R is clearly an equivalence relation on {1,2, · · · ,Ti}
(reflexive, symmetric, transitive). Now, since X k

i ⊆
{1,2, · · · ,Ti}, ∀1 ≤ k ≤ σi, thus R is also an equivalence
relation on X k

i , ∀1 ≤ k ≤ σi and each Xk
i ,k = 1, · · · ,σi to-

gether with R is a setoid 4. From now on, we consider
only the restriction of R on X k

i ,k = 1, · · · ,σi because Xk
i

represents all the available time units in instance τk
i .

The equivalence classes of each universe are the sub-
sets of availabilities determined by two consecutive con-
sumptions in the associated mesoid. In the remainder of
this paper, we call these equivalence classes the cells of
the universe. Hence, for the above example, we have

X1
i : [0]1 = {1,2,3} and [1]1 = {4}

X2
i : [0]2 = {1,2} and [1]2 = {3,4} and [2]2 = {5}

where for m ∈ N and 1 ≤ k ≤ σi, [m]k denotes the subset
of Xk

i composed of the availabilities which are preempted
m times. Thus, for the previous example, Lb

i can also be
written as

Lb
i = {{(5),

[0]1

︷ ︸︸ ︷

1,2,3,(2),

[1]1

︷︸︸︷

4 },{

[0]2

︷︸︸︷

1,2 ,(3),

[1]2

︷︸︸︷

3,4 ,(3),

[2]2

︷︸︸︷

5 }}

This means for task τi that its PET Ck
i ∈ Xk

i , i.e. in its kth

instance, k = 1,2, should not exceed 4 in the first instance,
and 5 in the second instance otherwise task τi cannot be
schedulable. We call La

i =
{

M a,1
i ,M a,2

i , · · · ,M a,σi
i

}

the
sequence of σi Ti-mesoids of task τi after τi is scheduled.
La

i is a function of Lb
i which itself is a function of La

i−1,
both detailed as follows.

We build the sequence Lb
i for task τi by using an in-

dex ζ which enumerate, according to natural numbers,
the time units in the sequence La

i−1 of task τi−1 after
τi−1 is scheduled. This enumeration is done whether
the time units have already been consumed or are still
available. ζ starts from the first time unit of the first
mesoid M a,1

i−1 towards the last time unit of the last mesoid
M a,σi−1

i−1 , and then circles around to the beginning of the
first mesoid M a,1

i−1 again. This process of counting is
thus cyclic. Each time ζ = Ti, a Ti-mesoid is obtained
for the sequence Lb

i and then the next Ti-mesoid is ob-
tained by starting to count again from the next time unit
to the current one. This process is repeated until we
get the σi Ti-mesoids of Lb

i . Since task τ1 is the high-

est priority task, hep(τ1) = {τ1} and thus σ1 =
H1

T1
= 1

4A setoid is a set equipped with an equivalence relation.

thanks to equation (1). Moreover, because it is never pre-
empted, we have Lb

1 =
{

M b,1
1

}

= {{1,2, · · · ,T1}} and

La
1 =

{

M a,1
1

}

= {{(C1),1,2, · · · ,T1 −C1}}.

The sequence La
i is deduced from the sequence Lb

i be-
cause all the available time units will have been consumed
up to the response time (detailed later on) within each
mesoid M b,k

i ,k = 1, · · · ,σi of task τi after τi is scheduled.
Notice that the response time in each mesoid depends on
π for task τi.

To summarize, for every task τi, we have

τi :







Lb
i =

{

M b,1
i ,M b,2

i , · · · ,M b,σi
i

}

La
i =

{

M a,1
i ,M a,2

i , · · · ,M a,σi
i

}

Both Lb
i and La

i consist of a finite number σi of Ti-mesoids
in each sequence.

5 The proposed approach

In this section we outline our approach that leads to a
new and stronger schedulability condition than the condi-
tion proposed by Liu & Layland [3], Joseph and Pandya
[20], Lehoczky et al. [5], Audsley et al.[21], etc. in the
sense that it takes the cost of preemption accurately into
account in the schedulability analysis rather than using an
approximation. The intuitive idea behind our approach
uses a system of arithmetic for integers, where numbers
“wrap around” after they have reached a certain value: the
period of the task under consideration. In other words,
our approach uses a modulo T arithmetic where T is the
period of a task.

5.1 Scheduling of two tasks
Let us motivate the general result of our approach by

considering the simple case of the scheduling problem of
two tasks τ1 = (C1,T1) and τ2 = (C2,T2), with T1 ≤ T2.
Under RMA, τ1 is assigned the higher priority. This latter
statement implies that before τ1 is scheduled, its WCET
C1 can potentially take any value from 1 up to the value of
its period T1, therefore Lb

1 =
{

M b,1
1

}

= {{1,2, · · · ,T1}}.

Since task τ1 is never preempted, thus Ck
1 = C1, ∀k ≥ 1

and σ1 = 1 and τ′

1 = π(τ1) = ((C1),T1). In addition, its re-
sponse time is also equal to C1. Hence, after τ1 is sched-
uled, it has consumed C1 time units, and thus there re-
main T1−C1 availabilities in each of its instances. Conse-
quently, the corresponding T1-mesoids associated to task
τ1 are given by

τ1 :







Lb
1 =

{

M b,1
1

}

= {{1,2, · · · ,T1}}

La
1 =

{

M a,1
1

}

= {{(C1),1,2, · · · ,T1 −C1}}

Now, the challenge is to schedule task τ2 by taking into
account the exact cost of preemptions. Thanks to every-

thing we have presented up to now, the construction of

Lb
2 consists of σ2 =

H2

T2
T2-mesoids. Furthermore, the se-

quence Lb
2 is built by using the index ζ and enumerating

cyclically the time units in the sequence La
1 . The con-

struction of Lb
2 is based on the intuitive idea of a modulo

T2 arithmetic. After the construction of Lb
2 , we can eas-

ily determine the corresponding universe X k
2 to each T2-

mesoid M b,k
2 , k = 1, · · · ,σ2. Thus, thanks to equation (6),

task τ2 is potentially schedulable if and only if







U∗
1 +

C2

T2
≤ 1

C2 ∈ Xk
2 ∀k ∈ {1, · · · ,σ2}

(7)

We give the following example in order to illustrate
these conditions. Let us consider a set of two tasks τ1
and τ2 with T1 = 6, T2 = 8, and C1 = 2, C2 = 3. We have

τ1 :







Lb
1 = {M b,1

1 } = {{1,2,3,4,5,6}}

La
1 = {M a,1

1 } = {{(2),1,2,3,4}}

Since σ2 =
H2

T2
= 3, thus we derive Lb

2 which consists of

a sequence of three 8-mesoids by using the index ζ as ex-
plained in the previous section on the sequence La

1 . We
obtain

Lb
2 =

{

M b,1
2 ,M b,2

2 ,M b,3
2

}

= {{(2),1,2,3,4,(2)},{1,2,3,4,(2),5,6},
{1,2,(2),3,4,5,6}}

For each 8-mesoid M b,k
2 ,1 ≤ k ≤ 3, composing Lb

2 , we
build the corresponding universe X k

2 ,1 ≤ k ≤ 3. These
universes are given by

τ2 :

∥
∥
∥
∥
∥
∥

X1
2 = {1,2,3,4}

X2
2 = {1,2,3,4,5,6}

X3
2 = {1,2,3,4,5,6}

From these universes, we deduce that task τ2 is poten-
tially schedulable because for each resulting universe X k

2 ,
we have







U∗
1 +

C2

T2
=

2
6

+
3
8
≤ 1

3 ∈ Xk
2 ∀k ∈ {1, · · · ,σ2}

Now, thanks to the equivalence relation R on each X k
2

for k = 1, · · · ,3, the cells of each universe are given by

for universe X1
2 : [0]1 = {1,2,3,4}

for universe X2
2 : [0]2 = {1,2,3,4} and [1]2 = {5,6}

for universe X3
2 : [0]3 = {1,2} and [1]3 = {3,4,5,6}

where for m ∈ N and 1 ≤ k ≤ σ2, [m]k denotes the subset
of Xk

2 composed of the availabilities which are preempted
m times. Thus, for this example, Lb

2 can also be written as

Lb
2 = {{(2),

[0]1

︷ ︸︸ ︷

1,2,3,4,(2)},{

[0]2

︷ ︸︸ ︷

1,2,3,4,(2),

[1]2

︷︸︸︷

5,6 },

{

[0]3

︷︸︸︷

1,2 ,(2),

[1]3

︷ ︸︸ ︷

3,4,5,6}}

Here we have all we need to calculate the exact number
of preemptions Np(τk

2) and then the corresponding PET Ck
2

of task τ2 in its kth instance, 1 ≤ k ≤ σ2.
Since task τ2 is potentially schedulable (equation (7)

holds), thus, its WCET C2 belongs to one and only one
cell [θ1]

k in each universe X k
2 ,k = 1, · · · ,σ2 (see figure 4

when i = 2) since each (X k
2 ,R) is a setoid. As such, the

PET Ck
2 is different from the actual value of the WCET

C2 in the associated mesoid as soon as task τ2 must be
preempted at least once. This occurs when C2 ∈ Xk

2\[0]k

for any k with 1 ≤ k ≤ σ2, (see figure 5 when i = 2).
In each universe X k

2 ,1≤ k ≤σ2, the number of preemp-
tions Np(τk

2) and the PET Ck
2 of task τ2 are computed by

using the following algorithm.
Initialization:







Ck,1
2 = C2

Bk,1 = C2
qk,1 = θ1

Ak,1 =
θ1−1

∑
m=0

card([m]k)

rk,1 = Ck,1
2 −Ak,1

For l ≥ 1, we compute

Bk,l+1 =
l

∑
j=1

Ak, j +(rk,l +θl ·α) (8)

By using the same idea as for a fixed-point algorithm, this
computation stops as soon as either two consecutive val-
ues of Bk, j, j ≥ 1, belong to the same cell or there exists
µ1 ≥ 1 such that Bk,µ1 > card(Xk

2). Figure 6 when i = 2
illustrates the same idea as for a fixed point algorithm. In
this latter case, task τ2 is not schedulable because the pe-
riod (deadline) of the task is thus exceeded. Actually, if
Bk,l+1 ≤ card(Xk

2), then ∃θl+1 ≥ 0 such that

Bk,l+1 ∈ [θ1 + · · ·+θl+1]
k

If θl+1 = 0 then Bk,l+1 and Bk,l belong to the same cell,
therefore expression (9) holds with µ2 = l +1 and Np(τk

2)
is given by (10), else if θl+1 6= 0, then we compute







Ck,l+1
2 = rk,l +θl ·α

qk,l+1 = θl+1

Ak,l+1 =
θ1+···+θl+1−1

∑
m=θ1+···+θl

card([m]k)

rk,l+1 = Ck,l+1 −Ak,l+1

and thus we derive the next value of Bk, j. The algorithm
is stopped as soon as

∃µ2 ≥ 1 such that θµ2 = 0 (9)

and therefore

Np(τk
2) =

µ2−1

∑
j=1

qk, j (10)

Thanks to equation (10), for each k = 1, · · · ,σ2, we com-
pute the PET Ck

2 of task τ2 in Xk
2 , i.e. in its kth instance,

including its exact preemption cost. Figure 6 when i = 2,
in addition to illustrate the same idea as for a fixed point
algorithm, also shows the PET of the task τi in instance
τk

i .
Ck

2 = C2 +Np(τk
2) ·α (11)

Consequently, the image of τ2 by function π is given by

τ
′

2 = π(τ2) =
(
(C1

2 ,C2
2 , · · · ,Cσ2

2),Ti
)

(12)

The response time Rk
2,1 ≤ k ≤ σ2 of task τ2 in its kth

instance, i.e. in the kth T2-mesoid is obtained by sum-
ming Ck

2 with all the consumptions appearing before Ck
2 in

the corresponding mesoid. Once this has been done, the
worst-case response time R2 of task τ2 is given by

R2 = max{1≤k≤σ2}(R
k
2)

The sequence La
2 is deduced from sequence Lb

2 by up-
dating the latter since all time units up to the response time
have now been consumed in every mesoid. Hence, by us-
ing expression (3), the exact total utilization factor of the
CPU is given by

U∗
2 =

2

∑
i=1

1
σi

(
σi

∑
k=1

Ck
i

Ti

)

= U2 +
1

σ2

(
σ2

∑
k=1

Np(τk
2) ·α

T2

)

(13)
Let us illustrate this result on the previous example.

We still assume α = 1 to be the cost of one preemption
for the processor in order to give a clear indication of the
impact of the preemption. We recall that C2 = 3, task τ2 is
potentially schedulable, and

Lb
2 = {{(2),

[0]1

︷ ︸︸ ︷

1,2,3,4,(2)},{

[0]2

︷ ︸︸ ︷

1,2,3,4,(2),

[1]2

︷︸︸︷

5,6 },

{

[0]3

︷︸︸︷

1,2 ,(2),

[1]3

︷ ︸︸ ︷

3,4,5,6}}

In both the first and second universes, C2 ∈ [0]k,k =
1,2; thus C1

2 = C2
2 = C2 whereas in the third universe,

C2 ∈ [1]3. The computation of Np(τ3
2) is summarized in

the following table.
From the second column of table 1, we get Np(τ3

2) = 1
and thus we obtain C3

2 = 3+1 ·1 = 4. Hence, the image of
task τ2 by function π is given by τ′

2 = π(τ2) = ((3,3,4),8).

Therefore, U∗
2 =

2
6

+
1
3

(
3+3+4

8

)

= 0.750 whereas

Table 1. computation of Np(τ3
2)

Steps q3,l C3,l
2 A3,l r3,l B3,l

1 1 3 2 1 4
2 0 2 2 0 4

U2 =
2
6

+
3
8

= 0.708. The response times of task τ2 in
each mesoid thanks to our previous definition are given
by

R1
2 = 3+2 = 5, R2

2 = 3, and R3
2 = 4+2 = 6

Hence, from this approach we can obviously deduce
the worst-case response time R2 of task τ2: R2 = 6. Task
τ2 is schedulable and its response time Rk

2,1 ≤ k ≤ σ2 in
its kth instance, i.e. in the kth T2-mesoid, is the first con-
sumption in M a,k

2 of sequence La
2 . Figure 3 depicts the

schedule of this example taking into account the exact cost
of preemtion.

For more than two tasks notice that La
2 is deduced from

Lb
2 by updating the latter as follows.

Lb
2 = {{(2),

[0]1

︷ ︸︸ ︷

1,2,3,4,(2)},{

[0]2

︷ ︸︸ ︷

1,2,3,4,(2),

[1]2

︷︸︸︷

5,6 },

{

[0]3

︷︸︸︷

1,2 ,(2),

[1]3

︷ ︸︸ ︷

3,4,5,6}}

®¶

O²
O²
O²
O²

La
2 = {{(5),1,(2)},{(3),1,(2),2,3},{(6),1,2}}

Figure 3. Execution of two tasks following
RMA with exact cost of preemption

5.2 Scheduling of n > 2 tasks
The strategy that we will adopt in this section to calcu-

late both the exact number of preemptions and the PETs
of a given task in each of its instances is the generaliza-
tion to a system of n > 2 tasks of everything we have pre-
sented in the previous section for the simple case of two
tasks. Indeed, the basic idea behind this approach con-
sists, for each task, in filling availabilities in each mesoid
with slices (cardinal of cells) of its PET which takes into
account the cost of the exact number of preemptions nec-
essary for its schedule. Recall that at each preemption oc-
curence, α time units add to the remaining execution time
of the instance of the task under consideration.

Before going through our proposed algorithm, we re-
call the exact total utilization factor at level j, U ∗

j , with
1 ≤ j < n,

U∗
j =

j

∑
i=1

1
σi

(
σi

∑
k=1

Ck
i

Ti

)

= U j +
j

∑
i=1

1
σi

(
σi

∑
k=1

Np(τk
i) ·α

Ti

)

(14)
Without any loss of generality, we assume that all tasks

have different periods, that is to say Ti < Tj for 1 ≤ i <

j ≤ n. A sub-system of tasks {τi = (Ci,Ti)}1≤i≤p, with
1 ≤ p < n, is said to be maximal when the the exact total
utilization factor at level p is smaller than or equal to 1,
and the exact total utilization factor at level (p+1)th is
strictly larger than 1, this occurs when

U∗
p ≤ 1 and U∗

p+1 > 1 (15)

This means that the sub-system {τi = (Ci,Ti)}1≤i≤p is
the largest sub-system schedulable on the processor ac-
cording to RMA.

5.3 Scheduling algorithm
We assume that the first i−1 tasks with 2 ≤ i ≤ n have

already been scheduled, and that we are about to schedule
the ith task, i.e. task τi, which is potentially schedulable,
i.e. 





U∗
i−1 +

Ci

Ti
< 1

Ci ∈ Xk
i ∀k ∈ {1, · · · ,σi}

As in the previous section for the construction of Lb
2

using index ζ on the sequence La
1 , the sequence Lb

i of
task τi is built thanks to index ζ on the sequence La

i−1 of
task τi−1. The sequence Lb

i consists of σi Ti-mesoids M b,k
i

with k = 1, · · · ,σi since task τi may only be preempted by
tasks belonging to hp(τi). Therefore, we can determine
the universes X k

i ∀k ∈ {1, · · · ,σi} when the sequence
La

i−1 is known. Again, the response time Rk
i ,1 ≤ k ≤ σi

of task τi in its kth instance, i.e. in the kth Ti-mesoid will
be obtained by summing Ck

i with all consumptions prior to
Ck

i in the corresponding mesoid. The worst-case response
time Ri of task τi will be given by

Ri = max{1≤k≤σi}(R
k
i)

This equation leads us to say that task τi will be schedu-
lable if and only if

Ri ≤ Ti (16)

Again, La
i will be deduced from Lb

i by updating the
latter since all time units up to the response time will have
been consumed in each mesoid. For the sake of clarity,
note that when updating Lb

i , whenever there are two con-
secutive consumptions in the same mesoid, this amounts
to considering only one consumption which is the sum of
the previous consumptions. That is to say that after de-
termining the response time of task τi in its kth mesoid,
if M a,k

i = {(c1),(c2),1,2, · · ·}, then this is equivalent to

M a,k
i = {(c1 + c2),1,2, · · ·} without any loss of general-

ity.
Below, we present our scheduling algorithm which, for

a given task on the one hand, counts the exact number
of preemptions in each of its instances, and on the other
hand, provides its PET in each of its instances in order to
take the cost of the preemption into account accurately in
the schedulability condition. It has the twelve following
steps. Since the highest priority task, namely task τ1, is
never preempted, the loop starts from the index of the sec-
ond highest priority task, namely task τ2 as we carry out
the schedule towards lower priority tasks.

1: for i = 2 to n do
2: Compute the number σi of times that task τi =

(Ci,Ti) is released in the hyperperiod at level i

σi =
Hi

Ti
=

lcm{Tj}τ j∈hep(τi)

Ti

Recall that Hi = lcm{T1,T2, · · · ,Ti}

3: Build the sequence Lb
i of Ti-mesoids of task τi be-

fore it is scheduled. This construction consists of
σi Ti-mesoids M b,k

i with k = 1, · · · ,σi, and is based
on a modulo Ti arithmetic using the the index ζ on
the sequence La

i−1.

4: For each Ti-mesoid M b,k
i resulting from the pre-

vious step, build the corresponding universe X k
i

which is composed of the set of all availabilities
in M b,k

i . Notice that this set corresponds to the set
of all possible values that the PET Ck

i of task τi can
take in M b,k

i .

5: Build all the cells for each universe X k
i . A cell of

Xk
i is composed of the subset of availabilities de-

termined by two consecutive consumptions in the
associated mesoid M b,k

i .

6: Compute both the exact number of preemptions
and the PET Ck

i of task τi in each universe X k
i ,1 ≤

k ≤ σi, resulting from the previous step thanks to
the algorithm inlined in this step. This algorithm
is necessary because, since τi is potentially schedu-
lable, i.e. its WCET Ci belongs to one and only
one cell [θ1]

k in each universe X k
i (see figure 4), we

must verify that it is actually schedulable.

Figure 4. task τi potentially schedulable

We initialize






Ck,1
i = Ci

Bk,1 = Ci
qk,1 = θ1

Ak,1 =
θ1−1

∑
m=0

card([m]k)

rk,1 = Ck,1
i −Ak,1

For l ≥ 1, we compute

Bk,l+1 =
l

∑
j=1

Ak, j +(rk,l +θl ·α) (17)

By using the same idea as that of a fixed-point al-
gorithm, this computation stops as soon as either
two consecutive values of Bk, j, j ≥ 1, belong to the
same cell or there exists µ1 ≥ 1 such that Bk,µ1 >

card(Xk
i). In the latter case, task τi is not schedula-

ble because the deadline has been exceeded.
Actually, if Bk,l+1 ≤ card(Xk

i), then ∃θl+1 ≥ 0 such
that

Bk,l+1 ∈ [θ1 + · · ·+θl+1]
k

If θl+1 = 0 then Bk,l+1 and Bk,l belong to the same
cell, then expression (18) holds with µ2 = l +1 and
Np(τk

i) is given by (19), else if θl+1 6= 0, we com-
pute







Ck,l+1
i = rk,l +θl ·α

qk,l+1 = θl+1

Ak,l+1 =
θ1+···+θl+1−1

∑
m=θ1+···+θl

card([m]k)

rk,l+1 = Ck,l+1
i −Ak,l+1

and we compute the next value of Bk, j.
The algorithm is stopped as soon as

∃µ2 ≥ 1 such that θµ2 = 0 (18)

Figure 5. Computation of Ck
i

and therefore

Np(τk
i) =

µ2−1

∑
j=1

qk, j (19)

For each k = 1, · · · ,σi, the PET Ck
i of task τi in Xk

i
is given by

Ck
i = Ci +Np(τk

i) ·α (20)

Figure 6. PET of task τi in instance τk
i : Ck

i

7: Deduce the image τ′

i = π(τi) =
(
(
C1

i ,C2
i , · · · ,Cσi

i
)
,Ti) of task τi resulting from the

previous step.

8: Determine the response time Rk
i ,1 ≤ k ≤ σi of task

τi in its kth instance, i.e. in the kth Ti-mesoid. This is
obtained by summing Ck

i and all the consumptions
prior to Ck

i in the corresponding mesoid. Deduce
the worst-case response time Ri of task τi.

Ri = max{1≤k≤σi}(R
k
i)

It is worth noticing that task τi is schedulable if and
only if

Ri ≤ Ti.

9: Build the sequence La
i by updating all the Ti-

mesoids of the sequence Lb
i .

10: Compute the exact total utilization load factor at
level i. That is to say

U∗
i =

i

∑
j=1

1
σ j

(σ j

∑
k=1

Ck
j

Tj

)

=Ui +
i

∑
j=1

1
σ j

(σ j

∑
k=1

Np(τk
j) ·α

Tj

)

.

11: If U∗
i ≤ 1 then increment i, and go back to step 2 as

long as there remain potentially schedulable tasks
in the system.

12: If U∗
i > 1, then the sub-system {τ j =

(C j,Tj)}1≤ j≤i−1 was already maximal. In
this case, the system {τi = (Ci,Ti)}1≤i≤n is not
schedulable.

13: end for
Thanks to the above algorithm, a necessary and suf-

ficient schedulability condition for a system of n tasks

{τi = (Ci,Ti)}1≤i≤n, all released at the same time and
scheduled according to RMA, which takes the cost due
to preemption accurately into account is given by

U∗
n =

n

∑
i=1

1
σi

(
σi

∑
k=1

Ck
i

Ti

)

=Un +
n

∑
i=1

1
σi

(
σi

∑
k=1

Np(τk
i) ·α

Ti

)

≤ 1

(21)

Example

Still with the same assumption that α = 1 let us con-
sider {τ1, τ2, τ3, τ4} to be a system of four tasks with the
characteristics defined in table 2.

Table 2. Characteristics of example 4
Ci Ti

τ1 2 6
τ2 3 10
τ3 2 15
τ4 3 30

According to RMA, the lower the index of a task is,
the higher its priority is. Thus, as depicted in table 2, τ1
has the highest priority and task τ4 has the lowest priority.
Thanks to our scheduling algorithm,

σ1 = 1, thus for task τ1

τ1 :







Lb
1 =

{

M b,1
1

}

= {{

[0]1

︷ ︸︸ ︷

1,2,3,4,5,6}}

τ1 = (2,6) 7−→ τ′

1 = ((2),6)

La
1 =

{

M a,1
1

}

= {{(2),1,2,3,4}}

σ2 = 3, thus for task τ2

τ2 :







Lb
2 =

{

M b,1
2 ,M b,2

2 ,M b,3
2

}

= {{(2),

[0]1

︷ ︸︸ ︷

1,2,3,4,(2),

[1]1

︷︸︸︷

5,6 },

{

[0]2

︷︸︸︷

1,2 ,(2),

[1]2

︷ ︸︸ ︷

3,4,5,6,(2)},

{

[0]3

︷ ︸︸ ︷

1,2,3,4,(2),

[1]3

︷ ︸︸ ︷

5,6,7,8}}

τ2 = (3,10) 7−→ τ′

2 = ((3,4,3),6)

La
2 =

{

M a,1
2 ,M a,2

2 ,M a,3
2

}

= {{(5), 1, (2), 2, 3}, {(6), 1, 2, (2)},
{(3), 1, (2), 2, 3, 4, 5}}

σ3 = 2, thus for task τ3

τ3 :







Lb
3 =

{

M b,1
3 ,M b,2

3

}

= {{(5),

[0]1

︷︸︸︷

1 ,(2),

[1]1

︷︸︸︷

2,3 ,(5)},

{(1),

[0]2

︷︸︸︷

1,2 ,(5),

[1]2

︷︸︸︷

3 ,(2),

[2]2

︷ ︸︸ ︷

4,5,6,7}}

τ3 = (2,15) 7−→ τ′

3 = ((3,2),15)

La
3 =

{

M a,1
3 ,M a,2

3

}

= {{(15)},{(8),1,(2),2,3,4,5}}

σ4 = 1, thus for task τ4

τ4 :







Lb
4 =

{

M b,1
4

}

= {{(23),

[0]1

︷︸︸︷

1 ,(2),

[1]1

︷ ︸︸ ︷

2,3,4,5}}

τ4 = (3,30) 7−→ τ′

4 = ((4),30)

La
4 =

{

M a,1
4

}

= {{(29),1}}

Therefore

U∗
4 =

2
6

+
1
3

(
3+4+3

10

)

+
1
2

(
3+2

15

)

+
4

30
= 0.967

whereas

U4 =
2
6

+
3

10
+

2
15

+
3

30
= 0.867

The schedule of this task set following RMA with the cost
of preemption considered is depicted in figure 7.

Figure 7. Execution of a task set by follow-
ing RMA and considering the exact cost of
preemption

whereas the schedule of the same set of tasks following
RMA without the cost of preemption is depicted in figure
8.

6 Complexity of the proposed scheduling al-
gorithm

For every task, the schedulability analysis is performed
only once. In this analysis we walk through the iteration

Figure 8. Execution of a task set by follow-
ing RMA with the cost of preemption ap-
proximated

space in order to calculate the number and positions of
available time units. Hence, the time and space complex-
ity for every task is O(m0), where m0 is the number of
time units in the sequence of mesoids of each task.

To calculate the PET of a task τi which includes the ex-
act cost of preemption within a given instance τk

i , the com-
plexity of our algorithm is O

(
σi ·σhp ·m0

)
, where σi is the

number of instances of the current task in a hyperperiod at

level i, and σhp =
i−1

∑
j=1

σ j is the number of higher priority

instances in a hyperperiod at level i. This complexity is
explained as follows. Our analysis is a per instance anal-
ysis, and hence includes the factor σi for every task. For
each instance, we need to calculate the exact number of
preemptions and the PET which includes the exact cost
of these preemptions. To calculate the exact number of
preemptions, we need to partition every instance. Since
the number of potential preemption occurences is equal to
the number of higher priority instances within the hyper-
period at level i, the factor σhp is included. Although the
complexity of the calculation of a PET adds a factor m0
to the complexity, it is actually a small number since the
range of available time units or availabilities between two
consecutive consumptions is limited by the largest one.
However, it is worth noticing that when the periods of the
tasks form an harmonic sequence, the time and space com-
plexity of our algorithm is O(n), where n is the number of
tasks in the task set.

7 Conclusion and future work

This paper makes three main contributions. First, we
give a counterexample on the critical instant when the cost
of preemption is considered. Second, we present a tech-
nique which counts the exact number of preemptions for
every intance of the task under consideration in a given
task set. Finally, we provide an RMA extension which
takes into account the exact cost due to preemption in the
schedulability analysis rather than using an approxima-
tion. This technique provides a new and stronger schedu-
labily condition since no margins are necessary. Further-

more, this new condition always guarantees a correct exe-
cution of the system and eliminates the waste of resources.

Future work will study the case where the deadline of
a task is smaller than its period.

References

[1] Joseph Y.-T. Leung and M. L. Merrill. A note on
preemptive scheduling of periodic, real-time tasks.
Information Processing Letters, 1980.

[2] Ray Obenza and Geoff. Mendal. Guaranteeing real
time performance using rma. The Embedded Systems
Conference, San Jose, CA, 1998.

[3] C.L. Liu and J.W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment. Journal of the ACM, 1973.

[4] Lehoczky-J.P. Sha, L. and R. Rajkumar. Solutions
for some practical problems in prioritized preemp-
tive scheduling. Proceedings of the IEEE Real-Time
Systems Symposium, 1986.

[5] J.P. Lehoczky, L. Sha, and Y Ding. The rate mono-
tonic sheduling algorithm: exact characterization
and average case bahavior. Proceedings of the IEEE
Real-Time Systems Symposium, 1989.

[6] Lichen Zhang. Predictable architecture for real-time
systems. International Conference on Information,
Communications and Signal Processing, 1997.

[7] Engblom-J. Berg, C. and R. Wilhelm. Perspective
workshop: Design of systems with predictable be-
haviour. Dagstuhl Seminars, 2004.

[8] H. Chetto and M. Chetto. On the acceptation of
non-periodic time critical tasks in distributed sys-
tems. Proc. 7th IFAC Workshop Distributed Com-
puter Control Systems (DCCP-86), 1986.

[9] H. Chetto and M. Chetto. Some results on the ear-
liest deadline scheduling algorithm. IEEE Transac-
tions on Software Engineering, 1989.

[10] H. Chetto, Silly M., and Bouchentouf T. Dynamic
scheduling of real-time tasks under precedence con-
traints. The Journal of Real-Time Systems, 1990.

[11] Tindell K. Burns A. and Wellings A. Effective anal-
ysis for engineering real-time fixed priority sched-
ulers. IEEE Trans. Software Eng., 1995.

[12] I. Ripoll J. Echage and A. Crespo. Hard real-time
preemptively scheduling with high context switch
cost. In Proceedings of the 7th Euromicro Workshop
on Real-Time Systems, 1995.

[13] Klein Mark H. Sha, Lui and John B. Goode-
nough. Rate monotonic analysis. Technical Report
CMU/SEI-91-TR-6 ESD-91-TR-6, 1991.

[14] Tei-Wei Kuo Jian-Jia Chen. Procrastination for
leakage-aware rate-monotonic scheduling on a dy-
namic voltage scaling processor. LCTES’06, Ot-
tawa, Ontario, Canada, 2006.

[15] Buttazzo G. Bini, E. A hyperbolic bound for the
rate monotonic algorithm. IEEE Proc. of the 13th
Euromicro Conf. on Real-Time Systems, pp. 59-66,
2001.

[16] J. Goossens and Richard P. Overview of real-time
scheduling problems. Euro Workshop on Project
Management and Scheduling, Invited Paper, 2004.

[17] Giorgio C. Buttazzo. Rate monotonic vs edf: Judge-
ment day. Real-Time Systems, vol. 29, Number 1, pp.
5-26, 2005.

[18] Mok A.K. Chen, D. and T. Kuo. Utilization bound
revisited. IEEE Transactions on computer, Vol. 52,
No. 3, pp. 351-361, 2003.

[19] Natarajan S. Park, D.W. and A. Kanevsky. Fixed pri-
ority scheduling of real-time systems using utization
bounds. Journal of Systems and Software, Elsevier.
Vol. 33, pp.57-63, 1996.

[20] M. Joseph and P. Pandya. Finding response times in
real-time system. BCS Computer Journal, 1986.

[21] N.C. Audsley, A. Burns, M.F. Richardson, Tindell
K., and A.J. Wellings. Applying new scheduling the-
ory to static priority pre-emptive scheduling. Soft-
ware Engineerung Journal, 1993.

