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Abstract

A critical resource in a distributed real-time system is its
shared communication medium. Unrestrained concurrent
access to the network can lead to collisions that reduce the
system’s reliability. Therefore in this area, one goal is to
develop effective models for coordinating and controlling
access to the shared medium and its channels.

Network Code is a verifiable, executable model for coor-
dinating and controlling access to a shared communication
medium in a distributed real-time system. In this paper, we
investigate the problem of building an application by com-
posing multiple Network Code programs. To reason about
the composition, we model Network Code programs as Tree
Schedules (TS) and then consider the composition of sched-
ules that describe how the network is accessed by differ-
ent applications. Specifically, we first define the notions of
compatibility and composability of tree schedules, and then
provide algorithms for their composition and reason about
overhead of composition. We illustrate the techniques by
considering the composition of two control applications.

1 Introduction

Modern real-time systems realize distributed applica-
tions with timeliness requirements. These systems typically
manifest at the border between the physical and the logi-
cal world, and as such, allow us to manipulate our physi-
cal world based on programmed algorithms. Consequently,
such systems must be extremely reliable because logic and
timing errors no longer stop at our workstation, but can
cause physical damage to the equipment, environment, and
humans.

A critical resource in a distributed real-time system is its
shared communication medium. Because of the system’s
decentralized nature in most networks, any connected node
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can access it anytime and can cause collisions in the net-
work communication, which scrambles data and typically
results in retransmissions. Since such collisions reduce the
system’s reliability, one primary research goal in this area
is to provide effective and flexible coordination models for
controlling access to the shared medium and its channels.

This has been the motivation to introduce the Network
Code [14] as a verifiable, executable coordination model
for controlling access to a shared communication medium
in a distributed real-time system. In some cases, this model
of programming communication enables increased through-
put by skipping unnecessary communication compared to
the standard offline methods [3]. The application-specific
program is encoded in the domain-specific language Net-
work Code. The programs are interpreted by a runtime en-
vironment that executes the instructions. Such a runtime
environment has been implemented for RTLinuxPro [14],
PIC18F2X8X [18], and as an FPGA [20]. One salient as-
pect of Network Code is that its programs can be translated
to formal specifications, which can be model-checked to
verify aspects of reliability such as absence of collisions,
overhead, schedulability, and integrity (e.g., sender/receiver
pairing, content typing, over/underflows) as shown in [14].

A Network Code program describes the network supply
for a particular application. An important feature of Net-
work Code is the option of specifying several different net-
work supplies based on suitable conditions. This feature
has naturally allowed us to capture the underlying struc-
ture of a Network Code program as a tree. The program
encodes when a node gets a slot and when the node may
transmit data. Thus, the program specifies the supply of
the network resource to the application. Since the program
can contain conditional branches encoded in IF instructions,
a periodic supply model (c.f., [17, 9]) would have to over-
approximate. Encoding the supply in a tree structure (called
tree schedule) has proved to be a well suited abstraction [3],
which can also encode this conditional branching without
loss of generality. This differs from the recurring branching
task models [6, 7] as it specifies a supply and not a demand.

Figure 1 provides an overview of the development pro-



cess. Each application has its own requirements that may be
specified using an arbitrary task model. From these require-
ments, we can generate a demand tree schedule. The de-
mand tree schedule specifies how much resource the appli-
cation requires (in our case, the network). In addition, each
application also uses a resource model that describes the re-
source and places limits and constraints on its availability
(e.g., a periodic resource model may periodically provide
© amount of resource every II time units). Together with
the resource model, demand tree schedule leads to a sup-
ply tree schedule which describes how much resource the
application will actually get at run time. If this supply tree
meets the application’s demands, then we have a valid tree
schedule for the particular application. If it does not, then
we have to generate a different supply tree or may have to
alter the application requirements and repeat this process.

Application; Applicationsy
I IR I
Application Resource Resource Application
requirements mode! mode! requirements

igenerate i generate

limits limits

demands| Demand tree

/ schedule

Demand tree | demands

schedule \

check check
demand | ? Supply tree Supply tree ? | demand
satisfaction sehctiule H sehetiule satisfaction

i compose

Generate
Supply tree L - N¢iwork Code

schedule program per node

Figure 1. Composition of tree schedules.

In this paper, we investigate the problem of composing
two tree schedules at the supply level. This problem occurs
whenever two or more applications use this programmable
coordination model and share the same resource. Consider
the situation shown in Figure 1: There are two applications,
each one produces its own supply tree schedule, however,
since both share the same resource we need to compose
them to generate one combined supply tree schedule. To
provide true compositionality, we want to guarantee that the
composed tree schedule still meets the demands of each in-
dividual application; therefore, there is no additional “check
demand satisfaction” in the figure after the composition.

Overview of Composition Procedure. The tree sched-
ules (TS), aside from encoding conditional release of mes-
sages, also have the provision to specify equivalent sched-
ules, all of which meet the application demand. The advan-
tage of having such equivalent schedules is apparent when
composing tree schedules; given two schedules 2; and {2,
we pick a schedule each from {2; and €25 such that they are
mutually compatible (there are no collisions) and meet de-
mands of the applications being composed. Figure 2 pro-

vides the overview of our procedure for composing tree
schedules. Our composition operator (|]|) requires the sched-
ules to take transitions at the same time (time compatibil-
ity). While this condition is not always necessary for com-
position, it keeps the analysis simple. Our composition pro-
cedure consists of two parts: First, it tries to transform the
input schedules and make them time compatible and com-
posable. Second, it composes the schedules. The transfor-
mation again consists of two steps: In the first step, we make
two input tree schedules time compatible so they take transi-
tions at the same time. This behavior is implemented by the
procedure T™McC(). If the procedure succeeds then the outputs
will be time compatible. In the second step, we make two
tree schedules composable by removing optional parts of
the tree schedule that cause collisions on the network after
composition. The procedure REDUC() implements this be-
havior and prunes the set of equivalent schedules of all the
uncomposable schedules. If the procedure succeeds, then
the outputs are time compatible and composable.

If either procedure fails, then the input tree schedules
cannot be composed without altering their timing behaviors.
Here, we resort to composing them via temporal isolation.
Temporal isolation is achieved here by using bandwidth re-
strictions to transform the input schedules into composable
ones. Under this scheme, each application is allocated sev-
eral network slots depending on their proportion of the total
bandwidth. The procedure PROP_FIT() implements this be-
havior. Although proOP_FIT() makes the schedules compos-
able, it may introduce additional delays that alters timing
behavior. This could cause deadlines to be missed; how-
ever, it still preserves other properties such as the causal
ordering of messages and tree’s branching structure.
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Figure 2. Flow diagram for composition of TS.
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2 Tree Schedule and Definitions

Informally, a tree schedule is a structure consisting of lo-
cations and transitions between these locations such that its
underlying graph is a directed tree. Each location of the tree
schedule may specify a transmission on the shared network,
and each transition is guarded by a condition that needs to



be met before proceeding to the next location. A location
could also be empty, in which case no transmission but the
passage of time occurs.

2.1 Definition of a Tree Schedule

Definition 1 (Tree Schedule) A Tree Schedule (75) Q is a
tuple (V,V, sl, K, T) where,

V' is a set of locations,

V is a set of variables,

sl : V. — VU {e} x B specifies what variable is
transmitted in this location and a clock constraint,

K is a set of clocks |K| > 1,

T CVxGx2Kx2Visa ser of transitions that
depend on an enabling condition G,

such that the underlying graph (V,T) is a directed tree.

In the tree schedule, we denote the root location by w0 €
V. The set of leaf locations is denoted by VI C V. The
mapping sl defines for each location a variable (or €) and
a set of clock constraints on that location. Clocks are as
defined in the Timed Automata [1], and the clock constraint
b € B is of the form k = ¢ where kisaclock and ¢ € ZT.

The set of transitions T C V x G x 2K x 2V connects
locations to sets of descendant locations. A transition from
location v to v’ is guarded by an enabling condition g € G,
resets a set of clocks s C 2%, and is denoted by v LA
The enabling condition is any decidable function over the
variables V. The enabling conditions g, ..., g™ of tran-
sitions leaving one location v must satisfy the following
conditions: (1) any two enabling conditions g’ and g/ are
mutually exclusive and (2) the set of enabling conditions
is exhaustive, i.e., \/;n:1 g-; = true. These conditions en-
sure that the schedule always makes progress, and a reset
will always occur eventually. In practice, the enabling con-
ditions are typically functions of the state of the schedule,
local variables, and transmitted values.

The set T is partitioned into sets T, and 7,.. The set
T,,, contains all transitions that have exactly one destination
(i.e., they are of the form': V x G x 2K x V). Transi-
tions in the set 7T, are called minimum transitions. The
set T,, = T \ T, contains all transitions that have more
than one destination. Such transitions are called reducible
transitions. Each node can have multiple outgoing transi-
tions, and each transition could lead to multiple locations;
here, the system can choose to continue in one of the loca-
tions. This mechanism may encode alternative, equivalent
schedules which are all acceptable to the application. Two
schedules are equivalent, if they both satisfy the application
demand. For example, if an application requires nine slots

By V, we actually mean singleton sets but we write them as single
nodes to simplify notations when they singleton node sets.

out of ten, then the two schedules, where one provides ten
out of ten the other provides nine out of ten, are equivalent.

Definition 2 (Path) A path pathg(v™,v™"") is a se-

. Im+1,8Sm+1
quence of locations of a tree schedule €): v™ —

L mamtmdn mdn ohere vi,1 < ¢ < n
(oMt g i Smai, v € T. A complete path is
pathg (v°,v) with v € V; the set of all complete paths
is denoted by P.

If two complete paths are such that they contain a com-
mon prefix, and the first transition where they differ is a
reducible transition, then they are called equivalent paths.
We denote two equivalent paths p; and ps by p;1 = ps. The
duration of a path, dur(p) with p = path(v™, v™T™), is
the time it takes to transit from v™ to v™*™. If all com-
plete paths of 2 have the same duration, then we say that
Q) is a isochronous tree schedule. Otherwise, it is said to
be anisochronous. Finally, we define the probability of
path(v™, v™T™) as the probability of reaching v start-
ing from v™. This probability is useful to reason about com-
position of anisochronous tree schedules where there is no
fixed period of recurrence of the start location.

Execution Semantics. The execution semantics of a tree
schedule as it is executed in the network layer (see [14]) is
as follows: The tree schedule starts execution at v° with all
clocks set to 0. The variables in V are assigned to some
default value by the user. The network layer then transmits
variables as specified in schedule’s mapping sl (or if this
is €, then it remains idle). The network layer remains in
the current location v till it can make a suitable transition.
This happens when the clock constraint of the current loca-
tion evaluates to true. The transition is made to one of v’s
children (recall that exactly one g will be enabled by defini-
tion). The decision about which transition is taken, is made
by first evaluating all the enabling conditions and then mak-
ing a transition to the one that is enabled. If this transition
leads to multiple locations (representing equivalent sched-
ules), then the system chooses the first one that is stored
in the list of destination locations. This execution is con-
tinued until a leaf location is reached. In the leaf location
(v € V), the schedule resets immediately after the clock
constraint becomes true. This means that (1) the schedule
starts again at the root v° and (2) all the clocks K are set to
0 during the reset. Variables get updated at run time through
messages. If one node transmits a new value for a variable,
then all nodes use this new value for evaluating enabling
conditions. For more details about this, we refer the reader
to Fischmeister et al [14].

Example. Assume a distributed real-time system in
which we have to communicate one sensor value. Data in-
tegrity requirements specify that the system must tolerate



failures at the sensor reading hardware. We assume that
the variation in the reading is bounded by J unless a fault
occurs, , and we assume that the communication medium
between the units is reliable. Our approach requires the sen-
sor and three sensor reading units. The sensor produces the
value, and each unit reads it via polling. The units then need
to agree on what the real sensor value is. To implement this,
we need three values x; to x3. The units use these values to
communicate each one’s sensor reading. With our assump-
tions, a simple majority vote is sufficient. Figure 3 shows
the resulting tree schedule for this example. In the figure,
(z,n) represents the variable being transmitted (z) and the
time spent in that location (n). The two branches A and B
only differ in the ordering of the initial two sensor readings.
Note, that if two values already create a decisive vote, then
it is unnecessary to communicate the third one.

(e.0)
Branch A

'
QLD (z1,10) (2, 10)

go = |z — 2| <& /X

(z3,10)

Branch B

Figure 3. Example tree schedule.

We can encode the
(V,V,sl, K, T):

application by the TS

o V = {vg,v1,v2, 3,04, Vs, Vg, U7, Vs }

o V:={r,29,0}, K = {k},

e sl as shown in the figure for each location v,

o .. = {(vo,0,{k},{v1,v5})}, and T,,, contains all
other transitions.

The guard go := |21 — 22| < 0 checks whether the first
two sensor readings are already within a bound §. The clock
k is reset on every transition.

2.2 Compatibility and Composability

In this section, we introduce notions of compatibility and
composability. First, we define these for paths and then
extend them for tree schedules. We assume that both tree
schedules start execution at the same time and that the clock
variables of two tree schedules are disjoint. For the remain-
der of this section, we denote two tree schedules by €2y
and Qo where Q,, = (V,, Vy, 8lp, K, Tr), n = 1,2, and
K; N K> = (). We also denote paths of the tree schedule

| gitl gitl gl s )
.
Qn by pn, = pathg, (Wi, vl) = ol Tr TR )

n=1,2.

The first notion of compatibility is time compatibility
which means that the two paths have same timing behav-
ior i.e., they make transitions at the same time.

Definition 3 (Time Compatibility of Paths) Two paths p,
of Q1 and py of Qo are said to be time compatible, denoted
p1 ~K Do, Iif they take transitions at the same time, i.e.,
Vi,i <1< j: (sli(v}).b = true) < (sla(vh).b = true)
where b’ denotes the projection operation onto the clock
constraint.

(xu

95 1%

(e, 1 (,1)  (x1,1) (z2,1) (zz 1)
Figure 4. Example for Section 2.2

Consider for example the two schedules shown in Fig-
ure 4. For ease of explanation, we name our locations al-
phabetically. The enabling conditions are defined as g; :=
x1 < 5 and go := g1. We use the following shorthand no-
tation: a path is specified by a sequence of letters (e.g., AB
is the path A — B). If all the locations have a timing con-
straint K = 1 and clock K is reset on every transition, then
all complete paths of {2; are time compatible with those of
Qo.

The second type of compatibility we define is called tran-
sition compatibility. If two transitions are guarded by mutu-
ally exclusive enabling conditions, then they would never be
taken together. Therefore, we do not have to consider their
concurrent execution. For the two schedules shown in Fig-
ure 4, paths AB and EF are transition compatible, whereas
AB and EG are not. Note, that to check for transition com-
patibility, we assume that the two trees are time compatible.
While this is not a necessary restriction, we introduce it as
it keeps the analysis simple.

Definition 4 (Transition Compatibility of Paths) Two
time compatible paths py of Q1 and ps of Q2 (p1 ~K p2)
are said to be transition compatible, denoted p1 ~7 pa, if
Vi,i<1<7j:gknghistrue.

Finally, we define that two paths are composable if they
are transition compatible and that there are no collisions.
For the example in Figure 4, paths AD and EG are transi-
tion compatible, but not composable as there is a message
release at locations D and G. Transition compatible paths
AC and EG are however composable.

Definition 5 (Composability of Paths) Two transition
compatible paths p1 of 1 and ps of Qo (p1 ~1 p2)



are said to be composable, denoted py =~ po, if
Viii <1 < j: (sl(¥).Y = € V (sl(vh).V = ¢
where .V’ denotes the projection operation onto the
variable being transmitted.

Given two composable paths, we can define the schedule
that results from their concurrent composition.

Definition 6 (Composition of Paths) Consider complete
and composable paths p = patth(v?,v}") and q =
pathg, (v9,05") (p ~ q). We define the concurrent com-
position of p and q as the schedule Q. = (V,V,sl, K, T)
where,

o V= {<U117'U5>|Z € [Ovm]}vvin € VIFaUgL € VQF’

L] V:V1UV2,K_:K1UK2,

o« T = (i i), {ahgh). (st sh), (o of))li €
[1,m)}

e fori e [0,m),
- D si(ef :
sl((vi,vs)) = < sl(vi) sl(vi).V #eAsl(vy).V =¢e
; i 5

Additionally, v° = (v9,09) and VI = {(v]*, v5")}.

With the definitions of compatibility and composability
for paths, we can define these notions for trees. Two trees
are said to be time compatible if every path of one tree is
time compatible with every path of the other tree.

Definition 7 (Time Compatibility of TS) Two tree sched-
ules Q1 and o are said to be time compatible, denoted
W~k Qo if Vp; € P1,pj € Pa2,pi ~x p;j where P,
denotes the set of complete paths in Q,,n =1, 2.

For our example in Figure 4, {2 and 2, are time compat-
ible. We define transition compatibility to mean that there
exists at least one path each in €2; and €25 that can run con-
currently and be transition compatible. Again, both ©; and
Q25 are transition compatible.

Definition 8 (Transition Compatibility of TS) Two time
compatible Tree schedules 0y and Qs (21 ~g 2) are
said to be transition compatible, denoted )y ~p (o, if
dp; € Pi,p; € Pa2,pi ~1 pj where P, denotes the set
of complete paths in Q,,n = 1,2. Further, we define the

set P1o = {(pi, pj)|pi € P1,pj € Pa,pi ~1 pj}.

Finally, before we define the composition of two tree
schedules, we need to define the union of two tree sched-
ules. We assume that the union of two trees is defined for
tree schedules that have the same start location, and that the
locations in their intersection release the same message and
have the same timing constraint.

Definition 9 (Union of TS) We define the union of two tree
schedules Q1 and Qs if v = v and Vv € ViNVa, sly(v) =
sla(v). The union, denoted by 21 U Qo, is given as the tree
schedule (Vi UV,, 00, VIE UV ViUV, sl, K1 UKo, Ty U
T5) where sl(v) = sli(v) if v € Vi and sl(v) = slz(v) if
v E V.

2.3 Composition of Tree Schedules

A tree schedule describes the actual communication be-
havior of an application. The concurrent composition of
tree schedules represents the running of both applications
concurrently. Therefore, the set of acceptable schedules un-
der the composition would be the ones that are acceptable
by both the underlying tree schedules and are mutually com-
patible.

Definition 10 (Composition of TS) Two transition com-
patible Tree schedules 1 and Qo (U1 ~p 3) are said
to be composable, denoted Oy ~ Qo, if V(p;i, p;) € P12,
we have that p; =~ p;. The concurrent composition of trees

Q1|92 is then given by, J,,,, Pz ilps-

The composition of two tree schedules is determined by
this three step procedure: (1) compute all complete paths
for each tree schedule, group equivalent paths, and combine
all paths, (2) eliminate paths that are unreachable or cause
collisions and check that at least one path from each group
of equivalent paths causes no collision, (3) take the union
of all paths. We demonstrate the composition procedure us-
ing the schedules in Figure 4. We assume that the letters
in brackets show the current location in each tree schedule
with all locations having globally unique identifiers (e.g.,
(AE) specifies that €21 resides in location A and {25 in loca-
tion E). Therefore (AE)(BF) specifies the concurrent paths.
A— Band E — F.

Step 1: The complete paths of 2, are: AB, {AC, AD}.
The paths AC and AD are grouped, because they stem from
a reducible transition. 25 has the paths EF and EG. Now
paths are combined by simultaneously executing each path.
This results in (AE)(BF), (AE)(BG), (AE)(CF), (AE)(CG),
(AE)(DF), and (AE)(DG).

Step 2: First, we statically check for each path, whether
the joint guards in each cause a contradiction. If so, we
remove them. In our example since g1 = g2, g1 A g2
and —g; A g2 cause contradictions, so we remove the paths
(AE)(BG), (AE)(CF), (AE)(DF). Furthermore, a path may
cause collisions, if locations of both tree schedules com-
municate data. These paths are eliminated from the set.
Given the example, the path (AE)(DG) must be removed,
because of a collision in (DG). Since that path stems from
a reducible transition, we check whether we can remove it.
As the other path (AE)(CG) does not cause collisions, we
can remove (AE)(DG) and preserve the transition in . If



we could not remove the path or if the path stems from a
minimal transition, then the composition fails at this point.
The remaining paths are: (AE)(BF) and (AE)(CG).

Step 3: We now create the union of all paths using the
union operation as defined for tree schedules in Section 2.2.

( 171)
Q[ -

g1 A g2 E(gl Vv g2)
€9

(1271) (1371)

Figure 5. ©,]|2, for schedules in Fig. 4.

3 Time Compatibility by Unrolling

One prerequisite for composition of tree schedules is that
they are time compatible. Algorithm 1 describes how two
schedules can be made time compatible by unrolling both
of them to the same fixed duration and synchronizing their
decision points.

The Algorithm. In the algorithm, the variable [; repre-
sents the expected duration of compete paths in each tree
schedule. We assume that exactly one transition is selected
from reducible transitions to compute this length. The vari-
able hyp represents the hyper period.

The algorithm consists of three main parts: in part A,
it unrolls the schedules until the duration on all paths is
equal or longer than the hyper period using the procedure
APPEND(). This procedure attaches one tree schedule to the
leaves of another. Specifically, it adds the root node of the
new instance of {2; to the temporary tree schedule, adds
transitions from all leaves to it, and finally takes the union
of both trees. In Part A, the algorithm also computes the set
‘R; that contains all former root locations of attached trees.

In Part B, the algorithm tailors the schedules to the hy-
per period by pruning subtrees that are too long using the
procedure PRUNE(). This procedure finds v’ at which it can
prune the path. This may be at a former root location or one
branch of a reducible transition (hence, v’ € R U T,.4)%.
When tailoring the tree, the optimum is to cut off as little as
possible. Thus, the v’ that leads to the optimum is the one
that has the longest duration of the path p(v°, v") of all pos-
sible locations in question. Then, the procedure prunes the
subtree rooted at that location. However, pruning may intro-
duce paths that are shorter than hyp. If this is the case, the
algorithm attaches blanks to these branches until the hyp. A

2« 4” specifies a projection on the fourth element of the tuple.

Algorithm 1 Make 21, {25 time compatible by unrolling.

Require: [; = > dur(r;) - pr(p;) where p; € P; withi = 1,2
Require: hyp «— LCM(l1,l2)
Ensure: Q) ~x Qo
procedure TMC(21, Q2, hyp, R1, R2)
fori =1,2do// PartA
Q* — Q;
while 3p € P* : dur(p) < hyp do
5: APPEND(2*, new instance of 2;)
end while
Ri < {v|vwasrootinQ;}
Q; — QF
end for
10: fori=1,2do// Part B
for all v € V,F" with dur(p(v°, v)) > hyp do
PRUNE(2;, R;, v, hyp, true)
end for
end for
// Part C
15: SYNC_TRANS(Q21, Q2) // bfs with node duplicating
end procedure

procedure APPEND({2,, Q24)
Vi — ViU v?‘_
forallv € {VF"\ v]} do
20: Ty <—T*U(v,®,K,v3_>
end for
Qe — Q. UQy
end procedure

procedure PRUNE(Q2, R, v, hyp, pad)

25: L — (RUT.4) N {"|v" € p(v° v)}
find opt. v/ € £ with dur(p(v°,v")) < hyp
if no v’ found then

return failed
end if

30: prune subtree rooted at v’
if pad = true A dur(r(v°,v’)) < hyp then

append blanks until hyp
end if
end procedure

blank is a slot of length one which has no scheduled com-
munication, thus (e, 1).

In Part C, the algorithm synchronizes the timing of tran-
sitions in both schedules by calling sYNC_TRANS(). This
procedure performs a simple breath-first search in which
it checks that for each location in all complete paths of
one tree, there exists a location in all complete paths of the
other tree whose clock constraint becomes true simultane-
ously. If such a location is missing on a particular path, then
SYNC_TRANS() introduces it by duplicating the location that
is closed but prior that time and adding a transition between
the duplicated nodes. Specifically, if the schedules enter vy
and vy concurrently and the first schedule spends time ¢; in
alocation v; while other spends t; > t; time in location v,
we split the location vs into v4 and v4 such that time spent
in v} is t; and in v} is to — t;. We also add the transition
(vh,0,0,v4). For practical purposes, we limit transitions
only to be a multiple of the packet size. Therefore, we can



packetize messages and thus perform this procedure. In the
algorithm, the variable /; represents the expected duration
of compete paths in each tree schedule. The variable hyp
represents the hyper period.

Example. Figure 6 illustrates Algorithm 1 with unrolling
and pruning of one schedule. The tree schedule is simpli-
fied on purpose to show only the necessary level of detail.
Consider the tree schedule €2 and a hyper period of six. In
the unrolling part, the algorithm unrolls €2 until all runs are
longer or equal to the hyper period. In the pruning part, the
algorithm prunes all branches that are longer than hyp. In
case A, it removes the subtree based on the reducible tran-
sition in v3. In case B, it removes the subtree based on the
root locations vy4 and vs.

hyp
) after unroll:
hyp =6, R = {vo,...,vs} 3 O l Prune and
pad with €

O o4 -0-0O

Figure 6. Example for Algorithm 1

Static Overhead. Tailoring the tree schedule to the hyper
period introduces blanks. We quantify the number of all in-
serted blanks as static overhead. This static overhead can be
computed as follows: Let w be the amount of slots allocated
to a tree schedule {2, and [; be the expected path lengths.
If the schedule is unrolled to the length of w, the trailing
empty slots are inserted along paths whose length is at least
w + 1 — max; [;. The number of trailing empty slots in the

tree component schedule is given by 3577 ;. (w—j)h(j)

where h(j) = > 4, x) % sty Lk = w— j.
To see why this is correct, observe that a path in the fi-
nal schedule is made up of paths of the original schedule.
With k; subpaths of length [;, it is possible to generate

% paths of the final schedule (the number of permu-

tations of k;’s). We can also compute the expected number
of trailing empty slots (i.e., the average overhead), given
the probabilities of transition. If the probability of taking

a path of length [; is m;, then the expected number of trail-
ing empty slots is 37, ;. (w — j)'(i) where h'(j) =

ko) . )
> o) ((IX_IL k') L 7F ) sty liki=w—j.

4 Composability by Reduction

The second prerequisite of our composition algorithm is
that all paths of the input tree schedules are composable.
The problem of composing tree schedules by pruning un-
composable paths containing reducible transitions, while
retaining the maximum number of paths in either tree sched-
ules, is however notoriously hard. We denote this problem
as MAXCOM(4,22) and prove that it is at least N P-
hard by a reduction from the constrained maximal vertex
biclique problem.

Theorem 1 Given two tree schedules $)1 and o,
MAXCOM(£4, Q3) is at least N P-hard.

Proof From the tree schedules €2 and {25, we can generate
all paths of the schedule, including those which contain re-
ducible transitions, by performing a depth-first traversal of
the tree schedule. Let us denote the generated paths of €3
by p1,...,p, where r = |V/f'|. These paths can be parti-
tioned into sets Ly, Ly, ..., L, where Vp;,p; € L;,p; =
p1, where = indicates equivalent paths. Similarly, the paths
of Q2, q1,...,qs,5 = |V4'|, can be partitioned into sets
Ri, Ry, ..., R, each containing equivalent paths. Now
consider a bipartite graph G = (L, R, E') where L = | J, L;
and R =J, R;and the E = {(p,q)lp € L,q € R,p =~ ¢},
i.e., there is a edge in G if paths p of {21 and ¢ of 25 are
composable. This graph can generated in linear time as
checking whether two paths are time compatible, transition
compatible, and composable can be done in a single pass
from the root to the leaf location of the paths. We will show
that the problem MAXCOM(24, 23) is then equivalent to
finding bipartite clique of G having maximum number of
nodes such that the solution must consist of at least one
member from each of Ly, Lo, ..., L, and Ry, Ry, ..., Ry,.
The bipartite clique condition can be seen by the following
argument. Assume to the contrary that the solution is not a
bipartite clique. This means that there exists a node p € L
and g € R such that there is no edge between them. How-
ever, this implies that p # ¢, which is a contradiction and
the equivalence between the problems follows. MAXCOM
is therefore, at least as hard as solving the constrained bi-
partite clique problem which has been shown to be at least
N P-hard [13]. Hence, MAXCOM is at least N P-hard. [J

Feige et al [13] have shown that the constrained biclique
problem cannot be approximated within a factor of n® for
some € > 0 unless P = N P. So, it is not possible to get a
good approximation of the MAXCOM also. Therefore, we



give a heuristic algorithm that relies on pruning schedules
with higher utilization.

The Algorithm. The underlying idea of the algorithm is
that it checks all paths of one tree against all paths of the
other tree and identifies locations that cause collisions (see
Line 5 of Algorithm 2). Inside the if clause, the algorithm
tries to prune the path that causes the collision by reducing
a transition along the path that leads to it. Here, it reuses the
PRUNE() procedure from Algorithm 1. Note that if the pa-
rameter R in the procedure PRUNE() is empty, then PRUNE()
considers only reducible transitions. If PRUNE() fails, then
it is impossible to make two tree schedules compatible by
reduction. Since the algorithm prunes equivalent schedules,
we do not incur any overhead.

Algorithm 2 Composability by reduction.
Require: ; ~x Qo
Ensure: Q1 ~ Qo
procedure REDUC(21, 22)
for all p € P; do
forallicp:v; - vig1 — -
for all p’ € P> do
5: if sl(v;).1 # e A sl(v]).1 # e then
// Collision occurred, resolve.
if ((only v prune-able) V
(UTIL(p)>UTIL(p’)) then
PRUNE(1, 0, v;, dur(v?, v;), false)
else if v prune-able then

— Vi4n do

10: PRUNE(Q2, 0, v}, dur(v3, v}), false)

else

return failed
end if
end if
15: end for
end for
end for

end procedure

Example. Consider the two tree schedules in Figure 4 and
we now no longer assume that g; = g». Then, the two paths
AD and EG are time compatible, but not composable, since
D and G communicate a variable. Applying Algorithm 2,
detects that only D is prune-able, so it removes it from €2;.
The resulting tree schedules (c.f., Figure 7) are time com-
patible (as seen before) and composable.

(z1,1) (e,1)

Qll @ le

g1 -1 g2 Rilz

(e, 1) (e1) (w2,1)  (23,1)

Figure 7. Example applying rRebuc().

5 Proportional Fit

If either of the earlier introduced methods fails, then we
resort to composing tree schedules using temporal isolation.
Temporal isolation is a model in which each application gets
only a fraction of the available bandwidth. In this fraction,
the application has exclusive access and its network access
is temporally isolated from the other applications. For ex-
ample, one application might get sixty percent of the total
available bandwidth while the other gets forty percent of it.
Usually, network access is then proportionally distributed to
each of the applications to minimize inter network-access
latency. So in the example, one application would get three
slots and then the other might get two slots. Many em-
bedded networking technologies can realize this model via
round-robin or priority-based schemes (see FlexRay [15],
TTP [10, 16], Byteflight [8], PowerLink [11]).

Compared to the earlier shown methods, temporal iso-
lation makes any two tree schedules time compatible and
composable. However, this comes at an expense, as some
of the original properties may no longer be preserved in
the transformed schedule. Specifically, temporal isolation
preserves the temporal ordering of network access and the
structure of the tree schedule; however, it does not preserve
the communication delays as they change when the other
tree schedule gets its share.

Our method for applying temporal isolation and band-
width restrictions to tree schedules is called Proportional
Fit as it involves allocating access based on the proportion
of the bandwidth each application gets. The idea is that
given a bandwidth restriction for both tree schedules, the
algorithm computes the least number of slots that will pro-
vide the desired level of bandwidth for each tree schedule.
Using this number, the algorithm assigns slots to each tree
schedule as proportionally and as evenly as possible. Fur-
thermore, we insert blanks into one tree whenever the other
has its exclusive access to the medium.

The Algorithm. Algorithm 3 shows the proportional fit
algorithm. The variable p; specifies the reserved bandwidth
for €2;. The variable hyp is the hyper period of both sched-
ules. The variable o computes the rate at which blanks
should be introduced to €25 to accommodate €2 in the com-
position. The variable a; specifies how often €2; will be
executed within the hyper period. The set Cl; contains
pointers to the locations that the algorithm currently oper-
ates on. The variable C13 denotes the first element of the
set C'ly. Note, that we assume without loss of generality
that a1 < as.

The algorithm consists of three parts: in part A, the
algorithm makes both tree schedules time compatible as
in Algorithm 1. Depending on whether the schedules are
isochronous or anisochronous, the algorithm uses an exact



solution for hyp for the former and an approximation for
the latter.

In part B, the algorithm computes the step size o and
uses it to introduce blanks in one schedule to make room for
the other schedule. This is achieved by advancing « steps in
Q5 while introducing « blanks €2, and then introducing 1
blank in €25 and advancing 1 step in 2. So, both schedules
will be composable. At the end of Part B, €25 has had its
share of bandwidth and the remaining bandwidth belongs to
1; thus, the algorithm introduces blanks to (2, until Ayp.

In Part C, the algorithm the cuts all branches of the tree
schedules at the hyper period. This works, because in Part
B, the algorithm inserted the exact number of blanks so that
each schedule terminates with a former leaf location at the
hyper period. The overhead introduced by this algorithm
can be computed as described in Section 3 for T™MC().

Algorithm 3 Proportional fit given p; .
Require: p1 <1,p2=1-—p1
Require: [; = dur(r;) with r; a run of Q;, withi = 1,2
Require: I} = > dur(r;) - p,(rs) with r; a path of ;, with
i=1,2
Ensure: Q; ~ Q>
procedure PROP_FIT(21, 22, p1)
// Part A: unroll schedules

if 21, Q2 isochronous then
8= LCM(p2-l1,p1- l2)
p1-l2

B:-p1-ly
=03 . aq = ZP1°2
> l1-p2

5: else
// try to minimize |aq - 1] + a2 - ly — [a1 - 1] + a2 - 15]] in:
solve CL2~l/2~p1 = a1~l/1~p2 for ai,as € Z~o,a1 < a2
end if
hyp = a1 -1} +az - 15]
T™MC(21, Q2, hyp, R1, R2) / R1, Re are returned
// Part B: make room for other schedule
10: a =L

a,g»l’2
Cl1 = {U?},CZQ = {’US}
while dur(r(v3, C19)) < (az - 15)(1 + «) slots do
insert « blanks in 21 before all locations v € Cl1
take « transitions in 2 (add entries in Cly for

branches)
15: insert 1 blank in 25 before all locations v € Cls
take 1 transition in Q; (add entries in Cl; for
branches)
end while

insert blanks to €22 after all locations v € Cls until hyp
// Part C: pruning the trees to hyp
for all {v|v € V; A dur(p(v?,v)) > hyp},i = 1,2 do
20: prune subtree rooted at v
end for
end procedure

Example.
isochronous tree schedules Q7 and Q5 with [;

Consider an example where we have two
= 4 and

lo = 3. Suppose we split the bandwidth with p; = 0.4 and
p2 = 0.6. Using Algorithm 3, we get, as = 2a; and choose
a1 = 1, thus as = 2. This results in hyp = 10, « = 2. Fig-
ure 8 shows the resulting tree schedules 2] and 2. These
two tree schedules are now compatible and composable.
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Figure 8. Proportional fit of 2,0, with p; =
0.4

6 Case Study

In this case study, we consider two control systems:
an inverted pendulum control and a room heater control.
The inverted pendulum system [19, 5] is essentially a pole
mounted on a cart. The pole is free to rotate round on one
axis, and the cart can move horizontally. The objective is to
maintain the inverted pendulum in the upright position. In
the room heater system, we consider three rooms that share
one heater. The goal is to maintain each of the rooms within
a desired temperature range. This application is our ‘perfor-
mance’ application, as depending on the update frequency,
the control model becomes inevitably invalid and then the
pendulum will collapse. We measure the time from the start
until the collapse, and the longer that time span, the better
the system. With this metric, we can measure the impact
of the overhead introduced by the composition. The heater
application is our ‘load’ application that puts additional de-
mand on the shared medium and shows the potential of on-
the-fly decisions.

6.1 Controller 1: Inverted Pendulum

The inverted pendulum system consists of five sensor
units (yo to y4) that communicate the sensor input (pendu-
lum angle 6 and angular acceleration w) to the controller
by broadcasting them. Each sensor is expected to report
a faulty reading with a probability of 0.01. To mask such
faults, the controller system performs a simple majority vot-
ing technique to pick the sensor value. As we have five
sensors, we can tolerate two independent faults. The con-
trol parameter is the linear acceleration of the pivot. This
parameter bases on the pendulum’s angle to the car and its



angular speed. Initially, the pendulum is at the extreme left
position.

We model communication between the controller and the
replicated units via the sampling step size in our model. For
example, in the standard TDMA system, each unit must re-
port its value. The control unit always waits a full cycle
(i.e., five steps), so the length of the TDMA cycle is the five
sampling step size. In the implementation, we ignore over-
head introduced by clock synchronization or computation
time for reading values, adjusting values, and the voting.
This can be incorporated as additional overhead to the cycle
duration.

Observe that the implemented inverted pendulum system
is a discretized version of the hybrid systems control model
without feedback. In such a system, there is always a dif-
ference between actual and observed values of the control
inputs. Because of this discrepancy, an error is introduced in
the control mechanism. As this error grows large because
of the lack of a feedback mechanism, the model becomes
invalid, and the pendulum eventually collapses. We make
use of this behavior to demonstrate the utility of tree sched-
ules by showing that a tree schedule minimizes the control
error and so stabilizes the pendulum longer than a schedule
consisting of sampling of all the sensor values.

Figure 9 shows the tree schedule for this inverted pen-
dulum application. After three sensors (yg,y1,%2) com-
municated their values, the controller will perform the first
majority vote g;. Based on this result, more sensor values
might be omitted (i.e., a reset it performed) or more sen-
sor values are requested. The same happens for the second
vote go. The standard TDMA schedule of this is to always
transmit the longest path [3].
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Figure 9. TS for the inverted pendulum sys-
tem.

6.2 Controller 2: Room Heater

For our second application, we consider the heater
benchmark controller as described in [12] with three rooms
and one heater where the three rooms communicate their
temperature (1 to x3) to the heater. The temperature of a
room depends on other rooms, the outside temperature, and
on whether the heater is present in the room. The heater
is controlled by a typical thermostat, i.e., it is switched on

10

if the temperature is below a certain threshold, and off if it
is beyond a higher threshold. When the temperature in any
room (z;) falls below a certain desired level, it may get a
heater from the adjacent rooms, provided the temperature
in that room is significantly higher. The desired objective is
to maintain all the three rooms within the comfortable tem-
perature range. A heater is moved from room j to room 4 if
(1) room 7 has no heater, (2) z; < getand 3) z; —x; > dif
where get and dif are constants and can differ for each
room.

To prevent faulty transitions in our model, we increase
the sampling frequency of specific values as we approach
the guard conditions [4]. Figure 10 shows the tree schedule
for this model. If the state of the controller is such that it
is very close to a guard, more values of the guard inputs
are transmitted so that a better estimate of the guards can
be made. This is incorporated in the schedule by having
enabling conditions z; < o get,a > 1l and z; — x; €
[B dif,dif],0 < 8 < 1 with parameters « and 3.

@
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Figure 10. TS for the heater system.

6.3 Composition

As each schedule has a utilization of 100%, clearly we
can only compose the two schedules using temporal isola-
tion. Let’s assume an average branch length of [ = 3.8 for
the inverted pendulum and 7} = 4.8 for the heater. Further-
more, we decide to divide the bandwidth with 60% for the
pendulum and 40% for the heater. Following Algorithm 3,
we get a; = 1l,a2 = 2, hyp = 13. Following the algo-
rithm, this results in eight slots for the pendulum and five
slots for the heater. Figure 11 shows the resulting trans-
formed schedules after applying the algorithm. The upper
part shows the pendulum schedule, and the lower one shows
the heater schedule.

6.4 Simulation & Measurements

We implemented the hybrid systems control using
CHARON. CHARON permits modular specification of in-
teracting hybrid systems and supports automatic code gen-
eration [2]. Once the model is specified in CHARON, the
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Figure 11. Case study component schedules.

code generator for an agent takes a sampling step size as an
input and produces code that approximates the continuous
behavior of the model.

In addition to the model, we incorporate a communica-
tion channel into the model. The communication channel
implements the component tree schedule as shown in Fig-
ure 11. During the simulation, the communication channel
updates the variables in the control models according to the
schedule.

Configuration | Type Duration ~ Overhead
TDMA | standalone 51.5 0

Tree schedule | standalone ~141.2 0
TDMA | composed 23.44 0

Tree schedule | composed  ~54.20 ~2.10

Table 1. Measured results of the simulation
for the inverted pendulum.

Table 1 shows the measured results of the simulation
with a slot size of 0.0035 time units. The configuration
column explains what schedule has been used, the type
specifies whether the application ran standalone or com-
posed with the heater, the duration column lists how long
the model stayed valid, and the overhead specifies the aver-
age number of empty slots added in the end of the schedule.

When comparing the first two rows, the tree schedule
outperforms the TDMA schedule in standalone. The next
two rows show that this advantage is kept during compo-
sition, although additional overhead has been added to the
tree schedule during the composition operation. Finally, the
calculated average overhead (e.g., 2.1032 time units for the
inverted pendulum) and the average waiting time (e.g., 5.33
time units for slot x; in the inverted pendulum) go in line
with the ones observed during the simulation.

Figure 12 shows the simulation results for the inverted
pendulum and the heater. In Figures 12(a) and 12(b), the
top part shows the angular control with the angular veloc-
ity w and the angle #. Right below that part, it shows the
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(a) The pendulum using TDMA under composition.
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(b) The pendulum using tree schedules under composition.
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(c) Overview of the heater model under composition.

Figure 12. Simulation results and plots for the
inverted pendulum and the heater.

cart acceleration v. The bottom part shows the overhead
due to composition. Figure 12(a) shows the TDMA sched-
ule under composition, which results in no overhead and
the model stays valid for about 23 time units. Figure 12(b)
shows one path of the tree schedule under composition,
where the model stays valid for 51.2 time units. The bottom
part shows the overhead which depends on which branch
has been taken by the tree schedule. Different branches have
different overhead (see Figure 11).

Figure 12(c) provides an overview of the first eighteen
time units of the heater. The top part shows the temperature
in all three rooms, and the bottom part shows the current
location of the heater.



7 Conclusion

Network Code has been proposed as a verifiable, exe-
cutable model for coordinating and controlling access to
a shared communication medium in a distributed real-time
system. Previous work in this area concentrated on the con-
version of such programs into tree schedules, verification of
network properties such as absence of collisions, and pro-
viding metrics for their evaluation. In the current work, we
have investigated the problem of composing different tree
schedules. Specifically, we have extended the definition of
tree schedule to include equivalent schedules, defined var-
ious notions of compatibility and composability, and pro-
posed algorithms for making them compatible and compos-
able. As a case study, we have considered the composi-
tion of two applications: an inverted pendulum system and
aroom heater system where each application is described by
a control model and a slotted transmission schedule. These
applications were composed using the algorithm with tem-
poral isolation and the effect of the composition studied by
simulating them in CHARON. The results of the simulation
show that the tree schedules for the applications can lead
to better performance (marked by smaller error) than the
standard TDMA schedules when they are run stand alone
and composed with another application. The utility of tree
schedules is also clearly demonstrated in the room heater
application where there was more communication near a
guarded transition which resulted in higher switching ac-
curacy. Future work includes applying the tree schedules
to hybrid control systems, where they can be used to lower
switching errors and facilitate adaptive control. Another is
to apply the developed theory to a physical system and see
how the simulation results translate to it.
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