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Abstract

Task period adaptations are often used to alleviate tem-
poral overload conditions in real-time systems. Existing
frameworks assume that only task periods are adjustable
and that task deadlines remain unchanged at all times. This
paper formally introduces a more general real-time task
model where task deadlines, which are less than or equal
to task periods, are functions of task periods. This tight
coupling between task deadlines and task periods has been
discussed in a recent work in control systems and presents
a novel real-time scheduling challenge.

To solve the period and deadline selection problem, this
article identifies a feasible period-deadline combination
and proposes a heuristic, which iteratively adjusts task pe-
riods and deadlines in such a way that the task set becomes
schedulable. Experimental results show that the heuristic
finds a solution to the period and deadline selection prob-
lem over 73% of the time, using less than three search iter-
ations. When it is unable to find a solution to the problem,
the heuristic requires less than 0.02s to run in the worst-
case (with at most 100 search iterations).

1 Introduction

Task scheduling has long been an important research
topic in real-time systems, where the main requirement con-
sists of performing some functions correctly and on time
(i.e., by some specific deadline). Missing a deadline in
a hard real-time system may lead to catastrophic conse-
quences, such as failure to stop an automatically controlled
train on time [24].

Despite having been traditionally treated as hard real-
time systems, many control systems are quite robust in the
presence of certain timing perturbations. Generally speak-
ing, depending on the system state, the sampling rate of a
control system can vary within some interval without caus-
ing significant performance degradation. This observation

is very useful when temporal overload situations occur. A
real-time system is said to experience an overload when it
cannot finish executing one or more tasks on time due to re-
source constraints. Although robust, if too many deadlines
have been missed or if such misses occur in a highly unpre-
dictable manner, a control system may no longer stabilize,
even if all system resources are now dedicated to it.

There are two main approaches to dealing with overloads
in real-time systems: (i) dropping some instances of tasks
(i.e., jobs) in a controlled manner, and (ii) increasing task
periods, equivalently decreasing the sampling rates, in such
a way that no deadlines are missed and the performance of
the system remains acceptable.

Many algorithms have been proposed to control job
dropping patterns. Some examples are the (m, k) schedul-
ing algorithms [19], the Dynamic Window-Constrained
Scheduling (DWCS) algorithm [30], the skip-over algo-
rithms [20], and the algorithms for the weakly hard real-
time systems [6]. In other works such as the imprecise com-
putation model [15] and reward-based model [2], the aim is
to maximize system workload, which is assumed to be pro-
portional to the quality of service (QoS).

Since it is sometimes more suitable to execute jobs less
often instead of dropping them or allocating fewer cy-
cles [3], we focus on such an approach in this paper. Many
previous works can be found on the management of over-
loads in real-time systems based on task period adjustments
(e.g., [22]). The works in [26], [27] and [7] solve the period
selection problem for the earliest-deadline first (EDF), rate-
monotone (RM), and fixed-priority scheduling algorithms,
respectively. Cervin et al. propose an online period ad-
justment mechanism, while varying task computation times
is handled in [21]. In [13], Caccamo et al. consider sce-
narios where the worst-case task execution times can be
large but the normal task execution times tend to be very
small. To efficiently use system resources while avoiding
overruns, the method of task rate adaptation is combined
with the use of a constant bandwidth server to guarantee
hard real-time deadlines. Buttazzo et al. propose an opti-



mal period selection algorithm in [10] based on the elastic
task model. Many extensions to the elastic task model can
be found in [9, 11, 8, 12].

In terms of schedulability tests for task sets with dead-
lines less than periods, Baruah et al. proposed an exact test
with pseudo-polynomial running time [5]. For efficiency,
we will use the sufficient test provided in [14]. However,
there exists other sufficient conditions for schedulability
when task deadlines are less than task periods. For instance,
Devi proposed a set of sufficient schedulability tests in [16].
The main difference between this set of tests and the one
in [14] is that the former requires N checks while the latter
requires only one check. Some extensions to Devi’s work
include, but are not limited to, an approximate schedulabil-
ity test [1], an adaptation to fixed-priority systems [17], and
novel feasibility tests that are shown to outperform Devi’s
schedulability conditions [25].

Most previous works on overload management assume
that only task periods can change. In [28], task deadlines
vary with time, but the tasks do not have periods (i.e., tasks
are non-periodic). There has also been work on determining
the lower bound on task deadlines using sensitivity analysis
in a periodic task model [4]. However, to the best of our
knowledge, there has been no work that allows task periods
and deadlines to change simultaneously.

Our first main contribution is the introduction of a more
general and realistic task model where both task deadlines
and task periods can vary within some intervals. The dead-
line in the real-time system sense really denotes the maxi-
mum allowable delay that a given task (a control task, for
instance) can tolerate. As shown by the authors in [29],
different sampling rates for a control system lead to differ-
ent acceptable maximum delays (deadlines). Specifically, a
higher sampling rate means that the corresponding control
task executes more often, which, in turns, allows the system
to be more tolerant to a larger delay. Conversely, a larger
sampling period could make the system more susceptible to
delays and thus a smaller deadline may be required. In other
words, the deadline of a task is a function of its period.

The relationship between task periods and task dead-
lines poses an interesting scheduling problem, as one can
no longer assume that increasing task periods will always
improve schedulability. Although it is possible to set task
deadlines to be the smallest deadlines (specified by the ap-
plications) and only vary task periods, doing so may sig-
nificantly worsen schedulability. As our second main con-
tribution, we study some interesting relationships between
task periods and task deadlines that will help to solve the
period and deadline selection problem. We then propose an
efficient heuristic that can be used to find a set of feasible
task periods and deadlines and alleviate an overload situa-
tion. Our heuristic can be applied to any real-time task set
where task deadlines are less than or equal to task periods

and where task deadlines are piecewise first-order differen-
tiable functions of their respective periods. Based on some
experimental results, our heuristic finds a solution to the pe-
riod and deadline selection problem over 73% of the time
using less than 0.02s in the worst-case.

We introduce the system model and some important as-
sumptions in Section 2. Section 3 provides a motivating
example to highlight the importance and usefulness of our
work. We present our formal analysis and heuristic in Sec-
tions 4. Section 5 summarizes some experimental results
and the paper concludes with Section 6.

2 Preliminaries

In this section, we describe the system model and impor-
tant assumptions, as well as review some relevant schedu-
lability tests. We also give a formal definition of the period
and deadline selection problem.

2.1 System Model and Assumptions

Our system consists of a set of N periodic, syn-
chronous tasks specified by the following 5-tuple:
(Ci, Ti, Timin , Timax , Di), i = 1, . . . , N , where Ci is the
worst-case execution time of task τi, and Ti is τi’s actual pe-
riod, which must lie somewhere between Timin

and Timax
.

The parameter Timin
denotes the most desirable period of

τi, as specified by the application, whereas Timax
represents

the maximum period beyond which the system performance
is no longer acceptable. The parameter Di is the deadline
of τi, and is dependent on the actual task period Ti. That is,
the deadline of a task is a function of its period. Specifically,
Di ≤ Ti, Ti ∈ [Timin

, Timax
] and Di is some function that

is piecewise first-order differentiable.
The utilization of each task τi is defined as Ui = Ci/Ti

and denotes system resources dedicated to τi. Since the pe-
riod of τi, i = 1, . . . , N , can vary between Timin

and Timax
,

the minimum utilization of τi, Uimin
= Ci/Timax

, and its
maximum (desired) utilization, Uimax

= Ci/Timin
, are also

defined, for i = 1, . . . , N .

2.2 Schedulability Test

Throughout this paper, we will assume that the Earli-
est Deadline First (EDF) scheduling algorithm [23] is used.
When one or more tasks need to decrease their period and/or
deadline in response to either internal (e.g., change in sam-
pling rate of one or more tasks in the system) or exter-
nal (e.g., network traffic) factors, a schedulability test must
be used to assess whether the task set is still schedulable.
A schedulability test may also provide some guidance on
how to adjust task parameters in such a way that a feasible
task set can be obtained. Based on the assumption that the



EDF scheduling algorithm is used, there exist some useful
schedulability conditions that are briefly reviewed here.

A necessary condition for schedulability of any given
task set is stated in the following lemma.

Lemma 1 [14] Given a task set Γ, let Ci and Di be the
execution time and the deadline of task τi, i = 1, . . . , N ,
respectively. In addition, let all tasks start at time 0 and
let the tasks in Γ be ordered in a non-decreasing order of
deadlines. Regardless of the choices of periods, any task set
that is schedulable must satisfy the following property

j∑
i=1

Ci ≤ Dj , j = 1, . . . , N. (1)

Since task deadlines can be less than or equal to periods,
there exist an exact, albeit complex, schedulability test for
EDF as specified by Baruah et al [5]. Said test is restated in
the following theorem.

Theorem 1 [5] Given a periodic task set with Ci, Di, and
Ti as the execution time, deadline, and period of task τi,
i = 1, . . . , N , respectively. Let Di ≤ Ti, i = 1, . . . , N , the
task set is schedulable if and only if the following constraint
is satisfied ∀L ∈ {kTi + Di ≤ min(Bp,H)} and k ∈ N
(the set of natural numbers including 0), where Bp and H
denote the busy period and hyperperiod, respectively,

L ≥
N∑

i=1

(⌊
L−Di

Ti

⌋
+ 1
)

Ci. (2)

Verifying that (2) is satisfied for all L is the main source of
complexity in the above schedulability test. To reduce the
complexity of the test in Theorem 1, the authors in [14] pro-
posed the following sufficient condition for schedulability.

Theorem 2 [14] Given a set Γ of N tasks that satisfy
Lemma 1. Let Ci, Di, and Ti be the execution time, dead-
line, and period of task τi, i = 1, . . . , N , respectively. In
addition, let the tasks in Γ be sorted in a non-decreasing
order of deadlines. The task set Γ is schedulable if

L∗ ≥
N∑

i=1

(
L∗ −Di

Ti
+ 1
)

Ci (3)

where

L∗ =
{

D2 : D1 + T1 ≤ D2

minN
i=1 (Ti + Di) : otherwise.

For completeness, we include another existing sufficient
condition for EDF schedulability.

Theorem 3 [24] Consider a set Γ of N tasks where Ci

and Di are the execution time and deadline of task τi,
i = 1, . . . , N , respectively. The task set Γ is schedulable
by the EDF policy if

N∑
i=1

Ci

Di
≤ 1. (4)

We will use some of these schedulability conditions in
Section 4.

2.3 Problem Definition

We consider the following problem: Given an initially
infeasible set Γ of N real-time tasks where the period Ti of
task τi must lie somewhere between [Timin

, Timax
], and the

deadline Di of τi is some function of its period, determine a
period-deadline combination (Ti, Di), i = 1, . . . , N , such
that the task set Γ becomes schedulable. In other words, we
wish to find (Ti, Di), i = 1, . . . , N , such that

N∑
i=1

(⌊
L−Di

Ti

⌋
+ 1
)

Ci ≤ L (5)

Ti ≥ Timin
for i = 1, 2, · · · , N (6)

Ti ≤ Timax
for i = 1, 2, · · · , N (7)

where L is defined as in Theorem 1, Ci is the worst-case
execution time of τi, and both Timin

and Timax
are specified

by the applications under consideration.
The constraint in (5) ensures the schedulability of the

task set. The constraints in (6) and (7) bound the period of
τi, i = 1, . . . , N , to ensure performance.

3 Motivations

In control systems, an advantage in using the traditional
periodic task model where task deadlines are fixed is that
these systems can be treated as discrete-time systems for
which there exists a variety of mature controller synthesis
methods. However, when the periodic task model is used,
task periods and deadlines are often chosen conservatively
to guarantee stability. This leads to wasted resources and
perhaps even system over-provisioning. For these reasons,
there has been a recent movement in the control system
community to investigate alternative approaches to the pe-
riodic task model.

The work in [29] is such an example. Each task deter-
mines its next release time based on the current system state
as sampled by the current job. This type of control sys-
tems is known as state-based self-triggering systems. Self-
triggering can be viewed as a closed-loop form of releas-
ing tasks for execution, whereas the traditional periodic task



Table 1. Task set for motivating example
Task Ci Timin

Timax Di

τ1 0.18 0.5 3.5 T1e−T1 , T1 ∈ [0.5, 3.5]

τ2 0.18 0.5 3.5 T2e−T2 , T2 ∈ [0.5, 3.5]

model is considered open-loop. Since each control task is
aware of its system state, it can adjust its period and dead-
line in such a way that only the required system resource is
requested. More precisely, with a small period, a task is ex-
ecuted relatively often and the system is thus more tolerant
to delays, permitting the task deadline to be larger (e.g., per-
haps almost as large as the task period itself). On the other
hand, when the task period is large, the system is more sus-
ceptible to disturbances, requiring that the task deadline be
smaller (compared to the task period) to reduce jitters.

To understand how the deadline as a function of the pe-
riod affects schedulability, let us consider a simple task set,
which consists of two identical tasks whose attributes are
shown in Table 1. The deadline of each task can be com-
puted as shown in the last column of Table 1 (all units are in
milliseconds). Figure 1 plots the task deadlines as a func-
tion of task periods where the vertical dotted lines limit the
acceptable period range for the example tasks. Initially, the
task set is not schedulable with T1 = T2 = 0.5ms, since
the initial deadlines D1 = D2 = 0.303ms and the aggre-
gate execution time required is 0.36ms. If we simply set
T1 = T2 = 3.5ms, which is the maximum allowable peri-
ods, then the corresponding deadlines will be D1 = D2 =
0.106ms. The task set is, again, not schedulable and one
may wrongly conclude that the task set cannot be made fea-
sible. However, there exists many feasible period-deadline
combinations. For example, when T1 = T2 = 1ms and
D1 = D2 = 0.368ms, the task set is schedulable.

In the traditional periodic task model, since task dead-
lines are considered fixed, system designers must use the
smallest possible deadlines to ensure that, given a specific
range of task periods, the system will always meet the
minimum performance requirements. For the above exam-
ple, the smallest deadline for both tasks is 0.106ms, which
means that the task set can never be made schedulable using
existing techniques. It is not difficult to see in this example
that the task deadlines can be set to 0.36ms for the task set
to be feasible, regardless of the resultant periods. In gen-
eral, however, both task periods and task deadlines must be
considered simultaneously, since different tasks may have
different timing requirements.

4 Period and Deadline Selection

As shown in the previous section, since a task’s deadline
is a function of its period, adjusting the period affects both
the corresponding deadline and the schedulability of the en-
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Figure 1. Deadline as a function of period

tire task set. Due to the condition in (5), the problem defined
in Section 2.3 is nonlinear, non-convex, and non-continuous
since L, Ti, and Di, i = 1, . . . , N , are variables, and be-
cause of the floor function. Solving the above problem di-
rectly using a nonlinear solver is inefficient and it cannot be
guaranteed that a solution will be found, even if one exists.
For these reasons, we propose using a heuristic which uses
a number of fast sufficient conditions to find a solution. In
a nutshell, the heuristic starts by performing some simple
schedulability tests to determine a feasible period-deadline
combination. Such tests also serve to eliminate some infea-
sible period and deadline values should they fail to identify
a feasible task set. The heuristic then uses this knowledge
to conduct an efficient search process.

4.1 Identifying Infeasible Regions Using
Simple Tests

We now describe our idea of using the simple tests in
more detail. We first determine the minimum and maxi-
mum deadlines, Dimin and Dimax , respectively, for each
task τi, i = 1, . . . , N . The maximum deadline of τi, Dimax

can directly be solved by finding the maximum of Di. (Re-
call that the maximum of a function can be obtained by
taking its derivative and subsequently finding the root(s) of
said derivative.) The corresponding period value is denoted
TDmax

i , i = 1, . . . , N .
To determine the lower bound on the deadline of a task

τi, i = 1, . . . , N , we would ideally use Lemma 1. However,
Lemma 1 requires that tasks be sorted in a non-decreasing
order of deadlines. Since a task deadline is a variable to
be determined, we cannot directly use Lemma 1 to com-
pute the minimum deadline. Instead, let D̃i be the smallest
deadline of task τi, i.e., D̃i ≤ D(Ti), Ti ∈ [Timin , Timax ],
i = 1, . . . , N . We say that task τi dominates task τj (de-
noted by τi � τj) if D̃i > Djmax

. Otherwise, we say



that τi and τj are non-comparable. Using the above dom-
inance definition, a partial order can be built for a given
set of tasks. It is easy to see that Lemma 1 holds true for
tasks with deadlines as variables if we sort the tasks using
the partial order established above. For example, consider
a simple task set consisting of task τj and τk. If τj � τk

then Dkmin = Ck and Djmin = Ck + Cj . In general, for
a task τi, Dimin

= max{DS}+ Ck, where DS is the set of
deadlines of tasks that are dominated by τi. Since Dimin

set
in this way is a lower bound on the minimum task deadline
for task τi, i = 1, . . . , N , we can eliminate some infeasible
period-deadline combinations (shown by the right-slanted
pattern in Figure 2). The task period that corresponds to
when the task deadline is Dimin

is referred to as TDmin
i ,

i = 1, . . . , N .
Once we have found the minimum and maximum dead-

lines for each task in the task set, we can apply a series
of efficient schedulability tests to avoid searching for a so-
lution, if possible. We start with the sufficient condition
from Theorem 3 using Dimax

, i = 1, . . . , N , as the task
deadlines. The following lemma helps to explain why only
Dimax

, i = 1, . . . , N , need to be considered when applying
Theorem 3 on the current task set.

Lemma 2 Given a set Γ of N tasks. Let Ci and Di be the
execution time and deadline of task τi, i = 1, . . . , N , re-
spectively. If the schedulability condition from Theorem 3 is
not satisfied for Dimax

, i = 1, . . . , N , then it is not satisfied
for any Di < Dimax

, i = 1, . . . , N .

Proof: If the task set Γ fails the schedulability test in Theo-
rem 3, then

N∑
i=1

Ci

Dimax

> 1. (8)

Using any Di < Dimax
, i = 1, . . . , N , would yield

N∑
i=1

Ci

Di
>

N∑
i=1

Ci

Dimax

> 1. (9)

Therefore, the lemma holds. 2

Note that if the condition from Theorem 3 is satis-
fied for Dimax

, i = 1, . . . , N , then we have identified a
feasible solution. Otherwise, we apply the schedulability
test from Theorem 2 for a special point (TDmax

i , Dimax
),

i = 1, . . . , N (see Figure 2). (To use Theorem 2, we or-
der the tasks in a non-decreasing order of deadlines using
Di = Dimax

and Ti = TDmax
i , i = 1, . . . , N , whenever

L needs to be determined). We choose to test the point
(TDmax

i , Dimax
), i = 1, . . . , N , because if the task set is

not schedulable at this point according to Theorem 2, then
it is not schedulable for any (T i, Di), T i ≤ TDmax

i and
Di ≤ Dimax , i = 1, . . . , N . The following theorem proves
this claim and explains why the left-slanted region in Fig-
ure 2 can be eliminated from further consideration if the
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point (TDmax
i , Dimax), i = 1, . . . , N , are found not to be

schedulable according to Theorem 2.

Lemma 3 Given a set Γ of N tasks. Let Ci and Di be the
execution time and deadline of task τi, i = 1, . . . , N , re-
spectively. Let Ti be the period obtained when Di = Dimax

,
i = 1, . . . , N . If the condition in Theorem 2 is not satisfied
for (Ti, Di), i = 1, . . . , N , then it is not satisfied for any
(T i, Di), Di ≤ Di, T i ≤ Ti, i = 1, . . . , N .

Proof: Since the task set is not schedulable at (Ti, Di), i =
1, . . . , N , we have

L <
N∑

i=1

(
L−Di

Ti
+ 1
)

Ci. (10)

In addition, since Di ≤ Di and T i ≤ Ti, i = 1, . . . , N ,

L <

N∑
i=1

(
L−Di

Ti
+ 1
)

Ci

<

N∑
i=1

(
L−Di

T i

+ 1
)

Ci, (11)

since L − Di > L − Di and T i < Ti, i = 1, . . . , N .
Finally, as L > L, where L = D2 if D1 + T 1 ≤ D2 and
L = minN

i=1(T i + Di) otherwise,

L <
N∑

i=1

(
L−Di

Ti
+ 1
)

Ci. (12)

2

Observe that we use the schedulability conditions in The-
orems 2 and 3 in conjunction to one another. This is because
a task set that is feasible according to one of the aforemen-
tioned schedulability conditions is not necessarily feasible
according to the other (and vice versa).



The left-slanted region in Figure 2 is a result of Lemma 3
and can be eliminated from further consideration. (Note that
since we test the point (TDmax

i , Dimax
) using the schedu-

lability test from Theorem 2, such a point may in fact be
feasible. However, to exactly determine schedulability, the
condition in Theorem 1 needs to be satisfied and is often
too time consuming to be used during an overload situa-
tion.) The area with no pattern, however, indicates the re-
maining search region. Note that for a specific period Ti,
i = 1, . . . , N , any deadline 0 < Di < Di is also accept-
able from the system performance point of view. However,
since using Di will worsen schedulability, we only consider
Di. All the simple tests described thus far appear as part
of our heuristic and are shown in Algorithm 1. Lines 1–4
show the first simple test discussed in Lemma 2. The second
simple test from Lemma 3 is shown in Lines 5–9. Finally,
Lines 10–14 show that we perform an additional schedu-
lability test for (TDmin

i , Dimin), i = 1, . . . , N , since this
point has already been computed and such an additional test
does not incur a significant amount of additional overhead.

4.2 Efficiently Conducting the Search
Process

If all the aforementioned simple tests fail, we will have to
search along the unpatterned region of Figure 2 to find a fea-
sible period-deadline combination, (Ti, Di), i = 1, . . . , N
(Algorithm 2). Since the main source of complexity of the
problem defined in Section 2.3 is that (5) must be satisfied
for all possible values of L, the search process will instead
use the schedulability test from Theorem 2. In other words,
the problem in Section 2.3 is modified to

N∑
i=1

(
L−Di

Ti

)
Ci ≤ L−

N∑
i=1

Ci (13)

L =
{

D2 : D1 + T1 ≤ D2

min (Ti + Di) : otherwise (14)

Ti ≤ min
{
Timax

, TDmin
i

}
, i = 1, 2, · · · , N (15)

Ti ≥ max
{
Timin

, TDmax
i

}
, i = 1, 2, · · · , N (16)

where TDmin
i and TDmax

i , i = 1, . . . , N are as defined
previously.

Given an initially infeasible task set, one can compute
the corresponding value of L as in (14). Let us first assume
that the value of L is fixed once it has been computed. To
satisfy the condition in (13), observe that since the right-
hand side of (13) can be treated as a constant, one way to
solve the above problem is to adjust task periods and dead-
lines such that the left-hand side becomes as small as possi-
ble. We can express this idea mathematically as the follow-

Algorithm 1 SimpleTests(Γ)

1: result ←
∑N

i=1
Ci

Dimax

2: if result ≤ 1 then
3: return

[
Dimax , TDmax

i

]
, for i = 1, . . . , N

4: end if
5: compute L as in (14) using Dimax

and TDmax
i ,

1 ≤ i ≤ N

6: result ←
∑N

i=1

(
L−Dimax

T Dmax
i

+ 1
)
· Ci

7: if result ≤ L then
8: return

[
Dimax

, TDmax
i

]
, for i = 1, . . . , N

9: end if
10: compute L as in (14) using Dimin

and TDmin
i ,

1 ≤ i ≤ N

11: result ←
∑N

i=1

(
L−Dimin

T Dmin
i

+ 1
)
· Ci

12: if result ≤ L then
13: return

[
Dimin

, TDmin
i

]
, for i = 1, . . . , N

14: end if
15: return ∅

ing constrained optimization problem.

min :
N∑

i=1

(
L− D̂i

)
· Ui (17)

s.t. : Ui ≤ Umax
i for i = 1, 2, · · · , N (18)

Ui ≥ Umin
i for i = 1, 2, · · · , N (19)

where D̂i is the task deadline function that depends on Ui,
i.e., D̂i ≡ D̂i(Ui) = Di(Ci/Ui). (For notational sim-
plicity, Di always refers to Di(Ti) and D̂i to Di(Ui).)
Ui = Ci/Ti, Umax

i = Ci

max{Timin
,T Dmax

i } , and Uimin
=

Ci

min{Timax ,T Dmin
i } .

Solving the above constrained optimization problem is
attractive because if a solution to the problem in (13)–(16)
exists for a fixed value of L, then we will find it by solving
the above constrained optimization problem. This claim is
formally stated in the following lemma.

Lemma 4 Given an initially infeasible task set Γ where
Ci, Ui, and D̂i denote the execution time, utilization, and
deadline (as a function of the utilization) of task τi, i =
1, . . . , N , respectively. For a fixed value of L, if there exists
a solution to the problem in (13)–(16), it will be found by
solving the problem defined in (17)–(19).

Proof: The lemma can be trivially proved by observing that
(13) can be rewritten as

N∑
i=1

(
L− D̂i

)
· Ui ≤ L−

N∑
i=1

Ci. (20)

The constrained optimization problem in (13)–(16) mini-
mizes the left-hand side of the above equation. Thus, if we



can adjust task periods and deadlines such that (20) is true,
then the solution to the optimization problem in (17)–(19)
will also be a solution to the problem in (13)–(16). 2

The following theorem presents a globally optimal solu-
tion to the problem in (17)–(19) and hence a solution to the
problem in (13)–(16), for a fixed value of L.

Theorem 4 Given the constrained optimization problem as
specified in (17)–(19). Let Ui be the utilization of task τi,
i = 1, . . . , N . Let D̂i be the deadline of τi where D̂i is a
function of the Ui, i.e., D̂i ≡ D̂i(Ui) = Di(Ci/Ui), and let

Gi(Ui) = (L− D̂i) · Ui. (21)

For a fixed value of L, the solution, Ui, is optimal if and
only if

Ui = argmin
Ui∈


Ui ∪Umin

i ∪Umax
i

ff{Gi(Ui)} (22)

where Ui is a set of U i such that L− D̂i − D̂
′
iU i = 0.

Proof: We prove that if Ui, i = 1, . . . , N , is an optimal
solution to the constrained optimization problem in (17)–
(19), then (22) must be true by utilizing the Kuhn-Tucker
(KKT) necessary conditions for optimality for constrained
optimization problem, which can be written in terms of the
Lagrangian function for the problem as

Ja(U, µ) =
N∑

i=1

(L− D̂i) · Ui +
N∑

i=1

µi(Umin
i − Ui)

+
N∑

i=1

λi(Ui − Umax
i ) (23)

where µi’s and λi’s are Lagrange multipliers, µi ≥ 0 and
λi ≥ 0, i = 1, . . . , N . The necessary conditions for the
existence of a relative minimum at Ui are, for i = 1, . . . , N ,

0 = L− D̂
′
iUi − D̂i − µi + λi (24)

0 = µi(Umin
i − Ui) (25)

0 = λi(Ui − Umax
i ) (26)

From (24)

L− D̂
′
iUi − D̂i = µi − λi (27)

If L − D̂
′
iUi − D̂i < 0 for Ui ∈

[
Umin

i , Umax
i

]
, then µi

must be 0 and λi > 0. Hence, Ui = Umax
i . If L− D̂

′
iUi −

D̂i > 0 for Ui ∈
[
Umin

i , Umax
i

]
then λi = 0 and µi > 0.

Therefore, Ui = Umin
i . Otherwise, L − D̂

′
iUi − D̂i = 0

at least once when Ui ∈
[
Umin

i , Umax
i

]
. In such a case,

we can find the value(s) of Ui by finding all the extreme
points in the interval

[
Umin

i , Umax
i

]
, which is equivalent to

solving the equation L− D̂i − D̂
′
iUi = 0 for Ui. Note that

since the KKT conditions are necessary for optimality, we
have completed the proof for this part.

Now, we prove that if Ui, i = 1, . . . , N , is determined as
in (22), then it is an optimal solution to the constrained opti-
mization problem in (17)–(19). We start by observing that,
given a piecewise differentiable function Gi(Ui), the global
minimum of Gi(Ui) in the interval

[
Umin

i , Umax
i

]
must ei-

ther be at one of the extreme points inside
[
Umin

i , Umax
i

]
or at the boundaries, i.e., at Umin

i or Umax
i . This is indeed

captured by the expression in (22).
Finally, since the objective function in (17) can be rewrit-

ten as minN
i=1 Gi(Ui), minimizing each individual Gi(Ui),

i = 1, . . . , N , is equivalent to minimizing (17). 2

We use the result from the above theorem directly in
the main part of our heuristic (Line 26 in Algorithm 2).
Although the heuristic can optimally solve the problem in
(17)–(19) for a fixed value of L, it needs to iteratively search
for a feasible task set. This is because the value of L may
either increase or decrease as Di and Ti, i = 1, . . . , N ,
change. Consider two consecutive iterations h and h + 1.
If the task set with periods T

(h)
i and deadlines D

(h)
i , i =

1, . . . , N , satisfies the constraints in (13)–(16) given some
fixed value of L(h) and L(h+1) ≥ L(h), then the task set
is guaranteed to be schedulable (as shown in the following
lemma) and the search process ends.
Remark: If the left-hand side of (17) is a convex function,
then the KKT necessary conditions for optimality also be-
come sufficient conditions. In such a case, a global optimal
solution to the optimization problem in (17)–(19) for a non-
fixed L can be found using Theorem 4.

Lemma 5 Given a set Γ of N tasks, and let Ci, Ti, and Di

be the execution time, period, and deadline of task τi, i =
1, . . . , N , respectively. If the task set satisfies the condition
in Theorem 2 for some L, then it also satisfies the condition
in Theorem 2 for any L ≥ L.

Proof: We have

L ≥
N∑

i=1

(
L−Di

Ti
+ 1
)

Ci (28)

L−
N∑

i=1

L
Ci

Ti
≥

N∑
i=1

Ci −
DiCi

Ti
(29)

L

(
1−

N∑
i=1

Ci

Ti

)
≥

N∑
i=1

Ci −
DiCi

Ti
(30)

which clearly holds for any L ≥ L. 2

Now, if L(h+1) < L(h), the schedulability condition in
Theorem 2 must explicitly be checked (Lines 17- 20 in Al-
gorithm 2). In this way, the heuristic will either return a
feasible task set or continue searching until the number of



Algorithm 2 FindFeasiblePeriodsDeadlines(Γ, maxIter )
1: for each τi ∈ Γ do
2: Dimax

← maxTi∈[Timin
,Timin ] Di

3: TDmax
i ← period when deadline is Dimax

4: Dimin
← Ci

5: TDmin
i ← period when deadline is Dimin

6: end for
7: result ← SimpleTests(Γ)
8: if result 6= ∅ then
9: return [Di, Ti], i = 1, . . . , N

10: end if
11: Di ← Dimax , i = 1, . . . , N
12: Ti ← TDmax

i , i = 1, . . . , N
13: done ← false
14: iterNum ← 0
15: while not done do
16: iterNum ← iterNum + 1
17: compute L as in (14) using Di and Ti, 1 ≤ i ≤ N

18: result ←
∑N

i=1

(
L−Di

Ti
+ 1
)
· Ci

19: if result ≤ L then
20: return [Di, Ti], i = 1, . . . , N
21: end if
22: if iterNum > maxIter then
23: done ← true
24: end if
25: for each τi ∈ Γ do
26: compute Ui as in Theorem 4
27: Ti ← Ci

Ui

28: determine Di accordingly
29: end for
30: end while
31: return ∅

maximum iterations, maxIter, has been reached (Line 22).
The value maxIter is a user-defined constant and, from our
experiments in the next section, can be set to some small
number such as 100.

The time complexity of our heuristic is dominated by
the while loop on Line 15 of Algorithm 2. Inside the while
loop, the most time consuming operations appear inside the
for-loop on Line 25. Let |Ui| be size of Ui as defined in
Theorem 4 over all iterations and let O(G′) be the worst-
case time complexity required to find all solutions to the
equation L − D̂i − D̂

′
iUi = 0, also from Theorem 4. The

running time of our heuristic is then O(maxIter ·N ·(|Ui|+
O(G′))), where N is the number of tasks in the task set.
Remark: In our approach, we assume that when a task set
is infeasible, each task is equally responsible for reducing
its processor demand (if possible) to alleviate the overload
situation. In practice, however, some tasks may be more
important than the others. As a result, a weight may be

Table 2. Main results
Method Number of solutions found % solutions found
Fixed deadline technique 0/80 0%
Our heuristic 59/80 73.8%

Table 3. Heuristic total running time and num-
ber of iterations

Number of task sets Running Time (s) Number of iterations needed
37 (solution found) < 0.01 < 3
13 (solution not found) < 0.02 > 100

associated with each task to denote its importance. In such
a case, our approach can be extended by factoring in the
weight of each task when deciding the amount of processor
demand reduction that each task should be responsible for.
Specifically, the problem formulation in Section 2.3 can be
modified to a constrained optimization problem of the form

min :
N∑

i=1

wi(Timin
− Ti)2 (31)

s.t. :
N∑

i=1

(⌊
L−Di

Ti

⌋
+ 1
)

Ci ≤ L (32)

Ti ≥ Timin for i = 1, 2, · · · , N (33)
Ti ≤ Timax for i = 1, 2, · · · , N (34)

where wi is the weight of the task τi, i = 1, . . . , N , and all
other parameters retain their meaning as previously defined.
Clearly, the modified problem can be too time consuming
(and perhaps too difficult) to solve using a nonlinear solver
and thus the use of a heuristic similar to the one presented
earlier is recommended.

5 Experimental Results

Since directly solving the period and deadline selec-
tion problem in Section 2.3 using a commercial non-linear
solver can be very time consuming and it cannot be guar-
anteed that a solution will be found, even if one exists, we
proposed an efficient heuristic in Section 4. In this section,
we evaluate the performance of our approach.

Due to the lack of realistic benchmarks suitable for the
intended experiment, we randomly generated 80 task sets
consisting of 5 tasks each. In order to scrutinize the search
aspect of the heuristic, each task set is chosen such that it is
initially infeasible with the guarantee that all the three sim-
ple tests from Algorithm 1 will fail. In addition, given a
task set, there exists at least one period-deadline combina-
tion, (T ∗

i , D∗
i ), for each task τi, i = 1, . . . , N , such that the

task set can be made schedulable using the schedulability
test from Theorem 2 (and hence satisfies the necessary and
sufficient condition from Theorem 1).



In our experiment, we use the following deadline func-
tion, whose curve is representative of the relationship be-
tween task periods and task deadlines of the type of control
systems under consideration. (It is worth noting, however,
that any deadline function can be used, as long as it is piece-
wise first-order differentiable.)

Di =
k1i

Ti − k2i
, (35)

i = 1, . . . , N , where k1i and k2i, i = 1, . . . , N , are some
constants that depend on the specific task under consider-
ation. To find k1i and k2i, i = 1, . . . , N , we start by ran-
domly generating the point (TDmax

i , Dimax
), i = 1, . . . , N ,

which denotes the point where the deadline for the task
τi is maximum. In addition, we ensure that the point
(TDmax

i , Dimax), i = 1, . . . , N , is not schedulable ac-
cording to Theorems 2 and 3. (Recall that the purpose of
the experiment is to test the search aspect of the heuristic
and therefore we have to ensure that the simple tests fail.)
Note that the deadline function in (35) is defined only for
Ti ≥ TDmax

i , i = 1, . . . , N , since according to Lemma 3,
any task set that is not schedulable for (TDmax

i , Dimax),
i = 1, . . . , N , will not be schedulable for any (Ti, Di),
Ti ≤ TDmax

i , Di ≤ Dimax
, i = 1, . . . , N . In other words,

any period Ti < TDmax
i , i = 1, . . . , N , can be ignored by

the search process.
The following steps were taken to generate a task set.

First of all, the following parameters were specified: utiliza-
tion level, maximum hyperperiod, minimum period, max-
imum period, precision, and maximum number of tries.
Based on these parameters, task periods are generated in
such a way that the hyperperiod is no larger than the max-
imum hyperperiod. (This could take a number of tries.) In
our experiment, we set the maximum hyperperiod, mini-
mum period, and maximum period to 500,000, 10,000, and
40,000, respectively. The precision was specified to be 100,
whereas the maximum number of tries was set to 10,000.
The precision denotes the minimum increment in any task
period. For example, if the precision is set to 100, a task pe-
riod could be 5200, but not 5010. Finally, for the task sets
used in our experiment, the range for the utilization level
was between 0.5 and 0.7.

Each task is randomly assigned an execution time such
that the total utilization equals that specified by the user. No
task will have an utilization that is greater than half of the
specified total utilization. Then, each task is randomly as-
signed a deadline Di that ensures that

∑N
i=1

Ci

Di
> 1. As a

final step, the random task generator tests the schedulabil-
ity of the task set using the necessary and sufficient condi-
tion from Theorem 1. If the task set is unschedulable, task
deadlines are randomly increased such that the new dead-
line is greater than the previous deadline but

∑N
i=1

Ci

Di
is

still greater than 1. This final step is repeated until either a

feasible task set has been found or the maximum number of
tries has been reached.

After the generation of the aforementioned random
points, each task set will be associated with two points:
(TDmax

i , Dimax
) and (T ∗

i , D∗
i ), i = 1, . . . , N , where the

former point is not schedulable according to Theorem 2,
but the latter point is. Using these two points, the constants
k1i and k2i, i = 1, . . . , N , can be found. Finally, the point
(TDmin

i , Dimin), i = 1, . . . , N can be determined as de-
scribed in Section 4.

We implemented the heuristic proposed in the last sec-
tion in C++. The user-defined parameters maxIter was set
to 100, which means that at most 100 search iterations were
conducted for each task set (benchmark). The proposed
heuristic found a feasible period-deadline combination for
59 out of the 80 task sets. For these benchmarks, if we
were to use existing techniques where task periods are fixed
(which do not directly apply to the system model under con-
sideration), then no solution will be found for any of these
task sets because these techniques assume that if the task set
is not schedulable for (TDmin

i , Dimin
), i = 1, . . . , N , then

it cannot be made feasible. (In other words, the schedulabil-
ity test from Theorem 2 is performed for (TDmin

i , Dimin),
i = 1, . . . , N . This test is referred to as the “fixed dead-
line technique” in Table 2.) Clearly, due to the dependency
between task periods and task deadlines, the fixed deadline
technique is shown to be too pessimistic. Table 2 summa-
rizes the results which show that our heuristic has an overall
success rate of over 73% while the fixed deadline technique
has a success rate of 0%. Further, since the left-hand side
of (17) is a convex function (due to the deadline function
used), the solutions found by the heuristic are also optimal
solutions to the optimization problem in (17)–(19).

Table 3 shows the running time as well as the number of
iterations needed by the proposed heuristic to find a solution
for each task set. For reference, the case of the fixed dead-
line technique required the running time of less than 0.01s
in all cases. As can be seen from the table, the task sets
that the heuristic could make feasible took less than 0.01s
to run with no more than 3 search iterations. On the other
hand, 100 search iterations were not enough to find a feasi-
ble period-deadline combination for 13 task sets.

6 Conclusions

In this paper, we proposed a more general and realistic
real-time task model where each task deadline is a func-
tion of the corresponding period. This task model facil-
itates the feasibility analysis of the real-time control sys-
tems where task deadlines reflect the maximum allowable
delays as tolerated by any given system and vary accord-
ing to the sampling periods. Since existing techniques can-
not adequately be used to determine schedulability for this



novel task model, we also proposed a heuristic to identify
a schedulable period-deadline combination. Our heuristic
minimizes the search region and iteratively finds a feasible
period-deadline combination. Experimental results show
that our method of solving the period and deadline selec-
tion problem is much less pessimistic than existing tech-
niques that consider task deadlines to be fixed parameters;
our heuristic found a solution to the problem over 73% of
the time using less than 3 search iterations and requiring
less than 0.02s to run in the worst-case.

As future work, we intend on (i) obtaining more ex-
perimental results, particularly using benchmarks derived
from real-world applications, and (ii) implementing the pro-
posed heuristic on a real-time operating system such as the
S.Ha.R.K. kernel [18].
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