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Abstract

There is a need for using virtual memory in real-time ap-
plications: using virtual addressing provides isolation between
concurrent processes; in addition, paging allows the execution
of applications whose size is larger than main memory capac-
ity, which is useful in embedded systems where main memory
is expensive and thus scarce. However, virtual memory is gen-
erally avoided when developing real-time and embedded appli-
cations due to predictability issues. In this paper we propose a
predictable paging system in which the page loading and page
eviction points are selected at compile-time. The contents of
main memory is selected using an Integer Linear Programming
(ILP) formulation. Our approach is applied to code, static data
and stack regions of individual tasks. We show that the time re-
quired for selecting memory contents is reasonable for all ap-
plications including the largest ones, demonstrating the scala-
bility of our approach. Experimental results compare our ap-
proach with a previous one, based on graph coloring. It shows
that quality of page allocation is generally improved, with an
average improvement of 30% over the previous approach. An-
other comparison with a state-of-the-art demand-paging sys-
tem shows that predictability does not come at the price of per-
formance loss.

1. Introduction

The use of virtual memory and demand paging when de-
veloping real-time and embedded applications is generally
avoided because of the difficulties of predicting the dynamic
behavior of paging activity. Instead, applications are loaded in
main memory at program start, and virtual addressing is not
used. Nevertheless, as many embedded systems are getting in-
creasingly large and complex, there is now a need to overcome
this strict static memory management.

Hardware support for virtual memory is now present in
many embedded commercial processors. Virtual memory hard-
ware provides address mapping and memory protection for pro-
cesses. A process’s virtual address space is divided into fixed-
size pages, which are mapped at run-time to physical pages.
Page mapping information is stored in main memory in page
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tables, scanned by the Memory Management Unit (MMU)'.
In systems with standard demand paging, when a program at-
tempts to reference an unmapped page, a page fault occurs, and
the operating system’s page-fault handler loads the page from
disk on demand (page-in). Symmetrically, when there is no
free physical page anymore, a software-implemented replace-
ment policy selects one virtual page to evict from main memory
(page-out). Virtual memory hardware allows to implement iso-
lation between processes. Moreover, it permits to execute tasks
whose address space is larger than the capacity of main mem-
ory, which is particularly interesting in embedded systems with
stringent cost constraints.

In real-time systems, it is crucial to prove that tasks will
meet their temporal constraints in all situations, including the
worst-case situation. Therefore, predictability of performance
is as important as average-case performance. One should be
able to predict the Worst-Case Execution Time (WCET) of
pieces of software for the system timing validation [25]. Virtual
memory raises predictability issues at two levels:

— Level of address translation: the duration of the address
translation is hard-to-predict due to the presence of a TLB,
because the TLB replacement policy may not always be
well documented or not amenable to static analysis [17].

— Level of paging activity: knowing whether or not a ref-
erence to a virtual page will result in a page fault is
hard to predict: (i) page replacement policies are often
more complex than cache replacement policies (software-
implemented in the operating system), and thus are far
from the highly predictable strict Least Recently Used
(LRU) [17], (ii) main memory is shared between concur-
rent processes, and in general any physical page, regard-
less of its owner process, may be selected by the page re-
placement algorithm.

So far, attempts to provide real-time address spaces have
focused on the predictability of virtual to physical address
translation [12, 3]. In this paper, we propose a predictable
compiler-directed memory management technique, in which
points where code and data pages are loaded from secondary
storage (disk/flash) and paged out to secondary storage are se-
lected at compile-time transparently. The selection of page
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load/unload points is achieved using a 0/1 Integer Linear Pro-
gramming (ILP) formulation. Experimental results on a real
size application are provided to compare our ILP formula-
tion with a previous approach for predictable paging, which
is named hereafter graph coloring approach, that we have pre-
viously described in [16]. The comparison shows that the ILP
formulation yields a better quality of page allocation than our
previous work. Moreover, although by similarity to register
allocation the page allocation problem can be shown to be NP-
complete [7], the ILP problem is demonstrated to be solved in
reasonable time even for the biggest tasks. Finally, a compari-
son of our approach with a state-of-the-art demand-paging sys-
tem shows that the predictability of our scheme does not come
at the price of a performance loss. To the best of our knowledge,
this work is the first work allowing a transparent (compiler-
controlled) and predictable use of paging hardware for real-
time applications, applicable both to code and data (stack and
static data).

The selection of page load/unload points in our approach re-
quires that I/O operations to disk/flash have a bounded (but not
necessarily tight) latency. The design of I/O systems with pre-
dictable and low I/O latency is considered outside the scope of
this paper. The interested reader is referred to [1] for an exam-
ple of real-time disk management for soft real-time systems.

In order to be independent from the task scheduling policy,
our compiler-directed memory management scheme operates
on individual tasks. It is intended to be used together with a
memory partitioning scheme such as [18] to partition the main
memory among the application tasks.

The rest of the paper is organized as follows. Related work
is surveyed in Section 2. Section 3 first presents how addresses,
required to select the contents of main memory at compile-
time, are statically computed; Section 3 then details our ILP
formulation of the page allocation problem. Experimental re-
sults are given in Section 4. Finally, Section 5 summaries the
paper contributions and gives directions for future work.

2. Related work

The definition of efficient page replacement algorithms has
received considerable attention in the operating systems com-
munity in the seventies. Since optimal page replacement, as
defined in [2], cannot be implemented in practice because it
requires an exact knowledge of future memory accesses, exist-
ing page replacement strategies exploit the knowledge of past
references to guess future ones. In contrast to existing page
replacement policies, page replacement in our approach is de-
cided at compile-time for the sake of predictability.

So far, demand paging is avoided in real-time operating
systems. For processors with a MMU, some systems like
Spring [11] use it for protection between processes only. In
Spring, all the pages of a program are loaded at process start
such that page faults do not occur. Furthermore, the number of
pages used by a process is limited, such that all address trans-

lations are served by the TLB without resorting to page table
lookups. Other real-time systems like RT-Mach [21] and real-
time extensions of POSIX provide a system call to wire pages in
memory for real-time tasks. [14] proposes a page lock/release
mechanism for out-of-core embedded applications. The ap-
proach automatically inserts paging hints used by the replace-
ment algorithm to keep/discard pages. Since a part of the pag-
ing activity is still under operating system support through a dy-
namic method, the approach is not directly usable in real-time
systems. A very predictable approach called overlaying [13]
was used before the hardware support for virtual memory be-
came common. Unfortunately, overlaying techniques, while
highly predictable, were in most systems non automatic, requir-
ing manual work of the programmer to define the overlays. [6]
proposes a manual overlaying approach suited to real-time sys-
tems, applied to code and static data. In our case, the selection
is automatic and stack-allocated variables are supported.

One may view the predictability issues caused by paging as
identical to those raised by caches. Many methods have been
designed to estimate WCETSs on architectures with instruction
and/or data caches [10, 20], for different cache structures and
replacement policies. The tightest predictions are obtained for
LRU replacement. In contrast, pseudo round-robin and random
replacement yield looser timing estimates [17]. Analysis meth-
ods originally defined for caches cannot be directly transposed
to paging systems. The main reason is that page replacement
policies are more sophisticated and less documented than cache
replacement policies. To the best of our knowledge, no attempt
to statically analyze page replacement policies has been made
so far. In this paper, for the above-mentioned reasons, we do
not try to predict the worst-case behavior of dynamic paging
and use a compiler-directed approach instead.

Compiler-directed memory management is not new. At
the lower levels of the memory hierarchy, cache locking
schemes [22, 15] select cache contents at compile time. The
specifics of cache locking as compared our approach lies in the
structure of cache memories, imposing constraints on the loca-
tions of memory blocks into the cache (in direct-mapped and
set-associative caches). [5, 23] proposed ILP formulations for
data allocation in scratchpad memory to minimize the WCET
and respectively to reduce the energy consumption.

At the higher level of the memory hierarchy, a compiler-
directed control of the paging activity is proposed in [9]. In
contrast to our work, [9] focuses on numerical programs (only
considers accesses to arrays inside loops) and does not target
real-time applications. In [16] we have proposed a compiler-
directed page allocation scheme for code regions only. In that
previous work, the problem under study was formulated as a
graph coloring problem. Compared to our previous work, this
paper improves the quality of page allocation and is now able
to control paging of code, stack and static data regions.



3. Predictable paging using an ILP formulation

In this section, we describe our ILP formulation which de-
termines at compile-time, code/data pages to be loaded and
evicted at run-time. First, we present the framework we have
developed to analyze the addresses of data, which are necessary
to deal with stack pages and static data pages. Then, we show
our program representation and detail our ILP formulation. Fi-
nally, implementation considerations are discussed.

3.1. Static address analysis

Static analysis of code addresses is achieved in a straightfor-
ward manner through an analysis of the binary file. References
to data are more difficult to extract statically. Static analysis of
data references has been the subject of many previous works.
For instance, in [5], the compiler is modified to extract the in-
formation created during the compilation process. [24] uses
data-flow analysis at the assembly level. Like [24] our address
analyzer operates on disassembled binaries, thus avoiding any
modification of the compiler. Since we are interested in ac-
cesses to pages, we do not need an analysis granularity as fine
as in [24]. For instance, we do not distinguish loop inductions
variables. We do not try to distinguish individual accesses to
array elements or local variables within a stack frame; the gran-
ularity of our analyzer is the entire array or entire stack frame,
thus yielding low address analysis time.

The address analysis is safe in the sense that it catches
all accesses to static and local data. The analysis is context-
insensitive in the sense that it does not distinguish differences
between two executions contexts (e.g. calling contexts of func-
tions). This assumption, made for the sake of implementation
simplicity, turned out to be realistic for the class of applications
we have analyzed (see Section 4), where we find just a few dif-
ferent contexts of execution. Our current implementation does
not include pointer analysis, that is left for future work.

We have applied our address analyzer on MIPS assembly
code. Nevertheless, this approach can be easily ported to other
architectures.

3.1.1 Stack analysis

The stack analysis we have designed assumes an acyclic call
graph, which is common in real-time systems, where recursion
raises predictability issues. The analysis relies on the knowl-
edge of the stack base address and the size of all function stack
frames, obtained by scanning the first instruction of every func-
tion which is responsible for allocating the stack frame.

Knowing stack base and size of individual stack frames (Fig-
ure 1.a), the analysis consists in propagating the address of the
stack frame for every callee of every function along the acyclic
call graph.

Low addresses Low addresses

$sp | Parameters
of callee Jtext
Registers Area rodata
Stack of save area referenced $
callee by data gp
Locals current
function
old $sp|Parameters ‘bss
of callee
Stack of | Registers
caller save area $sp
Locals stack

High addresses High addresses

a. Stack frame b. Virtual memory

Figure 1. MIPS memory organization

3.1.2 Static data analysis

We analyze the contents of each register before and after every
instruction by an intra basic block data-flow analysis. Since
we do not currently support pointers, it is sufficient to analyze
register contents to compute the load and store addresses and
thus no analysis of memory contents is required. We determine
accesses of load and store instructions with the following data-
flow equations, where RC;,, (inst) (respectively RC .yt (inst))
is the contents of each register before (respectively after) the
execution of instruction inst:

RCout(instr) with inst/ the
preceding instruction of the
RCn (inst) basic block if any
{(r, L) [ r € (Reg \ {Sgp, $sp})}
U{(Sgp, gp), ($sp, sp) totherwise

RCout(inst) = (RCin(inst) \ kill(inst)) U gen(inst)

In the equations, Reg is the set of MIPS registers, gen(inst)
is the set of pairs ($r, v) generated by instruction inst, where
the pair ($r,v) represents a value v contained in register $r.
kill(inst) is the set of pairs ($r,v) erased by instruction inst.
($gp, gp) and ($sp, sp) are two particular pairs which repre-
sent the fact that the content of $gp and $sp are considered like
constants during the analysis. Register $gp is a register contain-
ing a global pointer to the data section (Figure 1.b) determined
at compile-time and $sp is the stack pointer computed by the
stack analysis. Finally, | represents an invalid register content.
It is used as an initial register value for the first instruction of
every basic block. It allows us to check that pointers are not
used within basic blocks.

kill and gen functions are defined for all instructions. In
the following for the sake of conciseness we concentrate on a
small set of representative instructions. As an illustration, the
store instruction store $r, @mem stores the contents of register
$r at the memory address @mem. This instruction does not
modify any register content. Thus, gen(store $r, @mem) = ()
and kill(store $r, @mem) = ().

The add instruction add $r1, $r2, v adds the contents of reg-
ister $72 with value v (constant or register contents) and stores



the result in register $r1. kill and gen for this instruction are
defined as follows:

gen(add $rl, $r2,v) =

{($r1,v)} if $72 = T and v is a constant or
a value in a register v
{($r1, L)} if $r2 = L or v is a register containing L

{($r1,[$r2] +v)}

otherwise
kill(add $r1,$r2,v) = {($rl,2) | z € Val}

where Val is the set of all possible values including L and
T. T represents a correct but unknown value (any possible
value but 1 ). We use T to specify the contents of a register
after a load from memory because memory contents are not
analyzed (e.g. induction variable in stack frame)

With this registers contents analysis, we are able to deter-
mine for each load and store an interval of addresses. For static
data, we use the symbol table to determine this interval and for
local data we use the stack frame as interval. Intervals of ad-
dresses are transformed into sets of potentially referenced vir-
tual pages, used by the ILP formulation (see § 3.3).

3.2. Program representation

We represent a program with an inter-procedural Control
Flow Graph (CFG) (central part of Figure 2) constructed at
compile-time from disassembled code. There is one node
per basic block and one edge per possible sequence between
two basic blocks (caused by conditional and unconditional
branches, function calls and function returns). We assume that
every basic block uses a number of virtual pages lower than or
equal to the number of physical pages allocated to the program.
But obviously, the number of virtual pages used by the entire
program can be larger than the number of physical pages.

Let us note G = (V, E) the program CFG, with V' the set of
nodes representing the basic blocks and FE' the set of transitions
between these nodes. We add two virtual nodes called first
and last added respectively before the entry point and after the
program return point(s).

3.3. ILP formulation

Our ILP formulation for the page allocation problem con-
sists of determining at compile-time the points in the CFG
where virtual pages will be paged-in and paged-out from/to sec-
ondary storage (flash/disk). This allocation must ensure that all
referenced virtual pages of every basic block will always be
present in main memory when used. In the context of real-
time systems, we want to minimize the WCET by reducing the
number of page-ins/page-outs along the Worst-Case Execution
Path (WCEP). This is done by keeping in memory virtual pages
which are not strictly necessary for a basic block in case there
are some free physical pages available and the page is reused.

The ILP formulation is based on initial knowledge of execution
frequencies of edges belonging to the WCEP.

Distinctions are made between initialized and non-
initialized pages (stack and data) in order to avoid unnecessary
page loading for non-initialized pages. Symmetrically, detec-
tion of last references to a virtual page allows to deallocate the
page instead of writing it back to secondary storage. Note that
this second optimization cannot be implemented in demand-
paging systems due to lack of knowledge of future references
to pages.

In the following, symbols in capitals denote the inputs of
the ILP problem, while lower-case symbols denote the prob-
lem variables. The inputs of the ILP formulation are given in
Table 1. Values LOADCOST, ALLOCCOST, WRITECOST and
DEALLOCCOST include the time required to change the page
mappings.

The binary variables of the ILP formulation are given in Ta-
ble 2. The central variable of the ILP formulation and main
output of the ILP problem is variable vp?, determining if vir-
tual page p has to be kept in main memory while executing
basic block .

Variable loadﬁ_j) indicates that page p has to be loaded in

main memory aloﬁg edge (i, j), either from secondary storage
if the page has an initial value in secondary storage, or sim-
ply allocated otherwise. Companion variables loadf d’()i i) and

alloc’()i’j) represent these two complementary subcases. Vari-
able de f!, evaluated during ILP solving, serves at distinguish-
ing between these two subcases.

Management of page unloading is achieved using symmetri-
cal variables. unload’()i!j) specifies that page p has to be evicted.
Companion variables unloadw? ;. and deallocﬁ.’j) specify if
the page has to be written back to secondary storage or simply
deallocated. Variables write? and dead? serve at identifying

this second case.

Objective function. The objective of the ILP formulation is
to reduce the impact of page-ins and page-outs by keeping in
main memory the virtual pages which are most frequently used
along the WCEP. The objective function aims at minimizing
the sum of contributions to the WCET of all page-ins and page-
outs along the WCEP, with the distinction between allocation
and load from secondary storage, and with the distinction be-
tween write-back to secondary storage and deallocation. It can
be expressed as follows:

DD Fugy

(i,)€E peVP

LOADCOST * loadf df;

+ ALLOCCOST * allocf’i i

4+ WRITECOST * unloadwﬁ_j)

+ DEALLOCCOST * dealloc(; ) )

The ILP formulation needs some extra constraints to avoid
inconsistencies between variables. Two classes of constraints,



Name Definition
N Number of physical pages
VP Set of code and data virtual pages of the task
DATAVP Set of virtual data pages of the task
NOINITVP Set of virtual pages containing stack pages and non-initialized data pages of the task (NOINITVP C DATAVP C VP)
USEDVP; Set of virtual pages referenced by basic block i. In other words, pages that must be present in main memory during the
execution of basic block ¢
F(i,5) Execution frequency along the WCEP of edge (4, j). Details on the computation of F(; ;) are given in Section 4.1.
LOADCOST Worst-case time required to load one virtual page from secondary storage into main memory
ALLOCCOST Worst-case time required to allocate one virtual page into main memory
WRITECOST Worst-case time required to write back one virtual page from main memory
DEALLOCCOST Worst-case time required to deallocate one virtual page from main memory
PRED; Set of predecessors of basic block 7 in CFG
SUCC; Set of successors of basic block ¢ in CFG
MODVP; Set of virtual pages modified by basic block ¢ (MODVP; C USEDVP;)
Table 1. Inputs of the ILP formulation
Name Definition
vp? Equal to 1 if page p is present in main memory while executing basic block ¢
loadz(’i,].) Equal to 1 if page p is paged-in along edge (i)
loadf di‘,j) Equal to 1 if page p is loaded from secondary storage along the edge (i,j)
allocfi’j) Equal to 1 if page p is allocated in main memory along edge (i,j)
def? Equal to 1 if page p is not referenced by any path from the entry point to basic block ¢ (i included)
unloadz(’i,].) Equal to 1 if page p is evicted from main memory along edge (i,j)
unloadwﬁ.’j) Equal to 1 if page p is written back to secondary storage along edge (i,j)
dealloci’i’j) Equal to 1 if page p is deallocated from main memory along edge (i,j)
write? Equal to 1 if page p is modified along at least a path leading to basic block ¢ since its allocation
dead? Equal to 1 if page p is referenced by any path starting at ¢ (¢ included)

Table 2. Variables of the ILP formulation

given below, express (i) the main memory limitation, and (i)
constraints on page usage.

Main memory limitation. Regarding main memory limita-
tion, for each node of the CFG, the number of virtual pages
present in main memory must be lower than or equal to the
number of physical pages N:

VieV, Y upf <N (1)
peV P

Page loading constraints. A page-in of a virtual page p
along edge (i, j) occurs when p is not present in main mem-
ory for node 7 (i.e. vp! = 0) and p is present for node j (i.e.
vpf = 1). This boolean condition can be expressed as follows:
Y(i,j) € E,Npe VP
load’(’m) < 1—wp?
»
load; ;)
P
toady; ;)
To ensure the presence in memory of the virtual pages
needed by the execution of a basic block i, vp? is set to 1 for

< wpf
> wpj —vp} )

each basic block ¢ which references p (p € USEDVP;). vp’}irst
and vp! . are set to 0.

Vp € USEDVP;, Vi € (V \ { first,last}), vp! =1
VP € VP, vp?irst = 07 /Up;luast =0 (3)

The contents of vp! when p € USEDVP; is the result of the
resolution of the ILP problem. Some pages may be kept in
memory, although not used, to reduce the paging activity (e.g.
when a page is used twice in a loop, see example in Figure 2).

The distinction between a page allocation and a load from
secondary storage is made by the de f variable. An allocation
occurs when a non-initialized virtual page p was not referenced
before. This can be expressed as follows:

V(i,j7) € E,V¥p € vp,

P P P
alloc(i’j) > load(i’j) +deff —1
P
allocf’m) < Zoad(m.)
alloc’(’i iy = def? 4)



A load from secondary storage occurs when an allocation is
not possible:

V(i,j) € E, Vp € VP,
— alloc?.

p
loadfd (i)

(i.9) = Load(; ) ®)
Let us now define the constraints on def!. This variable is
set to 1 for basic block first only if the virtual page is a non-

initialized page:

Vp € NOINITVP, deff; =1

Vp € NOINITVP, de ff, ., =0 (6)

We want to propagate this information into the CFG if the
non-initialized page is not referenced along all the paths:

Vi € V,Vp € VP,

deff > (Y deff)+ (1—vp})— | PRED;
kEPRED;
deff < 1—wp?
deff < deff ,Vk € PRED; (7)
d

Symmetrical constraints, omitted for space considerations,
are generated for handling page unloading from main memory.

ILP initialization ILP results
loadgﬁmt@) =7 6 loadgﬁmt@) =1
load(a,b) =7 load(a,b) =0
load’(:'a 9 =7 ° e load’(:'a 9 =0
load’z’b’d) =7 load’z’b’d) =0
loadz(’c,d) =7 loadz(’c,d) =0

4 _ P —
load?, , =7 a load!, ,, =0

P _ D _
load(eylast) =7 load(eylast) =0
vp?irst =0 vp?irst =0
vpa = G vp, =
vpl =1 vpl =1
'Upzc) =? 'Uplc) =
vpy =7 @ vph =1
pE = pE =
’Upg)ast = 0 ’Upg)ast = O

Figure 2. Example of ILP system and results

Figure 2 illustrates the result of the ILP process for a virtual
page p referenced by basic blocks a, b and e (depicted in grey).
The left part shows the initialization to 1 of a subset of vari-
ables vp?, those representing pages strictly needed by the basic
blocks. The right part gives the results of the ILP problem in
the case where all basic block have enough free pages available
to keep page p in memory during the loop.

3.4. Implementation issues

Calls to page load/unload routines have to be inserted into
application code at compile-time. In order that the application
memory map is not changed after the computation of paging
points (which would invalidate the result of the selection), the
most straigthforward solution is to reserve space for every pos-
sible page load/unload point at the assembly level. To limit
the space requirements of such a simple approach, a possible
improvement would be to put restrictions on the possible page
load/unload points (e.g. function entry or loop header).

4. Experimental results

In this section, we evaluate the quality of our page allocation
scheme by examining the impact of the paging activity on the
worst-case execution path. The performance metric is the num-
ber of costly paging actions (page load from secondary storage
and write backs to secondary storage, along the worst-case ex-
ecution path), obtained using static analysis. We also execute
the task in order to compare the number of paging actions with
the one of a standard paging system using a pseudo LRU page
replacement policy. The objective is then to analyze whether or
not predictability results in a loss of performance. Finally, the
time complexity of the selection of paging points is evaluated.
We first describe the experimental conditions and then we give
and analyze experimental results.

4.1. Experimental setup

WCET estimation. Our experiments were conducted on
MIPS R2000/R3000 binary code. The WCETs of tasks are
computed by the Heptane? timing analyzer [4], more precisely
its Implicit Path Enumeration Technique (IPET). IPET meth-
ods compute WCET estimates through the generation of an ILP
problem aiming at identifying the longest path in a piece of
code, see for instance [8]. IPET methods have the ability to
produce execution frequencies along (one of) the longest exe-
cution paths. Computation of input parameter F; ;) considers a
page load/unload cost for a page p at the frontiers of the biggest
connected usage areas of p.

Without loss of generality, the low-level analysis phase (in-
struction caches, branch prediction...) of Heptane is bypassed
and a constant of 1 cycle execution time per instruction is con-
sidered. This choice is made because the latency of accesses to
secondary storage is several orders of magnitude larger than the
one of instruction execution. We thus observed that a precise
modeling of the processor hardware was unnecessary because
it has no impact on page allocation.

A page-in (respectively page-out) time of 1 million cycles
is assumed for loading/writing back a page from/to secondary
storage, including modifications of page mapping information.

2Heptane is an open-source static WCET analysis tool available at
http:/lwww.irisa.frlaces/software/software.html.



Name Description code size | .data size | .bss size
(bytes) (bytes) (bytes)
compress | Compression of a 128 x 128 pixel image using discrete cosine transform 3064 0 70656
cre CRC (Cyclic Redundancy Check) 1236 274 768
jfdctint Integer implementation of the forward DCT (Discrete Cosine Transform) 3204 0 256
qurt The root computation of a quadratic equation 1760 4 56
fft Fast Fourier Transform 3624 64 64
minver Matrix inversion for 3x3 floating point matrices 4604 72 408
statemate | Automatically generated code by STARC (STAtechart Real-time-Code generator) 11704 0 290
task1 Confidential 20560 208 662
task2 Confidential 8092 380 3
task3 Confidential 24844 232 463

Table 3. Benchmark characteristics

Other numerical values have been tested with the same results
in terms of number of paging operations. The allocation (re-
spectively deallocation) of a page in main memory is assumed
to take 100 cycles. We use pages of 512 bytes for the smaller
benchmarks; page size is voluntarily small to stress the paging
activity. On larger tasks (bottom three tasks of Table 3), we set
the page size to 1024 bytes.

Tools. The ILP problem is solved by the commercial ILP
solver CPLEX 10.0° on an Intel Pentium 4 3.6 GHz with 2 GB
of RAM.

The measure of the paging activity is done on top of the
Nachos educational operating system*, extended with a state-
of-the-art page replacement policy, namely the well-known
pseudo-LRU clock algorithm [19]. Nachos runs on top of a
simulated MIPS processor.

Benchmarks. The experiments were conducted on seven
small benchmarks and three tasks from a larger real ap-
plication (see Table 3). All benchmarks but compress are
benchmarks maintained by the Mailardalen WCET research
(http://www.mrtc.mdh.se/projects/wcet/benchmarks.html).
compress is from the UTDSP Benchmark
(http://www.eecg.toronto.edu/). The real tasks are part of
the case study provided by the automotive industrial partner of
the Mascotte ANR project’ to the project participants.

4.2. Results

Impact of approach for predictable paging on worst-case
performance. The performance metric used is the number of
costly paging operations along the WCEP. The lower is this
number, the better is the page allocation quality. We compare
the results of the ILP formulation detailed in this paper with an
extension to data of our previous graph coloring approach. The
main idea of the graph coloring approach (see [16] for details)
is to color an interference graph, in which nodes represent areas

3ILOG CPLEX - High-performance software for mathematical program-
ming and optimization: http://www.ilog.com/products/cplex/.

4Nachos web site, http://www.cs.washington.edu/homes/tom/nachos/

Shttp://www.projet-mascotte.org/

of use of virtual pages (called webs) and in which colors rep-
resent physical pages. The greedy coloring process starts with
the largest usage areas, which are split when the graph is not
colorable. The splitting procedure selects the web to be split
according to the web weight representing the impact of the web
on the WCET. The weight of a web associated to a page p is
defined as the sum of the frequencies along the WCEP of each
basic block referencing p.

Name Average improvement ratio | Computation Time
Average in second

compress 57.36% 216.88

cre 30.68% 0.08
jfdctint 30.59% 0.17

qurt 3.13% 0.11

fft 54.75% 0.45
minver 52.21% 1.5
statemate 13.08% 238.99

task1 11.47% 88.18

task2 29.46% 5.33

task3 27.41% 246.18

Table 4. Benchmarks results

The results of the comparison are summarized in Ta-
ble 4. Values in the table are average improvement ra-

tios for different numbers of physical pages (average of
i HDSILE) it the umber of
pages in the interval [maz(| USEDVP; |),| VP |].

Figures 3 and 4 detail the results. The X axis gives the num-
ber of physical pages allocated to the task, while the Y axis
reports the number of costly paging actions.

The ILP formulation yields a better allocation results than
the graph coloring approach regardless of the number of physi-
cal pages available. An average reduction of 30% of the number
of paging actions along the WCEP is observed.

Moreover, in almost all cases, the number of paging actions
when using the ILP formulation decreases monotonically with
the number of physical pages. In contrast, we observe a higher
number of non-monotonic behaviors when using the coloring
approach because coloring is greedy. The only observed non-
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monotonic behavior of the ILP formulation occurs for task! for
a small number of memory sizes. This rare phenomenon is due
to a change of the WCEP during the page allocation process,
resulting in a suboptimal page allocation. To overcome this
problem, we have transposed the iterative approach described
in [16]. Its application sligthly improved the results (one less
paging operation) at the cost of a significantly increased com-
putation time.

For some benchmarks there is a huge difference between the
two approaches (up to 75% for fft and 90% for compress for
some memory sizes). This large difference can be explained
by the presence of deeply nested loops. The graph coloring
heuristic assigns an important weight to the webs associated
with pages referenced in these loops. As a consequence, these
webs are never split and the pages referenced in deeply nested
loops are kept in memory during almost all program execu-
tion. The ILP formulation in contrast reduces the regions where
these pages are kept in memory.

Finally, we observe that when using the ILP formulation on
real-size tasks, the minimum number of paging operations is
reached when using a number of physical pages lower than the
number of virtual pages used. In other terms, it is possible to
attain the same worst-case performance as if the task was en-
tirely fitting in main memory, with a smaller number of pages.
This observation is important during the design process of real
system to avoid overestimation of memory resources.

Comparison with dynamic execution of pseudo LRU. Here
we execute the five simplest benchmarks in their worst-case
scenario and compare the number of costly paging operations
with the one of the ILP approach. Only results on the simplest
benchmarks are reported because of the difficulties to identify
worst-case execution scenarios for the most complex codes.
Results are given in Figure 5 for minver and fft. Globally,
the number of paging operations when using ILP and demand-
paging are very close to each other for all the experimented
benchmarks, showing that predictability does not come at the
price of performance loss.

Although the results do not show significant differences of

performance between our predictable paging scheme and stan-
dard demand paging, some potential sources of performance
loss in our approach have to be highlighted:

— Our approach is non-contextual which may result in per-
formance loss in the case of functions with multiple call
points. This occurs for instance in the fff benchmark, caus-
ing our compiler-directed scheme to have slightly worse
results than PLRU for some memory sizes. A solution
could be to inline the functions with multiple call points,
which solves the problem for fft as shown in the rightmost
drawing in Fig. 5.

— The granularity of the address analysis (entire arrays and
stack frames) might also impact performance, in partic-
ular in case of irregular accesses to arrays in loops. We
encountered this problem in a previous version of the min-
ver benchmark, in which the size of a local array was er-
roneously too large. Since the address analysis consid-
ered that the whole array was accessed, the performance
of our compiler-directed paging scheme was then slightly
worse than the one of demand paging. This issue can be
addressed by using a more precise (and thus more com-
plex) address analysis.

Computation time of the ILP system. Figure 6 gives the
computation time required for solving the ILP system depend-
ing on the number of physical pages available in the system for
the two biggest real size tasks (see Table 4 for all numbers). Al-
though the allocation problem is NP-complete, the computation
time is reasonable even on real size tasks.

Unlike the graph coloring approach, the ILP formulation
computes the page load/unload points, but not the physical page
associated to every virtual page. Deciding of the mapping be-
tween virtual and physical pages is also an NP-complete prob-
lem. So far, we have tried to solve this page allocation problem
using either graph coloring or an ILP formulation. Both ap-
proaches turned out to be too time-consuming to be used on real
applications. Instead of defining page mappings at compile-
time, we suggest to define page mappings at runtime using pre-
dictable data structures like in [3].



5. Conclusion and Future work

In this paper we have proposed an ILP formulation to in-
troduce a predictable form of paging for real-time embedded
systems. This approach considers code, static data and stack
pages. Quality of results are better than our previous approach
(30% on average and up to 90% in a task with deeply nested
loops). In comparison to standard demand-paging systems, the
predictability of our scheme was shown not to result in perfor-
mance loss. In terms of computation time, experimental results
have shown that this approach is usable on real size applica-
tions.

Future researches include decreasing the computation time
by formulating the ILP problems at a granularity larger than the
basic block (for instance loops or entire functions). Another
straightforward improvement would be to define a similar ILP
formulation for locking the TLB contents to have both low and
predictable address translation times. Implementing pointer
analysis would increase the applicability of our approach. Fi-
nally, implementation issues in a real-time operating systems
have to be addressed, as well as multitasking issues, like for in-
stance memory partitioning and selection of memory partition
sizes.
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