
Transforming Distributed Acyclic Systems into EquivalentUniprocessors Under
Preemptive and Non-Preemptive Scheduling

Praveen Jayachandran and Tarek Abdelzaher
Department of Computer Science

University of Illinois at Urbana-Champaign, IL 61801
e-mail:pjayach2@uiuc.edu, zaher@uiuc.edu∗

Abstract
Many scientific disciplines provide composition primitives
whereby overall properties of systems are composed from
those of their components. Examples include rules for block
diagram reduction in control theory and laws for comput-
ing equivalent circuit impedance in circuit theory. No gen-
eral composition rules exist for real-time systems whereby
a distributed system is transformed to an equivalent single
stage analyzable using traditional uniprocessor schedulabil-
ity analysis techniques. Towards such a theory, in this pa-
per, we extend our previous result on pipeline delay com-
position to the general case of distributed acyclic systems
as well as to non-preemptive scheduling. The new extended
analysis provides a worst-case bound on the end-to-end de-
lay of a job under both preemptive as well as non-preemptive
scheduling, in a distributed system described by a Directed
Acyclic Graph (DAG). The bound is computed as a function
of graph topology and resource sharing policies on differ-
ent resources. Our composition rule permits a simple trans-
formation of the distributed task system into an equivalent
uniprocessor task-set analyzable using traditional unipro-
cessor schedulability analysis. Hence, using the transforma-
tion described in this paper, the wealth of theory availablefor
uniprocessor schedulability analysis can be easily applied to
a larger class of distributed systems.

1. Introduction
With the increasing complexity and scale of real-time

computing artifacts, efficient tools are needed for schedu-
lability analysis in distributed real-time systems. Rigorous
theory exists today for schedulability analysis of uniproces-
sors and multiprocessors, while mostly heuristics are used
to analyze larger arbitrary-topology systems. This raisesthe
question of whether a formal transformation can be found
that converts a given distributed system into an equivalent
uniprocessor system analyzable using the wealth of existing
uniprocessor schedulability theory. Such transformations are
not uncommon in other contexts. For example, control the-
ory describes transformations that reduce complex block di-

∗The work reported in this paper was supported in part by the National
Science Foundation under grants CNS 06-13665, CNS 06-15318, and CNS
05-53420

agrams into an equivalent single block that can be analyzed
for stability and performance properties. Similar rules (e.g.,
Kirchoff Laws) exist in circuit theory.

In an earlier milestone paper [10], the authors derived a
delay composition rule that provided a bound on the end-to-
end delay of jobs in a pipelined distributed system. A trans-
formation of the pipelined system to an equivalent unipro-
cessor system based on the delay composition rule was then
shown. Motivated by the ultimate goal of a general transfor-
mation theory, this paper extends the results in [10] in three
main directions. First, we extend the results to a larger class
of distributed systems; namely, those described by arbitrary
Directed Acyclic Graphs (DAG). Second, we analyze non-
preemptive scheduling (in addition to preemptive schedul-
ing), and show that, in certain situations, non-preemptive
scheduling can in fact result in better performance than pre-
emptive scheduling in distributed systems. Third, we extend
the results to accommodate resource partitioning (in lieu of
priority-based scheduling). For example, TDMA is a very
common resource allocation mode in real-time communica-
tion networks. TDMA is an example of partitioning a re-
source among different principals as opposed to allocatingit
in some priority order by a scheduling policy.

In our system model, each task traverses a path of mul-
tiple stages of execution and must exit the system within
specified end-to-end latency bounds. The combination of
all such paths forms a DAG. Application domains for such
systems include manufacturing plants, data processing back-
ends, and communication in sensor networks. For both pre-
emptive and non-preemptive scheduling, we derive adelay
composition rulethat describes how delay composes across
tasks and across stages in a distributed system. The rule is
expressed as a worst-case end-to-end delay bound of a task
invocation as a function of per-stage execution times of other
task invocations along its path. This leads to a natural re-
duction of the multi-stage system to a hypothetical single-
stage system scheduled using preemptive scheduling. A wide
range of existing schedulability analysis techniques can now
be applied to the new preemptively scheduled uniprocessor
task set, to analyze the original distributed system under both
preemptive and non-preemptive scheduling. We then show
how the above mentioned results can be applied to tasks,

1

whose subtasks themselves form a directed acyclic graph (as
opposed to a path as considered earlier).

Fundamentally, there are two ways resources can be
shared among tasks. The first is by resource partitioning,
where each task gets a dedicated share of the resource.
Cyclic executives (that assign a fixed CPU time to each task)
and TDMA channel allocation are examples of this policy
in real-time systems. The second sharing method is by pri-
ority. In this case, the resource is allocated to tasks in pri-
ority order. Our theory accommodates both resource shar-
ing methods. The only assumption on the scheduling pol-
icy made by our composition rule is that it assigns the same
priority to a task invocation at all stages. Resources sched-
uled in priority order (e.g., processors) can be mixed with
resources shared by partitioning (e.g., real-time communica-
tion media). No assumptions are made on the periodicity of
the task set. Different invocations of the same task need not
have the same priority. Hence, the delay composition rule
and the corresponding system transformation (to an equiva-
lent uniprocessor) apply to static-priority scheduling (such as
rate-monotonic), dynamic-priority scheduling (such as EDF)
and aperiodic task scheduling alike, as well as partitioned-
resource systems.

The delay composition rule provides a bound on the worst
case end-to-end delay of a task using only information of
computation times of other tasksalong its route. In contrast,
traditional schedulability analysis, such as holistic analysis
[17], require global knowledge of task routes and compu-
tation times, in order to predict the worst case end-to-end
delay. With the growing size of distributed and embedded
systems, the need for such global knowledge could make
such analysis difficult or expensive to scale. We show that
the schedulability analysis technique developed in this paper
outperforms existing techniques by a factor that grows larger
with system scale. For small distributed systems, existing
literature is adequate.

We show that under certain conditions non-preemptive
scheduling can perform better than preemptive scheduling in
distributed systems. The explanation, as we show later, is
because non-preemptive scheduling has a “smoothing” effect
on task arrivals at downstream stages because task comple-
tion times on a processor are separated by entire computation
times and not fractions thereof. This smoothing improves re-
source utilization. Preemption, in contrast, allows for more
bursty arrival scenarios, hence, reducing schedulabilityin
the worst case. Using simulations, we provide a prelimi-
nary characterization of the space in which non-preemptive
scheduling performs better than preemptive scheduling, and
also the situations wherein the opposite is true. We hope that
this observation will foster more extensive study and use of
non-preemptive scheduling in distributed systems.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes the system model, states the main
result, and outlines some crucial intuitions into the preemp-
tive and non-preemptive versions of the delay composition
theorem. In Section 3, an outline of the proof of this theorem
is provided. We show how partitioned resources can be han-

dled in Section 4. In Section 5, we discuss the application
of the delay composition theorem to schedulability analysis
and show how well-known single stage schedulability analy-
sis techniques can be used to analyze acyclic distributed sys-
tems. We describe, in Section 6, a flight control system as
an example application, where the theory developed in this
paper can be applied. In Section 7, we describe how the
system model can be extended to include tasks whose sub-
tasks themselves form a DAG. In Section 8, we compare the
performance of schedulability analysis based on our delay
composition theorem with holistic analysis, and characterize
the conditions under which non-preemptive scheduling can
result in higher system utilization than preemptive schedul-
ing. Related work is reviewed in Section 9. We conclude in
Section 10.

2. System Model and Problem Statement

In this paper, we consider a multi-stage distributed system
that serves several classes of real-time tasks. The execution
of each task follows a sequential path through the system. In
other words, tasks require service at a sequence of resource
stages, where each resource could be shared either by parti-
tioning or by scheduling using some priority order. A very
common example is one where tasks are scheduled in prior-
ity order on processors that share communication resources
in a TDMA or token-passing fashion. Partitioning commu-
nication resources among senders using a TDMA or token-
passing protocol is a common approach for ensuring tempo-
ral correctness in distributed real-time systems. It is there-
fore the primary manner in which network resources are ad-
dressed in this work. Of course certain other communication
protocols such as the CAN bus do support priority schedul-
ing directly and can also be analyzed (represented by a pri-
oritized resource as opposed to a partitioned resource). No-
tably, randomized protocols such as the wireless Ethernet are
outside the scope of the current framework. Such protocols,
however, are usually not suitable for real-time applications.

The union of all paths followed by tasks in the system
forms a Directed Acyclic Graph (DAG). This system model
can be extended to include tasks whose subtasks themselves
form a DAG, instead of a sequential path. We later extend
this system model, in Section 7, to include tasks whose sub-
tasks themselves form a DAG, instead of a sequential path.
Tasks can be periodic or aperiodic. An edge in the DAG be-
tween stagei and stagej, indicates that a task that completes
execution on stagei, could move on to execute at stagej. In
order to ensure that the delay composition theorem is gen-
eral enough to apply to both periodic and aperiodic tasks, we
make no implicit periodicity assumptions and consider indi-
vidual task invocations (jobs) in isolation. We assume that
the priority order of any two jobs is the same across all the
stages that are scheduled in priority order (not partitioned),
at which these jobs execute. Since priority-based policies
sequence tasks in a manner that depends only on the order
of priorities and not their exact values, without loss of gen-
erality, we assume that the priority of each job is identical
on all stages and that job priorities are unique. Ties between

jobs that have the same priority (e.g., invocations of the same
task in fixed-priority scheduling) can be broken using any tie-
breaking rule (e.g., FIFO). This assumption will simplify the
notations used in the derivations.

1

3 5

6

42

Path 3

Path 2

Path 1

Figure 1. Example DAG with job-flow paths,
and a feasible number assignment for stages
A job can enter the system at any stage, request process-

ing on a sequence of stages (a path in the DAG), and leave
the system at any stage. Figure 1 shows an example of a
directed acyclic distributed system along with a few sample
job-flow paths. Let the total number of stages beN

′

. We
number these stages from1 to N

′

, such that if there exists an
edge in the DAG between stagesi andj, theni < j. Such a
numbering always exists as there are no cycles in the topol-
ogy. LetPathi denote the sequence of stages comprising the
path chosen by jobJi in the system. Let the arrival time of
job Ji to the system, that is, its arrival to its first stage, be
calledAi. Let Di be the end-to-end relative deadline ofJi.
It denotes the maximum allowable latency forJi to complete
its computation in the system. The computation time ofJi at
stagej, referred to as thestage execution time, is denoted by
Ci,j , for 1 ≤ j ≤ N

′

. If a job Ji does not execute at stagej,
that isj /∈ Pathi, thenCi,j is zero.

3

4

21

Path 3

Path 2

Path 1

Figure 2. A sub-DAG of the larger DAG, assum-
ing J1 follows path 1; stages are re-numbered

In the rest of this section, we formally state the delay com-
position theorem for directed acyclic systems, under both
preemptive as well as non-preemptive scheduling. For the
purpose of stating and proving the delay composition the-
orem, we first assume that at each stage, access to the re-
source is scheduled in priority order. We relax this assump-
tion later in Section 4 by showing that partitioned resources
can be reduced to (slower) priority-based resources plus a
delay. Hence, for the purposes of computing a worst-case
delay bound, it is sufficient to consider prioritized resource
scheduling only.

We further provide crucial insights into the delay compo-
sition theorem, and motivate why non-preemptive scheduling
can achieve superior system utilization compared to preemp-
tive scheduling under certain conditions (where the computa-

tion times of different jobs are not too dissimilar) while still
meeting all the deadlines of jobs.

Let the job whose delay is to be estimated beJ1, without
loss of generality. As we are interested in the delay ofJ1,
we need to only consider those stages that may potentially
influence the delay ofJ1. We consider a stagei, only if stage
i is reachable in the DAG from the first stage at whichJ1

executes, and the last stage at whichJ1 executes is reach-
able from stagei. We remove all stages that do not satisfy
this condition and renumber the stages from 1 throughN
(N ≤ N ′). By the above definition, stage 1 is the first stage at
whichJ1 executes, and stageN is the last stage at whichJ1

executes. As before, it is ensured that if there exists an edge
between stagei and stagej, theni < j. Note that consider-
ing only a subset of the stages constructs a sub-graph of the
original DAG, and is therefore still a DAG. The job-flow path
of each jobJi is accordingly truncated, to only consider the
sub-path belonging to the chosen sub-DAG. Figure 2 shows
such a sub-DAG, assumingJ1 follows path 1 of the DAG
shown in Figure 1. LetS denote the set of all jobs with exe-
cution intervals in the system betweenJ1’s arrival and finish
time, and have some common execution stage withJ1 (S in-
cludesJ1). Let S̄ ⊆ S denote the set of all jobs with higher
priority thanJ1 and includingJ1, and let S

¯
⊂ S denote the

set of all jobs with lower priority thanJ1. Let Ci,max, for
any jobJi, denote its largest stage execution time, on stages
where bothJi andJ1 execute.

We define asplit-mergebetween the paths of jobsJi and
J1, as a scenario where the path ofJi splits from the path
of J1, and intersects (merges with) the path ofJ1 at a later
stage. In more concrete terms, if there exists consecutive
stagesj1, j2, . . . , jk(k ≥ 2) in the path ofJ1, and of these
stages onlyj1 andjk belong to the path ofJi, and there is at
least one other stagej′ (j1 < j′ < jk) on whichJi executes,
then a split-merge is said to exist betweenJi andJ1. Figure 2
shows a split-merge between paths 2 and 1. The total number
of split-merges between the paths ofJi andJ1 is denoted by
SMi,1. Let Mk(j) ⊆ S

¯
denote the set of jobs with a lower

priority than jobJk, whose paths merge with the path ofJk

at stagej.
The delay composition theorem forJ1 under preemptive

scheduling is stated as follows:

Preemptive DAG Delay Composition Theorem.Assum-
ing a preemptive scheduling policy with the same priorities
across all stages for each job, the end-to-end delay of a job
J1 in an N -stage DAG can be composed from the execution
parameters of jobs that preempt or delay it (denoted by set
S̄) as follows:

Delay(J1) ≤
∑

i∈S̄

2Ci,max(1+SMi,1)+
∑

j∈Path1

j≤N−1

max
i∈S̄

(Ci,j) (1)

The delay composition theorem forJ1 under non-
preemptive scheduling is stated as follows:

Non-preemptive DAG Delay Composition Theorem.As-
suming a non-preemptive scheduling policy with the same
priorities across all stages for each job, the end-to-end delay

of a job J1 in an N -stage DAG can be composed from the
execution parameters of other jobs that delay it (denoted by
setS) as follows:

Delay(J1) ≤
∑

i∈S̄

Ci,max(1 + SMi,1) +
∑

j∈Path1
j≤N−1

max
i∈S

(Ci,j)

+
∑

j∈Path1

max
i∈M1(j)

Ci,max (2)

Note that the two delay composition theorems are not con-
cerned with defining setS (or S̄), or in determining the
schedulability of jobs. They simply provide a fundamental
bound on the end-to-end delay of jobs, over any given set
S. However, in order to conduct schedulability analysis us-
ing the delay composition rule, it is imperative to determine
a worst case setS. As a trivial (and therefore pessimistic)
baseline,S can include the set of all jobs that are present
concurrently in the system with jobJ1. More formally, the
worst-case setS can be defined as the set of jobsJi, whose
active intervals[Ai, Ai + Di] overlap that ofJ1 (i.e., overlap
[A1, A1 + D1]). Better sets can be constructed given more
information about the task set (e.g., if one assumes periodic
tasks). We further elaborate on schedulability analysis moti-
vated by the delay composition theorem in Section 5.

Some comments are warranted on the form of the two de-
lay composition theorems. Observe that the first term under
both preemptive and non-preemptive scheduling, is a sum-
mation over all higher priority jobs. This term is proportional
to the amount of higher priority traffic that ‘merges’ with the
job under consideration (J1), as one maximum stage execu-
tion time of each higher priority jobJi is accounted for every
timeJi merges withJ1 (SMi,1 denotes the number of times
the path ofJi merges with the path ofJ1). As this term is
proportional to the number of higher priority jobs and is in-
dependent of the number of stages in the system, we call this
the job-additivecomponent ofJ1’s delay. Notice that the
multiplicative factor “2” in the case of preemptive schedul-
ing is not present under non-preemptive scheduling. The
intuition behind this will be explained shortly. The second
term under both preemptive and non-preemptive scheduling
is a summation over the stages on whichJ1 executes, and
is independent of the number of jobs in the system. Note
that the maximization is applied over all higher priority jobs
(S̄) for preemptive scheduling, and over all jobs (S) for non-
preemptive scheduling. Even lower priority jobs are con-
sidered under non-preemptive scheduling, as a lower prior-
ity job may block a higher priority job from accessing a re-
source. Further, lower priority jobs that merge with the path
of J1, may causeJ1 to block on the resource if it arrived be-
fore J1. J1 would have to wait for at most one such lower
priority job at each stage where lower priority jobs merge
with J1. This is accounted for in the third term of the non-
preemptive delay composition theorem, and is not present in
the preemptive version. The second and third terms in the
non-preemptive case, and the second term in the preemptive
case, is called thestage-additivecomponent ofJ1’s delay.

In [10], we showed that preemption can reduce the exe-
cution overlap among stages (this is the reason for the factor
2 under preemptive scheduling, which is not present under
non-preemptive scheduling). We revisit the motivating ex-
ample provided in [10], and extend it to intuitively explain
why non-preemptive scheduling can sometimes perform bet-
ter than preemptive scheduling. Consider the case of a two-
job system, where both jobs execute on all stages, as shown
in Figure 3. LetJi arrive before or together withJ1 and
start executing on the first stage (shown in Figure 3(i)). No-
tice that whenJi moves on to execute on the second stage,
J1 can execute in parallel on the first. However, ifJi ar-
rivesafter J1 and preempts it, whenJi moves on to the next
stage, only theunfinishedpart of J1 on the stage where it
was preempted can overlap withJi’s execution on the next
stage (as shown in Figure 3(ii)). This reduces the execu-
tion overlap (i.e., amount of concurrent execution) between
stages. Consequently, the lower-priority jobJ1 takes longer
to finish than it did in the previous case. The key differ-
ence between the two cases is the preemption of the lower
priority job by the higher priority job, which caused the ex-
ecution overlap between successive stages in the distributed
execution to be reduced. A question that naturally follows
from this observation is whether non-preemptive schedul-
ing can perform better than preemptive scheduling for dis-
tributed systems. Figure 3(iii) shows the execution of the
two tasks for the same arrival times as in Figure 3(ii), but
when non-preemptive scheduling is used. Notice that jobJ1

finishes much earlier under non-preemptive scheduling, and
Ji is only marginally delayed. Depending on their respective
deadline values, schedulability could actually be improved.
This observation that non-preemptive scheduling can per-
form better than preemptive scheduling for distributed sys-
tems, is true only when the execution times of jobs are rela-
tively similar. Figure 3(iv), for example illustrates a scenario
where the higher priority jobJi is blocked for a significantly
long duration, waiting for the lower priority jobJ1 to com-
plete execution. This is clearly undesired behavior.

The above example evinces a very interesting observation.
There are certain situations where non-preemptive schedul-
ing yields better worst-case performance than preemptive
scheduling, and there are situations where the opposite is
true. Although in this paper we do not mathematically quan-
tify the conditions under which one is better than the other,
we take a step towards understanding why and to what extent
non-preemptive scheduling can have better worst-case per-
formance than preemptive scheduling. In Section 8, we study
and characterize through simulations, the space in which
non-preemptive scheduling outperforms preemptive schedul-
ing in distributed directed acyclic systems.

With the intuitions provided above, we proceed to sketch
the proofs of the delay composition theorems.

3. Delay Composition for Directed Acyclic Sys-
tems

In Sections 3.1 and 3.2, we sketch the proofs for the pre-
emptive and non-preemptive versions of the delay composi-

Ji J1

Ji J1

J1Ji

Stage 1

Stage 2

Stage 3

(i) Ji arrived before J1 (ii) Ji arrived after J1 and preempts

J1 Ji

Ji J1

J1Ji

Stage 1

Stage 2

Stage 3

Ji preempts J1 Unfinished part of J1

(iii) Ji arrived after J1,
non-preemptive is good

J1 Ji

JiJ1

J1 Ji

Stage 1

Stage 2

Stage 3

Ji does not preempt J1

(iv) Ji arrived after J1,
non-preemptive is poor

J1 Ji

JiJ1

J1 Ji

Stage 1

Stage 2

Stage 3

Ji does not preempt J1

Figure 3. Figure showing the possible cases of
two jobs in the system.

tion rule, respectively. In Section 3.3, we show how the delay
composition theorem reduces to the special case of pipelines
presented in [10].

A higher priority job Ji is said toovertakea lower pri-
ority job J1 at a stagej, if it arrived afterJ1, but executed
before it on stagej. Before we proceed to prove the delay
composition theorem, we first prove a simple helper lemma.

Lemma 1. The number of times a higher priority jobJi pre-
empts (or overtakes)J1 is at most one more than the number
of split-merges between the paths ofJi andJ1 (SMi,1).

Proof. Informally, the lemma is correct because forJi to pre-
emptJ1 more than once, it needs to execute on a stage where
J1 does not execute and then arrive (merge) at some stage
after J1 arrives at that stage. OnceJi preemptsJ1 and in
the absence of any further split-merge,Ji will always arrive
ahead ofJ1 on the remaining stages and cannot cause further
preemptions.

The formal proof is by a simple induction on the number
of split-merges between the paths ofJi andJ1. The basis
step is when there are no split-merges,SMi,1 = 0. In this
case,Ji can preempt (or overtake1) J1 at most once, as after
Ji preemptsJ1, it will always execute ahead ofJ1 on every
future stage, as the priorities are the same on all stages. Once
the paths ofJi andJ1 split, the path ofJi never intersects the
path ofJ1, andJi will cause no further preemptions.

j’

k-1 split-merges
Ji preempts J1 at most k times

J ’s flow pathi
J ’s flow path1

No split-merges
Ji preempts J1 at most once

j

Figure 4. Figure illustrating proof of Lemma 1.

Assume that the lemma is true for allSMi,1 ≤ k − 1,
for somek ≥ 1. To prove the result forSMi,1 = k. Let

1In the rest of this proof, the word ‘preempt’ can be replaced by ‘over-
take’, for the case of non-preemptive scheduling

stagej be the last stage where bothJi andJ1 execute. As
SMi,1 ≥ 1, there exists a stagej′ < j, where the paths ofJi

andJ1 split. Further, let stagej′ be the last such split in the
paths ofJi andJ1. Figure 4 illustrates this scenario. Up to
and including stagej′, the number of split-merges isk − 1,
and hence from induction assumption, the number of times
Ji preemptsJ1 up to stagej′ is at mostk. Starting from stage
j′+1, there are no split-merges in the paths ofJi andJ1 (the
last split occurs at stagej′). From the basis step, the number
of preemptions beyond stagej′ + 1 is at most one. Thus,
whenSMi,1 = k, Ji preemptsJ1 at mostk + 1 times.

In this paper, we only sketch the outline of the proofs
of the delay composition theorems (elaborate proofs can be
found in our technical reports [9, 8]. The proofs are by in-
duction on task priority, similar to the proof of the pipeline
delay composition theorem [10], and we only highlight the
additional parts of the proof. Without loss of generality, we
assume that a jobJi has a higher priority than a jobJk, if
i > k, i, k ≤ n. That is,Jn has the highest priority, andJ1

has the lowest priority.

3.1 Proof Outline for the Preemptive Case

Preemptive DAG Delay Composition Theorem.Assum-
ing a preemptive scheduling policy with the same priorities
across all stages for each job, the end-to-end delay of a job
J1 of lowest priority in a distributed DAG withn − 1 higher
priority jobs is at most

Delay(J1) ≤

n
∑

i=1

2Ci,max(1 + SMi,1) +
∑

t∈Path1
t≤N−1

n
max
i=1

(Ci,t)

Proof. Consider a higher priority jobJk. The number of
split-merges in the paths ofJk andJ1 is SMk,1. By break-
ing the path ofJ1 after each split in the paths ofJk andJ1,
the path ofJ1 can be split intoSMk,1 + 1 parts. In each
of these parts,Jk can preemptJ1 at most once. A key ob-
servation here is that jobJk in these parts, can be thought
of asSMk,1 + 1 independent jobsJk1 , Jk2 , . . . , JkSMk,1+1 .

EachJki
executes in theith part (1 ≤ i ≤ SMk,1 + 1),

and does not meetJ1 at any of the other parts. For every
Jki

, the job-additive component ofJ1’s delay due toJki
is at

most2Ck,max (we do not elaborate on the proof of this state-
ment, as this is very similar to the proof of the pipeline de-
lay composition theorem [10]). There are (SMk,1 + 1) such
parts. The stage-additive component is the maximum execu-
tion times over all higher priority jobs accrued over all stages.
The delay composition theorem under preemptive scheduling
then follows naturally.

3.2 Proof Outline for the Non-Preemptive Case

The delay composition theorem is proved in two phases.
First, we consider only higher priority jobs. In the presence
of only higher priority jobs, the delay composition theorem
can be proved by induction on task priority, similar to the
preemptive case (as outlined in Lemma 2). We then account
for lower priority jobs, and show that regardless of the num-
ber of lower priority jobs, the increase in delay due to lower

priority jobs as a result of resource blocking is only propor-
tional to the number of stages in the distributed system, and
not proportional to the number of lower priority jobs.

Lemma 2. Assuming a non-preemptive scheduling policy
with the same priorities across all stages for each job, the
end-to-end delay of a jobJ1 of lowest priority in a distributed
DAG withn − 1 higher priority jobs is at most

Delay(J1) ≤

n
∑

i=1

Ci,max(1 + SMi,1) +
∑

t∈Path1
t≤N−1

n
max
i=1

(Ci,t)

Proof. The proof of this lemma is very similar to the proof
of the preemptive case (Section 3.1) and the proof of the
pipeline delay composition theorem. However, there is one
main difference which needs to be carried forth throughout
the proof. As motivated in Section 2, the multiplicative fac-
tor 2 in the first term of the delay composition theorem is not
present in the non-preemptive case. Each time a higher pri-
ority job Ji overtakesJ1, the job-additive component ofJ1’s
delay is at mostonemaximum stage execution time ofJi,
and is independent of the number of stages. From Lemma 1,
the number of timesJi overtakesJ1 is at most (1 + SMk,1).
Therefore, the total job-additive component ofJ1’s delay is
at mostCi,max(1 + SMi,1) for each higher priority jobJi.
The stage-additive component is the sum of one maximum
stage execution time of any task accrued over all stages.

Apart from the multiplicative factor 2, that does not ap-
pear in the non-preemptive case, the other major difference
compared to the preemptive case is the presence of lower pri-
ority jobs that can block and delayJ1. We now proceed to
characterize the delay due to lower priority jobs and prove
the theorem in its entirety.

Non-preemptive DAG Delay Composition Theorem.As-
suming a non-preemptive scheduling policy with the same
priorities across all stages for each job, the end-to-end delay
of a job J1 in an N -stage DAG can be composed from the
execution parameters of other jobs that delay it (denoted by
setS) as follows:

Delay(J1) ≤
∑

i∈S̄

Ci,max(1 + SMi,1) +
∑

j∈Path1
j≤N−1

max
i∈S

(Ci,j)

+
∑

j∈Path1

max
i∈M1(j)

Ci,max

Proof. Lemma 2 proved the delay composition theorem in
the presence of higher priority jobs alone, and accounted for
the first two terms of the delay composition theorem. We
shall now prove the theorem in the presence of both higher
and lower priority jobs. Note that under preemptive schedul-
ing lower priority jobs cause no delay to higher priority jobs.
However, under non-preemptive scheduling, a higher prior-
ity job may block on a resource while a lower priority job
is accessing it. In the worst case, a higher priority job may
be delayed by at most one lower priority job at every stage
in the distributed system. We characterize this delay using
two cases - lower priority jobs whose paths merge with the

Ji J1

Ji J1

J1Ji

Stage 1

Stage 2

Stage 3

(ii) Lower priority job Ji
arrived before J1

(i) Lower priority jobs Ji and Jk
merge with path of J1

J1

J1Ji

Ji J1

Stage 1

Stage 2

Stage 3

Ji arrives at stage 2 before J1

Jk

Jk arrives at stage 3 before J1

Figure 5. Illustration of two different ways in
which a lower priority job can delay J1.

path ofJ1 at some stage, and lower priority jobs that exe-
cute together with, but ahead of the higher priority jobJ1 on
successive stages of the DAG (as in a pipeline).

Case 1:A lower priority job Ji whose path merges with
the path ofJ1 at some stagej, may arrive ahead ofJ1 and
block it at stagej. In the worst case, the lower priority job
Ji would arrive at stagej, just beforeJ1 arrives at the stage,
causingJ1 to wait for one complete stage execution time of
Ji. Figure 5(i) illustrates such a scenario, where lower pri-
ority jobsJi andJk arrive just beforeJ1 to stages 2 and 3,
respectively, and causeJ1 to block. At each stagej in its ex-
ecution path, jobJ1 may block on at most one lower priority
job Ji, whose path merges with the path ofJ1 at that stage
(that is,Ji ∈ M1(j)). Therefore, in the worst case,J1 is
delayed by

∑N

j=1 maxi∈M1(j) Ci,max (the reason for adding
Ci,max instead of justCi,j for eachj, will be clear after the
discussion of the next case).

Case 2:A lower priority job Ji that arrives ahead ofJ1,
and hence blocksJ1 at a stagej may continue to blockJ1

at future stages (when there are no other jobs executing), as
it will always arrive ahead ofJ1 at each successive stage.
Figure 5(ii) illustrates this scenario. Similar to the proof of
the pipeline delay composition theorem [10], it can be shown
that Ji contributes to the stage additive component ofJ1’s
delay, on each of the stages on whichJi andJ1 execute. The
delay due toJi merging withJ1 at stagej (the delay from
case 1) manifests itself only at the last stage whereJ1 waits
for Ji to complete execution and not at stagej (as in the proof
of the pipeline delay composition theorem). We upper bound
this delay by addingCi,max for each such lower priority job.

From the above two cases, the delay ofJ1 due to lower
priority jobs alone is given by:

∑

j∈Path1
j≤N−1

max
i∈S

(Ci,j) +

N
∑

j=1

max
i∈M1(j)

Ci,max

In the proofs of Lemma 2, we assumed a worst case arrival
pattern of higher priority jobs that cause a worst case delayto
job J1. This worst case arrival pattern of each higher priority
job is independent of other jobs in the system, and is there-
fore applicable in the presence of lower priority jobs too. A
detailed proof is omitted in the interest of brevity. This com-
pletes the proof sketch of the delay composition theorem for
the non-preemptive case.

3.3 Special Case of Pipelined Distributed Systems

We now show how the pipeline delay composition theo-
rem [10] is a special case of the preemptive DAG delay com-
position theorem derived in this paper. In a strictly pipelined

system, every job traverses through the same sequence of
stages, and hence the number of split-merges between the
paths of any two jobs is zero, i.e.,SMi,1 = 0 for all jobsJi.
Therefore, the preemptive DAG delay composition theorem
(Inequality 1) reduces to,

Delay(J1) ≤

n
∑

i=1

2Ci,max +
∑

t≤N−1

n
max
i=1

(Ci,t)

Notice that, the right hand side of this bound is at least
as large as the pipeline bound, as2Ci,max ≥ Ci,max1 +
Ci,max2, whereCi,max1 and Ci,max2 are the largest and
second largest stage execution times of jobJi, respectively.
Thus, the pipeline delay composition theorem derived in [10]
is a special case of the preemptive DAG delay composition
theorem.

4. Handling Partitioned Resources
The delay composition theorem as described so far, is

only applicable to systems where resources are scheduled in
priority order. However, resources such as network band-
width are oftenpartitionedamongst the contestants using a
reservation policy or TDMA protocol. In such a partitioned
resource, a contestant may access the resource only during its
reserved time-slot or token. Reservations or partitions could
also be created for classes of tasks. Resource sharing within
a class is achieved using prioritized scheduling. Similarly,
a node, in its reserved communication time-slot, will send
messages on the wire in priority order. We shall therefore as-
sume this hierarchical (priority-scheduling within partition)
model for the partitioned resources. In this section, we show
how a partitioned resource can be translated to a correspond-
ing resource scheduled in priority order, so that the delay of
any task in the latter case is no smaller than its delay in the
former. Once this transformation is conducted for all par-
titioned resources in the distributed system, the delay com-
position theorem can be used to determine the worst case
end-to-end delay.

8

6 363026201610

12

4

Partitioned Resource

Prioritized Resource

Time (ms)

Service Received (ms)

0

Figure 6. Illustration of conversion of a parti-
tioned resource into a prioritized resource.

Consider a stagej with a partitioned resource. Let a task
Ti belong to a classc, that is allottedBc,j time units of the
resource everyBtotal,j time units. TaskTi requires a total
of Ci,j time units to complete execution at stagej. In the
worst case, it would arrive at the stage just when its slot is
over. It would then have to wait forBtotal,j −Bc,j time units
before its slot. After this initial delay, tasks of classc obtain
Bc,j units of the resource everyBtotal,j time units. For the
purpose of analyzing the delay of tasks belonging to class
c, we can model the partitioned resource as a prioritized re-
source consisting of only classc tasks that provides service at

a rate slower by a factorBc,j

Btotal,j
compared to the original ser-

vice rate, and causing an additional delay ofBtotal,j − Bc,j

time units. Figure 6 illustrates the service received by a class
of tasks over time for the original partitioned resource and
the its corresponding hypothetical prioritized resource,when
Bc,j = 4ms andBtotal,j = 10ms. Note that the service
received under the prioritized resource will always be lesser
than in the partitioned resource, causing tasks to be delayed
longer. When analyzing the end-to-end delay ofTi, the com-
putation time ofTi in the new hypothetical prioritized re-
source can be taken asCi,j ×

Btotal,j

Bc,j
+(Btotal,j −Bc,j) (the

additional delay is subsumed in the computation time). The
computation time of all other tasksTk of classc would be
Ck,j ×

Btotal,j

Bc,j
.

Once this transformation is conducted for all partitioned
resources thatTi encounters in the system, the delay compo-
sition theorem can be directly applied to compute the worst
case end-to-end delay ofTi.

5. Transforming Distributed Systems
Using the pipeline delay composition theorem, in [10]

we showed how the analysis of a multi-stage pipeline
can be transformed into that of an equivalent single stage
system. A similar reduction of the DAG to an equivalent
single stage system can be conducted using the preemptive
and non-preemptive DAG delay composition theorems
too. The worst case setS, denotedSwc, of jobs that de-
lay or preemptJ1, is defined similar to the definition in [10]:

Definition: The worst-case setSwc of all jobs that delay or
preempt jobJ1 (hence, include execution intervals between
the arrival and finish time ofJ1) includes all jobsJi which
have at least one common execution stage withJ1, and
whose intervals[Ai, Ai + Di] overlap the interval whereJ1

was present in the system,[A1, A1 + delay(J1)].

In Sections 5.1 and 5.2, we show how a different equiv-
alent uniprocessor system can be created to analyze the
schedulability of each task in the original system. This is
not unlike the traditional way rate monotonic analysis deals
with tasks with resource blocking, where effectively, a sep-
arate equivalent “independent task system” is created to an-
alyze schedulability of each task. When the system consists
of partitioned resources, we assume that the transformation
described in Section 4 has been performed, and that the pri-
ority of jobs is the same on the partitioned resource (within
its class) as in other stages of the system that are scheduled
in priority order. In Section 5.3, we present DAG schedula-
bility expressions for deadline monotonic scheduling based
on the above task set reduction.

5.1 Preemptive Scheduling Transformation
The reduction to a single stage system is conducted by (i)

replacing each higher priority jobJi in S̄wc by an equiva-
lent single stage job of execution time equal to2Ci,max(1 +
SMi,1), and (ii) adding a lowest-priority job,J∗

e of execu-
tion time equal to

∑

j∈Path1,j≤N−1 maxi(Ci,j) (which is
the stage-additive component), and deadline same as that of

J1. By the delay composition theorem, the total delay in-
curred byJ1 in the acyclic distributed system is no larger
than the delay ofJ∗

e on the uniprocessor, since the latter adds
up to the delay bound as expressed in the right hand side of
Inequality 1.

For the case of periodic tasks, the delay bound can be sig-
nificantly improved based on the observation that not all in-
vocations of a higher priority taskTi can preempt an invoca-
tion of T1, 1 + SMi,1 times. Let us suppose that during the
execution of an invocation ofT1, at mostx invocations ofTi

preemptT1. If one such invocation preemptsT1 1 + SMi,1

times, it implies thatT1 has progressed past the last split-
merge between the paths ofTi andT1, and therefore, future
invocations ofTi can preemptT1 at most once. Extending
this argument, at most one invocation ofTi can preemptT1

at each split-merge between the paths ofTi andT1. There-
fore, the maximum number of preemptions thatx invocations
of Ti can causeT1 is x + SMi,1, rather thanx(1 + SMi,1).
Notice that the factorSMi,1 now appears only once for each
task, rather than once for each invocation of every task.

The reduction to a single stage system for periodic tasks
can then be conducted by (i) replacing each higher priority
periodic taskTi by an equivalent single stage task with exe-
cution timeC∗

i = 2Ci,max and having the same period and
deadline asTi, and (ii) adding a lowest priority taskT ∗

e with
computation timeC∗

e =
∑

i Ci,max +
∑

i 2Ci,maxSMi,1 +
∑

j∈Path1,j≤N−1 maxi(Ci,j) (similar to the reduction of the
pipelined system as in [10]) with same period and deadline
asT1. If task T ∗

e is schedulable on a uniprocessor, so isT1

on the original acyclic distributed system.

5.2 Non-Preemptive Scheduling Transformation

Under non-preemptive scheduling, we reduce the
DAG into an equivalent single stage system under
preemptive scheduling. This is achieved by (i) re-
placing each job Ji in S̄wc by an equivalent sin-
gle stage job of execution time equal toCi,max(1 +
SMi,1), and (ii) adding a lowest-priority job,J∗

e of
execution time equal to

∑

j∈Path1,j≤N−1 maxi(Ci,j) +
∑

j∈Path1
maxi∈M1(j) Ci,max (which are the last two terms

in Inequality (2)), and deadline same as that ofJ1. Note that
the execution time ofJ∗

e includes the delay due to all lower
priority tasks. Further, in the above reduction the hypothet-
ical single stage system constructed is scheduled using pre-
emptive scheduling, while the original DAG was scheduled
using non-preemptive scheduling. This is because the higher
priority jobs can overtakeJ1 in the DAG, which corresponds
to the equivalent higher priority jobs preemptingJ∗

e in the
uniprocessor system. By the delay composition theorem, the
total delay incurred byJ1 in the acyclic distributed system
under non-preemptive scheduling is no larger than the de-
lay of J∗

e on the uniprocessor under preemptive scheduling,
since the latter adds up to the delay bound expressed on the
right hand of Inequality (2).

For the case of periodic tasks, an optimization similar to
the one described in Section 5.1 can be applied. The reduc-
tion to a single stage system for periodic tasks can then be

conducted by (i) replacing each periodic taskTi by an equiv-
alent single stage taskT ∗

i of computation timeC∗
i = Ci,max

and same period and deadline asTi, and (ii) adding a lowest
priority task with computation timeC∗

e =
∑

i∈S̄wc
(Ci,max+

Ci,maxSMi,1) +
∑

j∈Path1,j≤N−1 maxi(Ci,j) +
∑

j∈Path1
maxi∈M1(j) Ci,max with same period and

deadline asT1.
If task T ∗

e is schedulable using preemptive scheduling on
a uniprocessor, so isT1 on the original acyclic distributed
system under non-preemptive scheduling.

5.3 Examples of Equivalent Uniprocessor Schedu-
lability Analysis

The reduction described in the previous subsections en-
ables large complex acyclic distributed systems to be eas-
ily analyzed using any single stage schedulability analysis
technique. For this reason, we call our solution a ‘meta-
schedulability test’. The only assumptions made by the re-
duction on the scheduling model are fixed priority preemp-
tive scheduling, and that tasks do not block for resources on
any of the stages (i.e., independent tasks). In this section, we
show how the Liu and Layland bound [14] and the necessary
and sufficient test based on response time analysis [1] can
be applied to analyze periodic tasks in an acyclic distributed
system, under both preemptive and non-preemptive schedul-
ing. Other uniprocessor schedulability tests can be applied in
a similar manner.

DefineCi,max as the largest execution time ofTi on any
stage,Di as the end-to-end deadline, andn as the number of
periodic tasks in the system.Mi(j) is the set of tasks with
lower priority thanTi, whose path merges withTi at stagej.

For preemptive scheduling, C∗
k = 2Ck,max;

C∗
e (i) =

∑

k≥i Ck,max +
∑

k>i 2Ck,maxSMk,i +
∑

j∈Path1,j≤N−1 maxk≥i(Ck,j).

For non-preemptive scheduling, C∗
k =

Ck,max; C∗
e (i) =

∑

k≥i(Ck,max +
Ck,maxSMk,i) +

∑

j∈Pathi,j≤N−1 max1≤k≤n(Ck,j) +
∑

j∈Pathi
maxk∈Mi(j) Ck,max.

The Liu and Layland bound [14], applied to periodic tasks
in an acyclic distributed system is:

C∗
e (i)

Di

+

n
∑

k=i+1

C∗
k

Dk

≤ (n − i + 1)(2
1

(n−i+1) − 1)

for eachi, 1 ≤ i ≤ n.
Our meta-schedulability test, when used together with the

necessary and sufficient test for schedulability of periodic
tasks under fixed priority scheduling proposed in [1], will
have the following recursive formula for the worst case re-
sponse timeRi of taskTi:

R
(0)
i = C∗

e (i); R
(k)
i = C∗

e (i) +
∑

j>i

⌈R
(k−1)
i

Pj

⌉

C∗
j

The worst case response time for taskTi is given by the
value ofR(k)

i , such thatR(k)
i = R

(k−1)
i . For the task set

to be schedulable, for each taskTi, the worst case response
time should be at mostDi.

6. A Flight Control System Example
In this section, we describe a practical problem faced in

flight control systems and explicate how the theory devel-
oped in this paper can efficiently solve the problem. In order
to keep the example simple and illustrative, we have modified
certain attributes of the system. We also show how network
scheduling (as a partitioned resource) can easily be handled
within the system model assumed in this paper. The pur-
pose of the example is to illustrate how the theory developed
in this paper can be applied, and is not intended as a com-
parison with existing theory on schedulability analysis for
distributed systems. Such a comparison is presented in the
evaluation section.

Elevator
Servo

Flight
Guidance
System

Auto Pilot

Primary
Flight Display

AHRS Nav_Radio
Flight Control

Processor

Common Bus

(a)

Elevator
Servo

Flight
Guidance
System

Auto Pilot

Primary
Flight Display

AHRS

Nav_Radio

Flight Control
Processor

(b)

Bus

Task 3

Task 2

Task 1

Figure 7. (a) Example flight control system (b)
The different flows in the system, with the bus
abstracted as a separate stage of execution
A flight control system (with some sub-systems excluded

for simplicity) is shown in Figure 7(a). The Flight Guid-
ance System (FGS) receives periodic sensor readings from
the Attitude and Heading Reference System (AHRS) and the
Navigation Radio (NAVRADIO). The sensory information
gets processed by the FGS and the Auto-Pilot (AP), and the
elevator servo component performs the actuation. The Flight
Control Processor (FCP) is responsible for input commands
from the pilot and display settings. Commands from the FCP
need to be processed by the FGS, and display information
needs to be transmitted to the Primary Flight Display (PFD).
The actual flight control system uses dedicated buses to carry
information from one unit to another. However, in order to il-
lustrate how network scheduling can be handled, we assume
the presence of a common bus connecting the FGS to the
various units that feed into it. Further, we assume a simple

TDMA protocol for bus access, which is a common approach
to temporal isolation in avionics.

The various tasks that constitute the system are shown
in Figure 7(b). TaskT3, the highest priority task, car-
ries periodic sensory information from AHRS to the FGS.
The FGS then processes this information, the AP gener-
ates commands, and the Servo performs the actuation (ad-
justs the pitch). TaskT2 carries sensor readings from the
NAV RADIO to the FGS periodically. Commands from the
FCP are routed to the PFD through the FGS and AP in task
T1 and is the lowest priority task in the system.T3 belongs
to a separate class on the bus, andT2 andT1 belong to a sin-
gle class. The TDMA protocol on the bus employs a period
of 10ms, and allots the first 4ms to the AHRS, the next 6ms
to the NAV RADIO (T2) and FCP (T1). Scheduling of tasks
at each stage is preemptive and prioritized. Worst case com-
putation times (hypothetical) for the tasks at different stages,
their periods and deadlines, are shown in Table 1 (all values
in milli-seconds). A hyphen denotes that the task does not
execute on the corresponding stage. The value shown for the
tasks under ‘Bus’ denotes the time taken to carry the periodic
information on the bus to the FGS.

T1 T2 T3

AHRS - - 10
NAV - 10 -
FCP 15 - -
FGS 10 20 15
AP 15 - 20

Servo - - 10
PFD 10 - -

Period 500 250 100
Deadline 450 200 100

Bus 15 6 4

Table 1. Task characteristics (in ms)
Due to space limitations, we analyze schedulability ofT1

only. Schedulability of other tasks can be analyzed similarly.
We first need to transform the partitioned bus, into a resource
that is scheduled in priority order as described in Section 4.
T1 andT2 together have a time slot of 6ms every 10ms. The
partitioned bus is thus no worse than a dedicated prioritized
resource providing service toT1 andT2 at a rate slower by a
fraction 6

10 , and causing an additional delay of10−6 = 4ms.
The computation time ofT1 on the transformed bus can be
taken as15× 10

6 +(10−6) = 29ms. The computation time of
T2 on the bus is6× 10

6 = 10ms. From the computation times
provided in Table 1, we can obtainC3,max = C2,max =
20ms andC1,max = 29ms (on the bus);SM3,1 = SM2,1 =
SM1,1 = 0.

As shown in Section 5.1, the reduction for this sys-
tem scheduled preemptively can be conducted by (i) re-
placingT3 andT2 by equivalent single stage tasksT ∗

3 and
T ∗

2 , with execution timesC∗
3 = 2C3,max = 40ms and

C∗
2 = 2C2,max = 40ms, and periodsP ∗

3 = 100ms and
P ∗

2 = 250ms; (ii) adding a lowest priority taskT ∗
e with

computation timeC∗
e = C3,max + C2,max + C1,max +

∑

j=FCP,Bus,FGS,AP maxi(Ci,j), i.e., C∗
e = 20 + 20 +

29 + 15 + 29 + 20 + 20 = 153ms and having a deadline
of 450ms. Applying the response time analysis test [1], we
obtain the worst case delay ofT ∗

e in the single stage system
as393ms, which is less than the deadline. AsT ∗

e is schedu-
lable on the hypothetical uniprocessor system, from the delay
composition theorem,T1 is schedulable in the flight control
system.

An important requirement in such time-critical systems is
to have complete knowledge of dependencies and to be able
to determine how changes in the timing properties of one task
would affect the schedulability of the system. The analysis
developed in this paper can be applied on the fly to check the
schedulability of the system when the timing properties of
individual tasks change during the design and development
of the system.

7. Handling Tasks whose Sub-Tasks Form a
DAG

In the discussion so far, we have only considered tasks
whose sub-tasks form apath in the Directed Acyclic Graph.
In this section, we describe how this can be extended to tasks
whose sub-tasks themselves form a DAG. We shall refer to
such tasks as DAG-tasks. Figure 8(a) shows an example task,
whose sub-tasks form a DAG. Edges in the DAG, as before,
indicate precedence constraints between sub-tasks and each
sub-task executes on a different resource. A sub-tasks can
execute only after all sub-tasks which have edges to sub-task
s have completed execution. In the task shown in the figure,
sub-task 5 can execute only after sub-tasks 2 and 3 have com-
pleted execution. We call this a ‘merger’ of sub-tasks. Note
that a split, that is, edges from one sub-tasks to two or more
sub-tasks indicate that once sub-tasks completes, it spawns
multiple sub-tasks each executing in parallel. It can be ob-
served from the example in Figure 8(a), that once sub-task
1 completes, it spawns sub-tasks 2 and 3 that can execute in
parallel on different stages.

1

3 5

6

42

7

1 42

1 53

1 52

6 7

(a) (b)

Figure 8. (a) Figure showing an example of a
DAG-task (b) Different parts of the DAG-task
that need to be separately analyzed to analyze
schedulability of the DAG-task.
As the delay composition theorem only addresses tasks

which execute in sequential stages (that is, the sub-tasks form
a path in the DAG) and does not consider DAG-tasks, we
need to break the DAG-task into smaller tasks which form a
path of the DAG. This is carried forth as follows. Similar to
traditional distributed system scheduling, artificial deadlines
are introduced after each merger of sub-tasks. Each split in
the DAG creates additional paths that need to be analyzed

(the number of additional paths is one less than the fan-out).
In the example DAG-task, an artificial deadline is imposed
after sub-task 5. Sub-tasks 6 and 7 are analyzed indepen-
dently using any single stage schedulability test. As there
are two splits within sub-tasks 1 through 5, there are 3 paths
that need to be analyzed as shown in Figure 8(b). The path 1-
2-4 is analyzed independently using the meta-schedulability
test and this sequence of sub-tasks need to complete within
the end-to-end deadline of the DAG-task. The paths 1-2-5
and 1-3-5 can be independently analyzed using the meta-
schedulability test, with their deadline set as the artificial
deadline. Sub-tasks 6 and 7 need to complete in a duration at
most equal to the end-to-end deadline of the DAG-task mi-
nus the artificial deadline set for sub-task 5. If all the parts
of the DAG-task are determined to be schedulable, then the
DAG task is deemed to be schedulable.

As observed in [10], imposing artificial deadlines add to
the pessimism of the schedulability analysis. The use of the
delay composition theorem reduces the need to impose arti-
ficial deadlines to only stages in the execution where two or
more sub-tasks merge. This is in contrast to traditional dis-
tributed schedulability analysis, that imposes artificialdead-
lines after each stage of execution, causing the pessimism to
quickly increase with system scale.

8. Simulation Results
In this section, we evaluate the preemptive and non-

preemptive schedulability analysis techniques describedin
Section 5.3. A custom-built simulator that models a dis-
tributed system with directed acyclic flows is used. As
there are no previously known techniques to study aperiodic
tasks under non-preemptive scheduling (and due to paucity
of space), we consider only periodic tasks in this evalua-
tion. Due to paucity of space, we assume that partitioned
resources within the system have been transformed into re-
sources scheduled in priority order as described in Section4,
and focus this evaluation on prioritized resources. An ad-
mission controller is used to maintain real-time guarantees
within the system. The admission controller is based on
a single stage schedulability test for deadline monotonic
scheduling, such as the Liu and Layland bound [14] or re-
sponse time analysis [1], together with our reduction of the
multistage distributed system to a single stage, as shown
in Section 5.3. Each periodic task that arrives at the sys-
tem is tentatively added to the set of all tasks in the system.
The admission controller then tests whether the new task set
is schedulable. The new task is admitted if the task set is
schedulable, and dropped if not.

Although the meta schedulability test derived in this pa-
per is valid for any fixed priority scheduling algorithm, we
only present results for deadline monotonic scheduling due
to its widespread use. In the rest of this section, we use the
term utilization to refer to the average per-stage utilization.
Each point in the figures below represent average utilization
values obtained from100 executions of the simulator, with
each execution running for80000 task invocations. When
comparing different admission controllers, each admission

controller was allowed to execute on the same 100 task sets.
The default number of nodes in the distributed system is

assumed to be 8. Each task on arrival requests processing on
a sequence of nodes (we do not consider DAG tasks in this
evaluation), with each node in the distributed system having
a probability ofNP (for Node Probability) of being selected
as part of the route. The task’s route is simply the sequence
of selected nodes in increasing order of their node identifier.
The default value ofNP is chosen as 0.8. End-to-end dead-
lines (equal to the periods, unless explicitly specified other-
wise) of tasks are chosen as10xa simulation seconds, where
x is uniformly varying between 0 andDR (for deadline ra-
tio), anda = 500 ∗ N , whereN is the number of stages in
the task’s route. Such a choice of deadlines enables the ratio
of the longest task deadline to the shortest task deadline to
be as large as10DR. If DR is chosen close to zero, tasks
would have similar deadlines. IfDR is higher (for exam-
ple DR = 3), deadlines of tasks would differ more widely.
The default value forDR is 0.5, and we refer toDR as the
deadline ratio parameter. The execution time for each task
on each stage was chosen based on the task resolution pa-
rameter, which is the ratio of the total computation time of
a task over all stages to its deadline. The stage execution
time of a task is calculated based on a uniform distribution
with mean equal toDT

N
, whereD is the deadline of the task

andT is the task resolution. The stage execution times of
tasks were allowed to vary up to 10% on either side of the
mean. Choosing the stage execution times to be nearly pro-
portional to the end-to-end deadline, ensures that when tasks
have similar deadlines (DR close to zero), then the execution
times are also comparable. When tasks have widely different
deadlines (a high value forDR), then the execution times are
also widely varying. Our simulations validate our intuition
presented in Section 2, that non-preemptive scheduling per-
forms better than preemptive scheduling when the task exe-
cution times are similar, and preemptive scheduling performs
better than non-preemptive scheduling when the task execu-
tion times are different by more than two orders of magni-
tude.

Under preemptive scheduling, task preemptions are as-
sumed to be instantaneous, that is, the task switching time is
zero. We used a task resolution of1 : 100. The default single
stage schedulability test used is the response-time analysis
technique presented in [1]. The 95% confidence interval for
all the utilization values presented in this section is within
0.02 of the mean value, which is not plotted for the sake of
legibility.

We first study the achievable utilization of our meta-
schedulability test using both the Liu and Layland bound and
response time analysis, for both preemptive as well as non-
preemptive scheduling. We compare this with holistic analy-
sis [17], applied to preemptive scheduling, for different num-
ber of nodes in the DAG, the results of which are shown in
Figure 9. For meta-schedulability test curves that are marked
preemptive, the scheduling was preemptive and the preemp-
tive version of the test was used in admission control. Like-
wise, for the meta-schedulability test curves that are marked

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 15 12 10 8 5

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

No. of Nodes in DAG

Meta-schedulability test using LL, Preemptive
Meta-schedulability test using RTA, Preemptive

Meta-schedulability test using LL, Non-preemptive
Meta-schedulability test using RTA, Non-preemptive

Holistic Analysis, Preemptive
Simulation, Non-Preemptive

Figure 9. Comparison of meta-schedulability
test using both preemptive and non-
preemptive scheduling with holistic analysis
for different number of nodes in the DAG

non-preemptive, the scheduling was non-preemptive and the
non-preemptive version of the test was used. We only eval-
uated holistic analysis applied to preemptive scheduling as
presented in [17], as the non-preemptive version presentedin
[12] adds an extra term to account for blocking due to lower
priority tasks and tends to be more pessimistic than the pre-
emptive version, and the corresponding curve would always
be lower than the curve for preemptive scheduling.

It can be observed from Figure 9, that even for an eight
node DAG, non-preemptive scheduling analyzed using our
meta-schedulability test significantly outperforms preemp-
tive scheduling analyzed using both holistic analysis and our
meta-schedulability test. As the utilization curve for holis-
tic analysis applied to non-preemptive scheduling would be
lower than the curve for the preemptive scheduling version
of holistic analysis, non-preemptive scheduling analyzedus-
ing our meta-schedulability test would also outperform the
non-preemptive version of holistic analysis. A major draw-
back of holistic analysis is that it analyzes each stage sepa-
rately assuming the response times of tasks on the previous
stage to be the jitter for the next stage. It therefore assumes
that every higher priority job will delay the lower priority
job at every stage of its execution, ignoring possible pipelin-
ing between the executions of the higher and lower priority
jobs. This causes holistic analysis to become increasingly
pessimistic with system size. As motivated in Section 2, pre-
emption can reduce the overlap in the execution of jobs on
different stages, resulting in non-preemptive schedulingper-
forming better than preemptive scheduling in the worst case.

In order to estimate when deadlines are actually being
missed, and to evaluate the pessimism of the admission con-
trollers, we conducted simulations to identify the lowest uti-
lization at which deadlines are missed. The curve labeled
‘Simulation’ in Figure 9 presents the results from simulations
of the lowest utilization at which deadline misses were ob-
served for different number of nodes in the system when non-
preemptive scheduling was employed. The corresponding
curve for preemptive scheduling, was within 0.02 of those
of non-preemptive scheduling, and we don’t show the val-
ues here for the sake of clarity (the reader must bear in mind

that task sets were generated randomly, and that the task sets
do not represent worst case scenarios). Each point for the
simulation curve was obtained from 500 executions of the
simulator in the absence of any admission controller, with
each execution considering a workload with utilization close
to where deadline misses were being observed. We observe
that the lowest utilization at which deadline misses were ob-
served does not decrease with increasing system scale. The
meta-schedulability test curves degrade only marginally with
increasing scale, while the performance of holistic analysis
degrades more rapidly.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 3 2.5 2 1.5 1 0.5

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

log10(Deadline Ratio Parameter)

Meta-schedulability test using RTA, Preemptive
Meta-schedulability test using RTA, Non-preemptive

Holistic Analysis, Preemptive

Figure 10. Comparison of meta-schedulability
test using both preemptive and non-
preemptive scheduling with holistic analysis
for different deadline ratio parameters

To precisely evaluate the scenarios under which non-
preemptive scheduling performs better than preemptive
scheduling in distributed systems, we conducted experiments
varying the deadline ratio parameter (DR) while keeping the
other parameters equal to their default values. Figure 10 plots
a comparison of the meta-schedulability test under both pre-
emptive as well as non-preemptive scheduling, with holistic
analysis for differentDR values ranging between 0.5 and
3.0. ADR value ofx indicates that the end-to-end deadlines
of tasks can differ by as much as10x. Stage execution times
of tasks are chosen proportional to the end-to-end deadline.
This implies that when the end-to-end deadlines of tasks are
widely different, the lower priority tasks (those with large
deadlines) have a large stage execution time. Initially, asDR
increases, the utilization for both preemptive as well as non-
preemptive scheduling increases, as lower priority tasks can
execute in the background of higher priority tasks resulting
in better system utilization. Up toDR = 2, non-preemptive
scheduling (together with the non-preemptive version of the
meta-schedulability test) results in better performance than
preemptive scheduling (together with the preemptive ver-
sion of the test). However, for values ofDR greater than
2, that is, the end-to-end deadlines vary by over two orders
of magnitude, preemptive scheduling performs better than
non-preemptive scheduling. The achievable utilization under
non-preemptive scheduling decrease beyond aDR value of
2, as higher priority tasks can now be blocked for a longer du-
ration under non-preemptive scheduling, leading to a greater
likelihood of deadline misses.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

Probability of node being selected as part of route

Meta-schedulability test using RTA, Preemptive
Meta-schedulability test using RTA, Non-preemptive

Holistic Analysis, Preemptive

Figure 11. Comparison of meta-schedulability
test using both preemptive and non-
preemptive scheduling with holistic analysis
for different route probabilities

We conducted a similar comparison of the three admis-
sion controllers as in the previous experiment, but for differ-
ent values of the Node Probability (NP) parameter, which is
the probability with which each node in the system is chosen
as part of the route of each task. This comparison is shown
in Figure 11, for different NP parameter values ranging be-
tween 0.2 to 1.0 in steps of 0.2. Note that the NP parame-
ter of 1.0 denotes a perfectly pipelined system, where each
task executes sequentially on all the nodes in the distributed
system. For small values ofNP , the number of stages on
which each task executes is low, and as observed in Figure 9,
holistic analysis performs better than the meta-schedulability
test. However, for larger values ofNP , each task traverses
more stages in the distributed system, causing holistic analy-
sis to become more pessimistic in its worst case delay bound.
The meta-schedulability test using non-preemptive schedul-
ing performs the best forNP values greater than 0.6.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 2.857 2 1.33 1 0.5

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

Ratio of End-to-End Deadline to Period

Meta-schedulability test using RTA, Preemptive
Meta-schedulability test using RTA, Non-preemptive

Holistic Analysis, Preemptive
Simulation, Non-Preemptive

Figure 12. Comparison of meta-schedulability
test using preemptive and non-preemptive
scheduling with holistic analysis for different
ratios of end-to-end deadline to task periods
The above results have all been obtained by setting the

end-to-end deadlines equal to the periods of tasks. Fig-
ure 12 plots a comparison of the meta-schedulability test un-
der preemptive and non-preemptive scheduling with holistic
analysis for different ratios of the end-to-end deadlines to
the periods. When the ratio of the end-to-end deadline to
period is higher, the laxity available to jobs is larger, and

hence, the utilization of all the three analysis techniquesare
high. The meta-schedulability test under non-preemptive
scheduling consistently outperforms preemptive scheduling
analyzed using either the meta-schedulability test or holis-
tic analysis. As holistic analysis applied to non-preemptive
scheduling (curve not shown) would perform worse than the
preemptive scheduling version of holistic analysis, it would
also perform worse than the meta-schedulability test applied
to non-preemptive scheduling. Similar to Figure 9, the curve
labeled as ‘simulation’ plots the lowest utilization at which
deadline misses were observed obtained from simulations
under non-preemptive scheduling in the absence of any ad-
mission controller. The corresponding values for preemptive
scheduling were close to those obtained for non-preemptive
scheduling and are not presented here for the sake of clar-
ity. We observe that our analysis tends to be less pessimistic
for larger values of the ratio between the end-to-end deadline
and the period.

9. Related Work

In their seminal work [14], Liu and Layland presented uti-
lization bounds for uniprocessor systems. These utilization
bounds were extended to multiprocessor systems in [3]. Re-
source constraints were considered and a single-stage utiliza-
tion bound which was less pessimistic that the Liu and Lay-
land bound was presented. While these utilization bounds
were sufficient conditions for schedulability, exact testssuch
as [1, 13] were also proposed.

Algorithms for statically scheduling precedence con-
strained tasks in distributed systems have been proposed in
[18, 6]. Such algorithms construct a schedule of length equal
to the least common multiple of the task periods of the set of
periodic tasks. This schedule can then be used to accurately
specify the time intervals during which each task will be exe-
cuted. Such algorithms have a huge time complexity and are
clearly unsuitable for large, complex distributed systems.

A few offline schedulability tests have also been pro-
posed, which divide the end-to-end deadline into individual
per-stage deadlines, and tend to ignore the overlap that ex-
ists between the execution of different stages. A distributed
pipeline framework was presented in [4]. In [15, 16], offset-
based response time analysis techniques for EDF were pro-
posed, which divide the end-to-end deadline into individ-
ual stage deadlines. Recently, a middleware layer based on
deferrable servers for aperiodic tasks with hard end-to-end
deadlines in distributed real-time applications was designed
and implemented in [19]. Techniques to divide the end-to-
end deadline into sub-deadlines for individual stages were
presented.

Holistic schedulability analysis for distributed hard real-
time systems [17], assumes the worst case delay at a stage
as the jitter for the next stage. While this technique does not
divide the end-to-end deadline into sub-deadlines for individ-
ual stages, it nevertheless does not account for the overlapin
the execution of different pipeline stages.

In [7], a schedulability test based on aperiodic schedul-
ing theory for fixed priority scheduling was derived. Al-

though this solution handles arbitrary-topology resourcesys-
tems and resource blocking, it does not consider the overlap
in the execution of multiple stages in the system. In an earlier
publication [10], we proved a delay composition theorem for
pipelined systems. This paper extends the results in [10] to
directed acyclic systems and non-preemptive scheduling.

In stark contrast to preemptive scheduling, non-
preemptive scheduling has received very little attention from
the real-time community. An extension to holistic analy-
sis in distributed systems to account for blocking due to
non-preemptive scheduling is presented in [12]. The pa-
per presents a comparison of this analysis technique with
network calculus [5], and concludes that the worst case re-
sponse time as predicted by the holistic analysis technique
tends to be superior to that of network calculus in most cases.
In contrast to such techniques, we reduce the problem of
analyzing a distributed acyclic system with non-preemptive
scheduling to that of analyzing a single stage system using
preemptive scheduling. Thus, well known uniprocessor tests
can be adopted to analyze multistage systems that use non-
preemptive scheduling, resulting in more efficient schedula-
bility analysis.

10. Conclusions and Future Work

In this paper, we present a delay composition theorem
that bounds the worst-case delay of jobs for preemptive and
non-preemptive scheduling in distributed systems, where the
routes of tasks form a directed acyclic graph. We consider
systems where resources can be either partitioned or sched-
uled in priority order. The rule works purely based on in-
formation available along the route followed by the task un-
der consideration, and does not require global knowledge
of other parts of the distributed system. The composition
rule leads to the reduction of the distributed system to an
equivalent single stage system, which then enables any single
stage schedulability test to analyze distributed systems.We
show that under certain conditions, non-preemptive schedul-
ing can perform better than preemptive scheduling for dis-
tributed systems. We believe this observation can foster more
extensive study and use of non-preemptive scheduling in dis-
tributed systems.

In [2], earliest-effective-deadline-first was shown to be
an optimal non-preemptive scheduling policy for distributed
systems, when the execution times of tasks are the same
across all the stages of the distributed system. The delay
composition rule derived in this paper can help in the search
for an optimal scheduling policy for distributed systems with
arbitrary task characteristics. The delay composition rule
could aid the study of obtaining optimal rate control, routing
and scheduling policies in distributed systems and large net-
works. The current work addresses only directed acyclic sys-
tems and does not account for loops. Accounting for loops
can enable the result to be applied to semi-conductor chip
manufacturing plants, where chips revisit the same service
center multiple times before exiting the system. Extensions
to allow both preemptive and non-preemptive scheduling to
be employed within the same system, will also be useful.

References

[1] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Ap-
plying new scheduling theory to static priority pre-emptive
scheduling.Software Engineering, pages 284–292, 1993.

[2] R. Bettati and J. W. Liu. Algorithms for end-to-end schedul-
ing to meet deadlines. InIEEE Symposium on Parallel and
Distributed Processing, pages 62–67, December 1990.

[3] E. Bini, G. Buttazzo, and G. Buttazzo. A hyperbolic bound
for the rate monotonic algorithm. In13th ECRTS, pages 59–
66, June 2001.

[4] S. Chatterjee and J. Strosnider. Distributed pipeline schedul-
ing: End-to-end analysis of heterogeneous multi-resource
real-time sytems. InICDCS, pages 204–211, May 1995.

[5] R. Cruz. A calculus for network delay, part ii: Network anal-
ysis. IEEE Transactions on Information Theory, 37(1):132–
141, January 1991.

[6] G. Fohler and K. Ramamritham. Static scheduling of
pipelined periodic tasks in distributed real-time systems. In
Euromicro Workshop on Real-Time Systems, pages 128–135,
June 1997.

[7] W. Hawkins and T. Abdelzaher. Towards feasible region
calculus: An end-to-end schedulability analysis of real-time
multistage execution. InIEEE RTSS, December 2005.

[8] P. Jayachandran and T. Abdelzaher. The case for non-
preemptive scheduling in distributed real-time systems. Tech-
nical Report UIUCDCS-R-2007-2852, University of Illinois
at Urbana-Champaign, IL, USA, 2007.

[9] P. Jayachandran and T. Abdelzaher. A delay composition the-
orem for real-time distributed directed acyclic systems. Tech-
nical Report UIUCDCS-R-2007-2851, University of Illinois
at Urbana-Champaign, IL, USA, 2007.

[10] P. Jayachandran and T. Abdelzaher. A delay compositionthe-
orem for real-time pipelines. InEuromicro Conference on
Real-Time Systems (to appear), July 2007.

[11] P. Jayachandran and T. Abdelzaher. Transforming distributed
acyclic systems into equivalent uniprocessors under preemp-
tive and non-preemptive scheduling. Technical report, Uni-
versity of Illinois at Urbana-Champaign, IL, USA, 2007.

[12] A. Koubaa and Y.-Q. Song. Evaluation and improvement of
response time bounds for real-time applications under non-
preemptive fixed priority scheduling.International Journal
of Production and Research, 42(14):2899–2913, July 2004.

[13] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. InRTSS, pages 166–171, December 1989.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment.Journal of
ACM, 20(1):46–61, 1973.

[15] J. Palencia and M. Harbour. Offset-based response timeanal-
ysis of distributed systems scheduled under edf. InEuromicro
Conference on Real-Time Systems, pages 3–12, July 2003.

[16] R. Pellizzoni and G. Lipari. Improved schedulability analysis
of real-time transactions with earliest deadline scheduling. In
RTAS, pages 66–75, March 2005.

[17] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems.Elsevier Microprocessing
and Microprogramming, 40(2-3):117–134, 1994.

[18] J. Xu and D. Parnas. On satisfying timing constraints inhard
real-time systems.IEEE Transactions on Software Engineer-
ing, 19(1):70–84, January 1993.

[19] Y. Zhang, C. Lu, C. Gill, P. Lardieri, and G. Thaker. End-to-
end scheduling strategies for aperiodic tasks in middleware.
Technical Report WUCSE-2005-57, University of Washing-
ton at St. Louis, December 2005.

