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Abstract

Modern real-time systems must be designed to be highly
adaptable, reacting to aperiodic events in a predictable
manner and exhibiting graceful degradation in overload
scenarios whenever needed. In this context, it is useful to
structure the system as a set of multiversion tasks. Task
versions can be modeled to implement services with vari-
ous levels of quality. In overload scenarios, for instance, a
lower quality service may be scheduled for execution keep-
ing the system correctness and providing graceful degrada-
tion. The goal of the reconfiguration mechanism is to select
the versions of tasks that lead to the maximum benefit for the
system at runtime. In this paper, we provide a schedulabil-
ity condition based on which we derive an optimal pseudo-
polynomial solution for this problem. Then, a faster ap-
proximation solution is described. Results from simulation
indicate the effectiveness of the proposed approach.
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mission to reprint/republish this material for advertising or promo-
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distribution to servers or lists, or to reuse any copyrighted component
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1 Introduction

Real-time systems, which once were characterized by
having simple periodic predictable behavior, have become
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complex systems. Dealing with aperiodic events, fault tol-
erance, and the need to be highly reactive and adaptive are
some of the new requirements of modern real-time sys-
tems. Consider a real-time surveillance system as an il-
lustration. It must provide routines to detect and identify
motion image patterns of moving objects. The monitored
objects may activate different routines for image process-
ing, each one providing a given quality of service. The ob-
ject type, its distance, speed or the current environment lu-
minance are examples of parameters that may trigger some
appropriate routine. Fault tolerance requirements are other
aspect present in modern real-time systems. Error detec-
tion may trigger recovery tasks that must execute by a given
deadline. Similar adaptation requirements are also neces-
sary for new energy-aware systems, automotive systems,
autonomous robot systems etc. In any case, such modern
real-time systems may work under eventual overload con-
ditions and must be highly adaptive, ensuring temporal cor-
rectness but exhibiting graceful degradation.

Real-time scheduling is in the core of the support for
adaptive applications and several approaches have been pro-
posed to deal with overload conditions. They can be divided
into classes, depending on their main goal. There are ap-
proaches that provide temporal isolation. They are usually
based on reserving the necessary computing resources for
each task or group of tasks that compose the system. If
more than what was reserved is needed only part of the sys-
tem may suffer the effects of overload. Server-based mech-
anisms [15, 20] belong to such a class. There are also ap-
proaches that aim at protecting the whole system against
overload scenarios. Usually, the system is equipped with an



admission control mechanism that rejects new tasks if they
may cause overload [15, 7]. Approaches that provide dy-
namic reconfiguration belong to another class and are the
focus of this paper. These are mechanisms that are capable
of dynamically selecting which parts of the system are more
suitable to be executed under a given overload scenario.

One approach to dynamic reconfiguration deals with ap-
plications structured as a set of multiversion tasks. Each
task has a set of versions each of which has an execution
cost and provides a benefit to the system. Multiversion-like
scheduling is usual for providing fault tolerance, where ver-
sions of a task are related to recovery routines [13]. This
scheduling model is also in line with other application do-
mains. For instance, there have been researches on satel-
lite systems [19] and on energy-aware scheduling [18] that
make use of multivesion tasks.

The goal of the reconfiguration mechanism proposed in
this paper is to select the appropriate task versions that
maximize the global benefit for the system. Clearly, this
problem is not simple since this involves solving a reason-
ably complex optimization problem at runtime subject to
the system schedulability conditions. The proposed solu-
tion to this problem is based on dynamic programming tech-
niques. First, an optimal solution to the problem, which has
a pseudo-polynomial runtime complexity, is described. We
then derive a faster approximation algorithm that can be ad-
justed so that the designer may trade memory and speed
with optimality.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview on similar work. The assumed
model of computation is described in Section 3. Then, the
proposed reconfiguration mechanism is explained in Sec-
tion 4. This section also brings the assessment of the pro-
posed solutions, showing results from simulation. Conclu-
sions are drawn in Section 5.

2 Related Work

Perhaps the simplest form of dynamic reconfiguration is
through temporal protection where the rejection or cancel-
lation of tasks is carried out by means of admission control
mechanisms [11, 3, 16, 7]. This approach may be useful for
soft real-time applications due to their tolerance to missing
deadlines. For some systems, however, eventual executions
of some services in a degraded mode may be more appro-
priate. In this case, providing a more elaborate dynamic
reconfiguration mechanism is required.

The main goal of a reconfiguration mechanism is to se-
lect the suitable operation modes of the system tasks in or-
der to optimize a certain global objective function. A given
quality of service is associated to each task operation mode.
A configuration can be seen as an assignment of the task op-
eration modes to system tasks. A task operation mode can

be expressed by a particular operation period or a task ver-
sion. In the former case, usually higher release frequency
gives better quality of service. For example, in a control
system, the control and sampling tasks may be released at
high frequencies when the system operates in high quality
mode or at low frequencies when it is running in a degraded
mode. When operation modes are expressed by multiple
versions of a task, each version exhibits a quality of ser-
vice and requires a different execution cost. In both cases,
reconfiguration is a means of adaptiveness for the system.

Some reconfiguration mechanisms that use task periods
as a reconfiguration parameter have been proposed. But-
tazzo and Abeni [6] have considered EDF scheduled sys-
tems. Their approach associates elastic coefficients with
the system tasks. This model has been recently extended
by Chantem et al. [8]. According to the model, the higher
the coefficients the easier the period reconfiguration. The
main difficulty with the elastic model is to assign coeffi-
cients to tasks since this is not an intuitive parameter from
the application point of view.

In the context of Rate Monotonic (RM) scheduling, Bec-
cari et al. [2] have proposed a set of heuristics, which aim at
selecting, under overload conditions, task periods for non-
critical tasks so that their execution benefit for the system
is optimized. It is assumed that there is a benefit value as-
sociated with each soft task mode. The work by Kuo and
Mok [12] is also based on RM. In order to select the task
periods, the reconfiguration mechanism requires that task
periods are harmonically related to each other. Also, the
proposed model restricts the periods and the worst-case ex-
ecution times of tasks, assuming that they are linearly co-
related. These assumptions may prevent the applicability of
this solution for modern real-time systems.

In this work we consider that each task has one or more
versions that must be selected at runtime. Thus, instead of
considering multiple task periods, the reconfiguration pa-
rameter is the worst-case execution time of each task ver-
sion. We consider in the model periodic and aperiodic tasks.
Therefore, fault tolerance aspects can be modeled. For ex-
ample, recovery routines can be seen as hard aperiodic tasks
which are released upon error detection, when the reconfig-
uration mechanism can be carried out.

The solution proposed by Jehuda and Israeli [10] also
deals with multiple version of tasks. Similarly to our work,
their solution aims at maximizing the system benefit subject
to the schedulability conditions, which are expressed as pro-
cessor utilization bounds. The reconfiguration problem can
be modeled as the classical knapsack problem, where the
processor utilization bound represents the knapsack size.
However, this approach may not be suitable to deal with
hard aperiodic tasks. Also, the authors have not addressed
the problem of mode changes. In fact, in order to carry out
system reconfiguration at a given time ¢, one must consider



not only the schedulability conditions after the reconfigura-
tion, but also the effects of the old and new configuration
that may exist during the interval [¢, ') when reconfigura-
tion takes place. Due to this, the work by Jehuda and Is-
raeli is suitable to define meta-policies for reconfiguration
and need mode-change mechanisms to be effective. Un-
like their approach, we deal with reconfiguration at a lower
level, where the system schedulability condition takes into
account all the tasks active in the time interval [t,t').

The focus of our work is to provide support to reconfig-
uration at the scheduler level. Thus, it is possible to ensure
timing guaranties and optimize computing resources. Other
approaches to adaptation and reconfiguration can be found
[1, 9, 17]. However, their goal is to provide a middleware
through which applications can negotiate available comput-
ing resources. We understand that independently of making
use of such middleware infra-structures, dealing with recon-
figuration at the scheduler level is necessary and allows for
better resource usage.

Rusu et al. [18] have proposed a reconfiguration mecha-
nism for energy-aware real-time systems. The goal is to op-
timize the system benefit subject to both schedulability and
energy constraints. Like our solution, they provide recon-
figuration at the scheduler level. Two task models are dealt
with, the frame-based and the periodic-based task models.
The former is more restrictive since all tasks are required
to have the same periods and deadlines, which define the
frame size. For such a model, the reconfiguration interval
[t,t') is the frame size. For the periodic task model the re-
configuration interval is the system hyperperiod, which may
involve too many jobs. Unlike their approach, we take into
consideration much shorter reconfiguration intervals and a
more flexible task model although we do not deal with en-
ergy constraints.

3 System Model

We consider a uniprocessor system composed of a set of
multiversion tasks scheduled by EDF [14]. Tasks do not
share resources nor have precedence constraints. Each task
generates one or more jobs during the system execution.
Jobs are uniquely identified, that is, J; and J; are distinct
jobs of tasks iff ¢ # j. The release instant of J; is denoted
r;. If J; and J; are released at r; and r;, then they have
to be executed within the time intervals [r;, d;) and [r;, d;),
respectively, where d; = r; + D; and d; = r; + D;. The
term D; represents the relative deadline of J; while d; is
its absolute deadline. If J; and J; are jobs of the same
task, D; = D;. The reconfiguration mechanism described
in this paper takes the absolute deadlines of jobs, hereafter
simply called deadlines. Tasks can be periodic, sporadic or
aperiodic. There is a fixed and known inter-release time of
consecutive jobs of periodic tasks. For sporadic tasks, only

their minimum inter-release times are known while aperi-
odic tasks may be released at any instant.

There is a non-empty set of versions associated with
each task. In other words, J; can be released as one of its
k(i) > 0 versions. Each version k of J;, 1 < k < k(i),
has a worst-case execution time, C;;, > 0. Without loss of
generality, we assume that C;; > Cjo > ... > Cm(i) > 0.
If J; and J; are jobs of the same task, x(i) = x(j) and
Cik = Cji, k = 1,...,k(i). We consider that there is
a benefit associated with the execution of the version &k of
each job J;, denoted A;i. The cancellation of J; is denoted
by selecting its version k, where C;;, = 0. It is interest-
ing to notice that temporal protection approaches, based on
simply job cancellations, can be modeled as a special case
of the proposed reconfiguration model. Indeed, this can be
implemented by letting each task have two versions one of
which has null cost.

The set I'(¢t,t') = {J1,...,Jn} represents the jobs ac-
tive in the interval [¢,¢'). A job J; is said to be active in
this interval if it was released at r; < ¢’ and has not yet
finished its execution by time ¢. Note that there may exist
more than a job of the same task in T'(¢,¢'). We define the
interest instant of J; as s; = max(t,r;), that is, s; is the
time from which the execution of J; is considered by the
reconfiguration mechanism. Without loss of generality, we
assume that I'(¢, t') is ordered such that Vi < n : d; < d;41
or d7 = dz’-{—l and S S Si41-

We assume that time is represented as non-negative inte-
gers and that the system keeps track of the processing time
of each active job .J;. Note that this assumption is in line
with modern operating systems. Further, we define:

Definition 1. Let c;i(t) be the time already executed as for
version k of J; up to time instant t, 0 < ¢;,(t) < Cig. The
maximum effective execution time of version k of J; is

Cunlt) = {ci —ealt) FLET®D

0 otherwise

Note that if a version k& of J; finished its execution by ¢,
C(t) = 0 and for all other version { of .J; not selected for
execution (I # k), Cy(t) = Cy, since ¢ (t) = 0.

We assume that the system is schedulable in normal op-
erating conditions. However, there may be overload scenar-
ios during some intervals [t,t’). The reconfiguration mech-
anism must select the version of each active job in T'(¢, 1)
that maximizes the benefit for the system. Overload scenar-
ios can be caused by, say, aperiodic tasks that have to be
executed to keep the system correct or in a consistent state.
Note that this characteristic prevents the use of mechanisms
that deal with soft tasks like aperiodic servers [15, 5]. Also,
note that the reconfiguration mechanism affects only jobs
in I'(¢,t’). Jobs that are not active in [t,t') are allowed to
execute without degradation.



The reconfiguration mechanism assigns values to the
variable x;, € {0, 1} associated with each job in T'(¢,¢'). If
z;,x = 1, then the version k of .J; was selected for schedul-
ing. If z;;, = 1 and Cy, = 0, then J; is canceled or not con-
sidered for execution during [¢,¢'). Obviously, there may
be jobs that cannot be canceled and this can be modeled by
letting C'j; () > 0. As the reconfiguration mechanism must
choose exactly one version of each job J;, > kek,; Tik = 1
forall J; € I'(t,t'), where K; = {1,...,k(i)}. Also, there
would be a task with one job in T'(¢,¢'), which is respon-
sible for carrying out the system reconfiguration. The sys-
tem designer must define its execution cost C' based on the
characteristics of the optimization algorithm used (see next
section). For the sake of simplicity, hereafter we do not
represent such a job in I'(¢,¢’). This is similar to consider-
ing the reconfiguration mechanism starting its execution at
t—C.

We do not restrict how the benefit values A;, are as-
signed in the system. Interesting discussion on definitions
of benefit functions can be found elsewhere [4] and is be-
yond the scope of this paper.

4 The Reconfiguration Mechanism

The reconfiguration problem addressed in this paper can
be stated as follows:

P : f = Maximize

S Awza ()

JieD(t ') keK;

subject to :
Schedulability condition (2b)
> wi =1,V € T(t,t) (2¢)
keK;

zi, € {0,1},Vk € K;, VJ; €eT(t,t))  (2d)

Equations (2¢) and (2d) mean that the reconfiguration
mechanism can only choose one version of each job in
['(¢,t). Condition (2b) gives a sufficient schedulability test
for the jobs in I'(¢,t') and will be derived shortly.

As can be noted, solutions to P may have high com-
putational costs. However, as will be seen, approximation
solutions can be derived so that the cost of the dynamic re-
configuration mechanism can be significantly reduced. An-
other aspect related to the problem complexity is the time
interval [t, t') since it determines the input size of the prob-
lem. If this interval is too long, reconfiguration may take too
long. If it is too short, no feasible solution may be found. In
order to determine the reconfiguration interval, we assume
that time ¢ is related to the release of some job J; of an
aperiodic task. For example, considering that the reconfig-
uration mechanism takes C' time units to finish and starts at

time t”, t = t” + C. Time ¢’ can be the release time r; of
the first job J; that is released at or after d;. This approach
bounds the number of jobs considered for reconfiguration
and isolates the reconfiguration effects within [¢, ¢'). Better
approaches to choosing the reconfiguration interval may be
possible but such a derivation is beyond the paper scope,
which is focused on the reconfiguration procedure itself.
Before explaining the solution to problem P, we present
a simple example in Section 4.1. This example will be used
throughout this section for illustration purposes. Then we
derive condition (2b) in Section 4.2. An optimal solution to
the reconfiguration problem P is given in Section 4.3 and
in Section 4.4 a faster and adjustable algorithm for solving
P is derived. The evaluation of the proposed solutions is
presented in Section 4.5.

4.1 Illustrative Example

Consider a reconfiguration interval [¢,t'), where t = 0
and t' = 234. During this interval, there are three active
jobs, ie. I'(0,234) = {J1,J2,J3}. The release times,
deadlines and the versions of these jobs are given in Table 1.
As can be seen, jobs J; and J3 have 10 versions each while
J2 has only one. Each job version provides a given quality
of service. More specifically, Cy;, = Ci1(k(i)+1—k)/k(i),
i = 1,3. For the sake of illustration only, we assume a
specific benefit function, A;; = g" Note that the sys-
tem does not allow job cancellation since Cix(i) > 0 forall
J; € D(t, ).

It is important to emphasize that it is not possible to ex-
ecute Jq, Jo and J3 considering their highest quality ver-
sions without missing deadlines. Indeed, the EDF scheduler
would select J; with 31 time units and the remainder time,
101 — 31 = 70, is not enough to execute Jo. The reconfig-
uration mechanism must select the versions of J; and J3 so
that the system benefit is maximized and no job misses its
deadlines. A naive solution would test 10? possible config-
urations, which is too expensive to be practical.

4.2 Schedulability Condition

The focus of this section is on the conditions under which
the jobs in T'(¢, t') are schedulable in the interval [¢,¢'). By
schedulable in the interval we mean that no job J; € T'(¢,t')
finishes its execution after min(d;, t').

We define &; = ZkEKi Cik(8i)xik, i.e. & is the compu-
tation time necessary for the version k of .J; chosen by the
reconfiguration mechanism. Also, define t;,7 =1,2...,n
as follows:

t’ if { =
ti:{ ifi=n 3)

min(tiﬂ, di+1) — fl‘Jrl ifl<i<n



C;

Ji | i s di | k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Ji| 0 0 90 31.0 279 24.8 21.7 18.6 15.5 12.4 9.3 6.2 3.1
Jo| 0 0 101 91.0 - - - - - - - - -
J3 | 54 54 234 22.0 19.8 17.6 154 13.2 11.0 8.8 6.6 44 2.2

Table 1. Jobs in I'(0, 234) and the worst-case execution times of their versions.

The schedulability condition derived in this section is
based on sequencing the jobs in I'(,t’) in the interval [¢,t’)
one after another as if there was no preemption. For exam-
ple, J,, must be scheduled not before s,, and must finish by
min(¢',dy). In turn, J,_; should start executing not be-
fore s,,—1 but must finish by min(¢,,_1,d,—1). Since the
definition of ¢; for ¢ < n takes into consideration the time
to execute J;41, i.e. &;41, the schedulability of all jobs in
T'(¢,t') is ensured, as the following theorem states.

Theorem 1. The jobs in I'(t,t") = {J1,J2,...,Jn} are
schedulable in the interval [t,t') if
V.]z S F(t, tl) 0S8 + ffL S min(di, ti) 5 (4)

Proof. The proof will be by constructing a non-preemptive
scheduling during [t,t'). Consider job J, first. It is clear
that J,, is scheduled if s,,+&,, < min(d,, t,,) since by equa-
tion (3), higher priority jobs must have finished their execu-
tion by time ¢,,_1 = min(¢,, d,)—&,. In other words, there
is a time interval I,, = [min(dy,t,) — &, min(dy,, ty))
reserved for the exclusive execution of .J,,. Now remove
Jn from the set of jobs T'(¢,¢') and let ' = t,_1. The
same reasoning applies for {J1, Jo, ..., J,_1}, which leads
to the definition of time intervals I; = [min(d;, ;) —
&, min(d;, t;)) that are reserved for execution of J;, i =
1,2,...,n, as if there was no preemption. As I; is enough
to execute J;, schedulability holds, as required. O

It is important to emphasize that we are not considering
non-preemptive systems. Non-preemption is assumed only
for deriving a schedulability condition. The system may fol-
low the usual EDF ordering and preemptions are allowed.
Obviously, the schedulability condition derived is restric-
tive and so it is only sufficient but can be used to solve the
reconfiguration problem in an effective way.

4.3 An Optimal Solution

In this section we will give a recursive formulation for
reconfiguration problem P based on which we will present
an optimal solution. By optimal we mean that the re-
configuration mechanism selects the version k of each job
J; € T(t,t') that gives the maximum benefit for the sys-
tem subject to the schedulability condition (4). This implies

that a solution for P is also a solution to the schedulability
problem stated by Theorem 1.

Let P;(t*) be a restricted version of the reconfigura-
tion problem P which takes into account the job set J; =
{J1,...,J;} such that J; must be scheduled in the time
interval [t, t*). The goal here is to decompose P into a se-
quence of subproblems (P (t*), P>(t*), ..., P,(t*)), each
of which is defined by:

P;(t*) : fi(t") = Maximize Z Z Ajpxjr  (5a)

J;€Ti k€K
Subject to :
sj +&; < min(dj, t;), (5b)
s; = max(t,r;), (5¢)
&= Culspam, (5d)
kEKj
Z Tjk = 1, VJJ‘ e J; (5e)
kEKj
t; <min(dji1, i) — §1, Y € T — {Ji}
(5)
t; <t* (5¢)
Tk E{O,l},VkEKj,VJj e J; (5h)

Obviously, P = P,(t') and so f = f,(¢'). In order
to derive a recursive formulation for P, (t'), let us consider
first the set 71, which can be expressed as:

Pi(t*) : f1(t*) = Maximize Z Apzig (6a)

keK,
Subject to :
51+ & < min(dy, ty) (6b)
s1 = max(t,71) (6¢)
§1= Z Cir(s1)T1k (6d)
keK,
> =1 (6e)
keK,
tp < t* (6f)
z1x € {0,1}, k € K3 (6g)

Equation (6d) represents the execution cost of .J; whose
version is chosen by the reconfiguration mechanism. It is



not difficult to see that the longer t*, the higher the benefit
for executing J;. It is clear that the bound on this benefit
must take into consideration the jobs J; € I'(¢,t'), ¢ > 1.
In other words, to solve problem P, (t*), one has to consider
the time interval [¢,¢*) taking into account time &2, which
is necessary for executing Jo. In turn, the scheduling of
Jo cannot be done without observing J3, whose execution
cost is 3 and so on. This leads to the following recursive
formulation for the subproblems P;(t*), i > 1:

P;(t*) : fi(t") = Maximize Z Aipxin+

keK;
fic1(min(d;, t;) — &) (7a)
Subject to :
si + & < min(d;, ;) (7b)
s; = max(t, ;) (7¢)
&= Cilsi)zi (7d)
keK;

> w=1 (7e)

keK;
ty <t (71)
i € {0,1}, k € K; 7g)

The formulation for P;(t*) and P;(t*) (i > 1) can be
expressed in a more compact form. Let us consider two
scenarios, depending on whether or not a version k& of J;
can be scheduled in the time interval [¢,¢*), which can be
verified by condition s; + Cj,.(;)(s;) < min(d;,t*):

Case 1. No version k of J; is schedulable in the inter-
val. This case may take place when s; + Ci. ;) (si) >
min(d;, t*). There are two subcases:

Case 1a. Job J; can be canceled, i.e. Cyy(;)(si) = 0.
Thus, no execution cost nor benefit related to J;
will be considered. This means that f;(¢t*) = 0 if
i=1or fi(t*) = fi_1(¢*) forall ¢ > 1.

Case 1b. The cancellation of .J; is not possible, which
is indicated by C;,;(1)(s;) > 0. Thus, no feasible
solution can be found. This is represented by let-
ting f;(t*) = —oo.

Case 2. Some version k of J; is schedulable, that is,
3k = s; + Cig(si) < min(d;,t*). In this case, f;(t*)
assumes the maximum benefit A;; for all schedu-
lable versions k. If ¢ > 1, it is needed to add
fic1(min(d;, t*) — Cik(s;)) to A, and so f;(t*) =
maxgek, { Aix + fic1(min(d, t*) — Cix(ss) @ 50 +
Cir(si) < min(d;,t*)}. Note that the time interval
considered for executing J;_; is reduced by the time
spent by the execution of J;.

The formulation expressed by equations (7a) to (7g)
leads to a dynamic programming algorithm [22], which is
given below. Lines 1-13 of the algorithm refer to f;(¢*)
for t* = t,t + 1,...,t". The values of f;(t*), 7 > 1, are
computed in lines 14-28 for the same interval for ¢t*. Table
p;(t*) stores the value of k € K;; that leads to the maximum
benefit for each ¢*.

DP-Solve-P(t,t',n,k, A,C,r,d)

I: s1 <« max(t,71)

2: for t* =t tot' do

3: ifCl,i(l) > O/\51+Cln(1)(51) > min(dy, t*) then

4 pi(t”) <0

5: Hit") — —o0

6: elseif Cy;) = 0 A sy > min(dy,t*) then

7: pi(t") < k(1)

8: f (t*) —0

9: else

10: p1(t") « argmaxpek, {A1x 1 s1 + Cig(s1) <
min(dy,t*)}

11: f1(t*) « Alpl(t*)

12:  end if

13: end for

14: fori = 2ton do
15:  s; «— max(t,7;)
16: fort* =ttot do

17: if Cin(i) > 0As;+ Ci/-c(i) (s;) > min(d;, t*) then
18: pi(t*) <0

19: fl(t*) — —00

20: else if C;,.;) = 0 A s; > min(d;,t*) then

21: pi(t*) — k(i)

2: filt) — fima(t")

23: else

24: pi(t”) — argmaxgex, { A+

fi,1 (min(di, t*) — Cig, (Sl))
min(d;, t*)}

v s+ Ci(s;) <

25: ﬂ(ﬁ*) — Aip,i(t*) + fi_l(min(di,t*) —
Cip, ¢+ (54))

26: end if

27:  end for

28: end for

29: return (p, f)

The execution time of the algorithm is O((t' —t)n&maz ),
where ke, = max{x(i) : J; € I'(¢,t')}. Thus, it is
pseudo-polynomial in the size of the input. The memory
complexity is ©(n(t' — t)) for storing f;(t*) and p; (t*).

It can be noticed that the reconfiguration problem has the
same structure of the standard knapsack problem with pro-
cessor time corresponding to the knapsack capacity. How-
ever, the former generalizes the latter in two ways. First,
the weight of each item (execution time) can be selected
from a set of discrete values. Second, each item should fit



fi(t")

Ji\t* 0 10 20 60 120 212 234
J1 —00 0.3 0.6 1.0 1.0 1.0 1.0
J2 -0  —00  —00 @ —00 1.3 1.3 1.3
J3 —00 -0  —00  —00 2.2 2.3 2.3

Table 2. f;(t*) for the illustrative example.

pi(t*)

J\t* 0 10 20 60 100 120 212 234
Ji 0 8 5 1 1 1 1 1
J2 0 0 0 0 1 1 1 1
J3 0 0 0 0 9 1 1 1

Table 3. p;(t*) for the illustrative example.

in a given part of the knapsack, meaning the time extending
from the release time to the deadline. It is then not surpris-
ing that a dynamic programming algorithm was designed
for the reconfiguration problem. However, an efficient al-
gorithm was not found for the dual form of the recursive
formulation, which would lead to a fully-polynomial ap-
proximation scheme.

Applying algorithm DP-Solve-P to the illustrative exam-
ple given in Section 4.1 leads to Tables 2 and 3, which con-
tain the values for f;(t*) and p;(t*), respectively. For the
sake of illustration, only some values are shown in the ta-
bles. Since p3(234) = 1, which implies that x31 = 1,
the highest quality version of .J3 is selected for execution.
Thus, the remainder time interval min(234,ds) — Cs 1 =
234 — 22 = 212 is considered for executing the other two
jobs. The benefit regarding J3 is Az; = 1. Then sub-
problem P5(212) is to be solved. As p2(212) =1, 2971 =1
and the highest quality version of .J; is set to start execut-
ing at min(212,ds) — C21 = 101 — 91 = 10 offering a
benefit A 1 = 1. Then the subproblem P; (10) needs to be
solved. As p1(10) = 8 and 215 = 1, J; is scheduled at
time Lmil’l(lo,dl) — Cl,SJ = I_lO — 9,3J = I_O,?J =0,
adding up a benefit A; g = 0.3. The solution provided by
algorithm DP-Solve-P is the same as the one obtained by
solving problem P, as indicated in Table 4. The scheduling
representation of the solution is presented in Figure 1.

Since we are using dynamic programming, all the val-
ues of C;; must be integer parameters. In practice, when
non-integer values are present, one needs to scale the tim-
ing values by multiplying them by a sufficient large constant
so that Cj, belongs to the integer domain. In the case of the
illustrative example, all the values of C;j; and the time in-
stants ¢ and ¢’ were multiplied by 10.

4.4 Approximation Solution

Algorithm DP-Solve-P offers a basis for comparison
since it provides the optimal solution subject to the con-
dition stated in Theorem 1. If the system has a low num-

s 1 ...... D"iéi";"i"ncéi":??'l

t=0 # :' 934
| deadtine

T release

Figure 1. Solution for the illustrative example.

Ji | & t; min(d;, t;) ik

Jl 9.3 9.3 9.3 xr1,8 = 1
Jo | 91.0 212.0 101.0 z971 =1
Js | 22.0 234.0 2340 z31 =1

Table 4. Solution for the illustrative example.

ber of jobs or job versions in I'(¢,t), applying directly
this optimal solution may be viable. However, its pseudo-
polynomial execution time may prevent its on-line use for
larger systems. In this section we derive an approximation
solution to problem P, which gives lower bounds on the
optimal solutions found by algorithm DP-Solve-P and sig-
nificantly reduces its time and memory complexities. The
main idea of the approximation [21] is to reduce the ex-
ecution times Cji(s;) of the input by dividing them by a
constant o > 1.

Let b, ¢; be constants and z; € {0, 1} be variables, j =
1,...,n and consider the following relation:

> ez <b, (®)

Suppose that the problem is to find an assignment x for
x; (j = 1,...,n) such that relation (8) holds. First, con-
sider the following modified relation:

< |b] = chxj

It is clear that a solution that satisfies relation (9) also sat-
isfies relation (8) (the opposite is not necessarily true). The
relation (9) allows us to generate an approximation model
P, for P, as a function of a constant o > 1, by substituting:

L. Ci(si) by [Cin(si)/al, VJ; € T(t, 1), k € K3
2. r; by [r;/a] and d; by |d;/«|, VJ; € T'(¢,1'); and

n

Z Eni [eja;]

j=1 j=1

6] (9

3. t' by [t//a] and t by [t/a].



Observe that any feasible solution x for P, is feasible for P
and so P, can be used as an approximation of P. Moreover,
the value of the objective function f(x) defines a lower
bound for the optimal solution of f. On the other hand,
the execution time of the dynamic programming algorithm
applied to P, is reduced to O((t' — t)nKkmaz/ ).

Further, using similar reasoning one may derive upper
bounds on the objective function. Indeed, it follows that:

ZCjil'j <b= ZLCle'j < “ﬂ (10)
j=1 j=1

Thus, it is possible to derive a relaxed relation P, of P for
a constant « > 1 by substituting:

L. Cir(si) by [Cir(si)/al, VJ; € T(t, '), k € K3
2. r; by |r;/a] and d; by [d;/«], VJ; € T'(t,¢'); and
3. t' by [t'/a] and t by |t/a].

A solution for P is also a solution for P,, but the opposite
does not necessarily hold. As both problems have the same
objective function, it follows that P, is arelaxed version of
P. This implies that P, cannot be used as an approximation
of the reconfiguration problem P. Our intention here is only
to determine an upper bound for P. A solution of P,, can be
obtained by the derived dynamic programming algorithm,
but now in time O((t' — t)nkmaz /).

Rounding factor «

1 8 16 32 64
Runtime 70,200 17,550 273 69 16
Upper bound 2.3 23 23 24 26
Lower bound 2.3 23 23 23 —o©

Table 5. Reconfiguration runtime and the up-
per and lower bounds on the benefit found for
the illustrative example.

Table 5 shows data relative to the reconfiguration pro-
cedure applied to the illustrative example. As can be seen
from the table, the algorithm speeds up considerably as «
increases. The runtime is given in time units. The same
time unit value was used to represent time in Table 1. Also,
note that the lower and upper bounds give the same value as
or are very close to the optimal benefit.

It is important to notice that the higher the value of «, the
lower the accuracy of the solution and in extreme cases the
approximation degrades to the point at which no solution
can be found, which is the case for o« > 64, as shown in
the table. This side-effect takes place because the timing
parameters may be reduced too much after dividing them by

«a. For example, suppose that C;, /o < 1 (Vk € K;). Thus,
the execution costs of all versions of job J; are made equal
to 0 or 1 depending on which rounding approach is carried
out. Also, it is clear that this rounding effect may increase
the pessimism of the schedulability test. These side-effects
must be considered by the system designer when choosing
a suitable value for a. The simulation results will better
illustrate such an aspect.

One may notice that the time spent to find out a solution
to the reconfiguration problem cannot be neglected. Nev-
ertheless, since without running an optimization algorithm
one is not able to find a feasible solution that maximizes
the system benefit, the value of o must be chosen taking
into consideration the time and memory available to run the
reconfiguration procedure and the level of approximation
allowed.

4.5 Simulation Results

Extensive simulation to evaluate the proposed reconfigu-
ration solution was carried out. This section presents some
of the relevant results found during the simulation. Task
sets with 8 periodic tasks each were randomly generated as
follows. For each periodic task, the worst-case execution
task of its highest quality version was generated accord-
ing to an exponential distribution with parameter u,/10,
where u, = 40%, 50%, . . ., 90% is the processor load (uti-
lization) for periodic tasks. All periodic tasks had 10 ver-
sions each and their worst-case execution times were set to
Ci k41 = 90%Ci, (k = 1,2,...,9). This means that peri-
odic tasks could not be cancelled. Task periods were gen-
erated according to a uniform distribution in the interval 80
to 500 time units and their deadlines were considered to be
equal to their periods. The simulation time was defined as
100, 000 time units and the first jobs of all periodic tasks
were assumed to be released at the beginning of the simula-
tion.

During the simulation, the jobs of aperiodic tasks were
generated according to a Poisson distribution with parame-
ter 1/100, which means that there were on average 1,000
jobs of aperiodic tasks during each simulation run. Each
of these jobs determines a reconfiguration interval [t,t').
Instant ¢ corresponds to the release time of the job while
t' is computed as explained in Section 4. These jobs had
two versions. The worst-case execution times of their first
versions were generated according to an exponential distri-
bution with parameter 0.2. Their second versions had null
computation cost, which means that they could be rejected
by the reconfiguration mechanism. The deadline of each
generated aperiodic job J; was defined as d; = t + Cj1 /uq,
where u, is the computing demand of J; within [¢, d;). Sev-
eral values of u, were considered during the simulation.
Here we present the results for u, = 40% since it illus-



trates well the behavior of the reconfiguration mechanism.
Similar behaviors were found for other values of u,,.

Figures 2 and 3 plot the results found during the simu-
lation and illustrate the behavior of the approximation ap-
proach for different values of a. The data shown in the
graphs are the average values found for each reconfigura-
tion carried out during the simulation. As can be seen from
Figure 2, the number of aperiodic jobs rejected increases
considerably when « increases. This is expected since, as
mentioned in Section 4.4, higher values of « introduces
more pessimism in the schedulability test. Also, job rejec-
tion for the same value « tends to increase slightly when
u, increases. This is because the reconfiguration proce-
dure chooses to gracefully degrade the jobs of periodic tasks
rather than rejecting aperiodic jobs, which was expected by
the defined benefit functions (see this definition below). In-
deed, when accepting aperiodic jobs, the higher the periodic
load, the higher the degradation level and this tends to keep
the effective periodic load constant. When an aperiodic job
is rejected it is because no feasible configuration that ac-
cepts such a job is found. Slightly higher variation can be
observed for o = 32. This can be explained by the loss of
accuracy due to rounding effects. For illustration purposes
only, we plot what would be the rejected aperiodic jobs if
no degradation of periodic jobs was possible (solid line in
the graph).

Aperiodic Load u, = 40%
40

30

20

Rejected Aperiodic Jobs (%)

40 50 60 70 80
up - Processor Utilization for Periodic Jobs (%)

NoDeg —+— o = 4%
a = 1--%- a = 8O-

Figure 2. Rejected aperiodic jobs.

It is clear that by rejecting aperiodic jobs, the system
does not need any reconfiguration. This means that de-
pending on its benefit function, the system benefit could be
higher for higher values of « since this may raise the rejec-
tion of aperiodic jobs. Thus, to carry out the evaluation, we
needed to isolate the effects of jobs rejection when running
the approximation approach in order not to compute accu-
racy loss for higher values of « (due to the rounding effects
of the approximation), as if there were better performance in

reconfiguring the system. To do this we defined two distinct
benefit functions for periodic and aperiodic jobs, respec-
tively. If J; is periodic, A;, = g’; . Otherwise, A;1 = n
and A;» = 0, where n is the number of periodic jobs in
(¢, t').

The benefit achieved by the reconfiguration procedure is
shown in Figure 3. For the sake of illustration, we plotted
the benefit when reconfiguration was not allowed, which is
indicated by the solid line. The other lines in the graph
represent the benefit achieved by the reconfiguration mech-
anism for different values of «. As can be seen, the optimal
value is achieved for o = 1 and the lowest for o = 32, as
expected. It is interesting to note that o < 16 gives ben-
efit values very close to the optimum. Indeed, the biggest
difference is at u, = 80%, where the benefit achieved for
a =16 1is 7.2% of the optimum.

It is interesting to contrast the benefit achieved by the re-
configuration procedure with its runtime. The time taken by
function (¢ — t)nkmaq/« for each reconfiguration interval
[t,t') carried out during the simulation runs was measured.
The average values for a = 1,4,8,16,32 are 1,571.14,
407.72, 208.02, 103.18, and 92.12, respectively. As can
be noticed, for the kind of system we simulated, « = 8 or
o = 16 can give cost-effective choices for implementing
the reconfiguration procedure. For example, with @ = 8
one can reduce the reconfiguration running time in more
than 86% and still achieve the benefit very close to the op-
timum, which can be considered an excelent result.

It is clear that the system designers must choose the value
of o according to the system characteristics. The value of «
must be chosen taking into account the execution cost of the
reconfiguration task. For that, some evaluation experiments
must be carried out. For example, selecting o = 16, 103.18
time units should be reserved to run the reconfiguration pro-
cedure.

Aperiodic Load u, = 40%

Achieved Benefit Value

40 50 60 70 80 90
up - Processor Utilization for Periodic Jobs (%)

a = 4--%-
o = 8-=-—

16-m--
20

Figure 3. System benefit.



5 Conclusions

We have presented an approach to dynamic reconfigura-
tion for supporting modern real-time systems structured as
a set of multiversion tasks. First, we have derived a suffi-
cient schedulability condition based on which it is possible
to check whether a set of jobs is schedulable within a given
time interval. Then, based on this condition and using dy-
namic programming techniques, we have derived an opti-
mal solution for the reconfiguration problem. As this solu-
tion is pseudo-polynomial and so it may be considered time
and memory consuming for being used on-line, we have
also presented an approximation solution to the same prob-
lem. Extensive simulation-based evaluation indicates that
one can get good trade-offs using the approximation. In-
deed, simulation data have shown that runtime can dramat-
ically be reduced at the expense of a small decrease in the
system benefit.

Dynamic reconfiguration of a system is a complex prob-
lem that requires both efficient schedulability conditions
and fast optimization solutions. Deriving less restrictive
schedulability conditions that can lead to better reconfig-
uration mechanisms is a current research topic. Since not
all schedulability conditions lead to efficient optimization
algorithms, both schedulability and optimization algorithms
must be dealt with in conjunction. Moreover, it would be in-
teresting to investigate efficient heuristics that can be used
to solve the reconfiguration problem. Although this prob-
lem is similar to the knapsack problem, the derivation of
such heuristics turned out to be not simple. Another re-
search issue for future work is to incorporate the temporal
isolation aspect into the reconfiguration mechanism, possi-
bly using some type of aperiodic server. The problem ad-
dressed in this paper and the solution provided here can cer-
tainly be used as a basis for such research directions.
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