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Abstract
Reader preference, writer preference, and task-fair reader-
writer locks are shown to cause undue blocking in multipro-
cessor real-time systems. A new phase-fair reader-writer lock
is proposed as an alternative that significantly reduces worst-
case blocking for readers and an efficient local-spin imple-
mentation is provided. Both task- and phase-fair locks are
evaluated and contrasted to mutex locks in terms of hard and
soft real-time schedulability under consideration of runtime
overheads on a multicore computer.

1 Introduction
With the transition to multicore architectures by most (if not
all) major chip manufacturers, multiprocessors are now a stan-
dard deployment platform for (soft) real-time applications.
This has led to renewed interest in real-time multiprocessor
scheduling and synchronization algorithms (see [11, 14, 15,
17] for recent comparative studies and relevant references).
However, prior work on synchronization has been somewhat
limited, being mostly focused on mechanisms that ensure
strict mutual exclusion (mutex). Reader-writer (RW) synchro-
nization, which requires mutual exclusion only for updates
(and not for reads) has not been considered in prior work on
real-time shared-memory multiprocessor systems despite its
great practical relevance.

The need for RW synchronization arises naturally in many
situations. Two common examples are few-producers/many-
consumers relationships (e.g., obtaining and distributing sen-
sor data) and rarely-changing shared state (e.g., configuration
data). As an example for the former, consider a robot such as
TU Berlin’s autonomous helicopter Marvin [29]: its GPS re-
ceiver updates the current position estimate 20 times per sec-
ond, and the latest position estimate is read at various rates by
a flight controller and by image acquisition, camera targeting,
and communication modules. An example of rarely-changing
shared data occurs in work of Gore et al. [21], who employed
RW locks to optimize latency in a real-time notification ser-
vice. In their system, every incoming event must be matched
against a shared subscription lookup table to determine the set
of subscribing clients. Since events occur very frequently and
changes to the table occur only very rarely, the use of a regu-
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lar mutex lock “can unnecessarily reduce [concurrency] in the
critical path of event propagation.” [21]

In practice, RW locks are in wide-spread use since they are
supported by all POSIX-compliant real-time operating sys-
tems. However, to the best of our knowledge, such locks have
not been analyzed in the context of multiprocessor real-time
systems from a schedulability perspective. In fact, RW locks
that are subject to starvation have been suggested to practi-
tioners without much concern for schedulability [24]. This
highlights the need for a well-understood analytically-sound
real-time RW synchronization protocol.
Related work. In work on non-real-time systems, Cour-
tois et al. were the first to investigate RW synchronization and
proposed two semaphore-based RW locks [18]: a writer pref-
erence lock, wherein writers have higher priority than read-
ers, and a reader preference lock, wherein readers have higher
priority than writers. Both are problematic for real-time sys-
tems as they can give rise to extended delays and even starva-
tion. To improve reader throughput at the expense of writer
throughput in large parallel systems, Hsieh and Weihl pro-
posed a semaphore-based RW lock wherein the lock state
is distributed across processors [22]. In work on scalable
synchronization on shared-memory multiprocessors, Mellor-
Crummey and Scott proposed spin-based reader preference,
writer preference, and task-fair RW locks [28]. In a task-
fair RW lock, readers and writers gain access in strict FIFO
order, which avoids starvation. In the same work, Mellor-
Crummey and Scott also proposed local-spin versions of their
RW locks, in which excessive memory bus traffic under high
contention is avoided. An alternative local-spin implementa-
tion of task-fair RW locks was later proposed by Krieger et
al. [23]. A probabilistic performance analysis of task-fair RW
locks wherein reader arrivals are modeled as a Poisson pro-
cess was conducted by Reiman and Wright [31].

In work on uniprocessor real-time systems, two relevant
suspension-based protocols have been proposed: Baker’s
stack resource policy [3] and Rajkumar’s read-write priority
ceiling protocol [30]. The latter has also been studied in the
context of distributed real-time databases [30].

An alternative to locking is the use of specialized non-
blocking algorithms [1]. However, compared to lock-based
RW synchronization, which allows in-place updates, non-
blocking approaches usually require additional memory, incur
significant copying or retry overheads, and are less general.1

1In non-blocking read-write algorithms, the value to be written must be
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In this paper, we focus on lock-based RW synchronization in
cache-coherent shared-memory multiprocessor systems.
Contributions. The contributions of this paper are as fol-
lows: (i) We study the applicability of existing RW locks
to real-time systems and derive worst-case blocking bounds;
(ii) we propose a novel type of RW lock based on the concept
of “phase-fairness,” derive corresponding worst-case blocking
bounds, and present two efficient implementations; (iii) we
report on the results of an extensive performance evaluation
of RW synchronization choices in terms of hard and soft
real-time schedulability under consideration of system over-
heads. These experiments show that employing “phase-fair”
RW locks can significantly improve real-time performance.

The rest of this paper is organized as follows. We sum-
marize relevant background in Sec. 2, and discuss our syn-
chronization protocol and other RW lock choices in Sec. 3.
An empirical performance evaluation is presented in Sec. 4,
followed by our conclusions in Sec. 5.

2 Background
We consider the scheduling of a system of sporadic tasks, de-
noted T1, . . . , TN , on m processors. The jth job (or invoca-
tion) of task Ti is denoted T j

i . Such a job T j
i becomes avail-

able for execution at its release time, r(T j
i ). Each task Ti is

specified by its worst-case (per-job) execution cost, e(Ti), its
period, p(Ti), and its relative deadline, d(Ti) ≥ e(Ti). A
job T j

i should complete execution by its absolute deadline,
r(T j

i ) + d(Ti), and is tardy if it completes later. The spacing
between job releases must satisfy r(T j+1

i ) ≥ r(T j
i ) + p(Ti).

A job that has not completed execution is either preemptable
or non-preemptable. A job scheduled on a processor can only
be preempted when it is preemptable. Task Ti’s utilization
(or weight) reflects the processor share that it requires and is
given by e(Ti)/p(Ti).
Multiprocessor scheduling. There are two fundamental ap-
proaches to scheduling sporadic tasks on multiprocessors —
global and partitioned. With global scheduling, processors
are scheduled by selecting jobs from a single, shared queue,
whereas with partitioned scheduling, each processor has a pri-
vate queue and is scheduled independently using a unipro-
cessor scheduling policy (hybrid approaches exist, too [16]).
Tasks are statically assigned to processors under partitioning.
As a consequence, under partitioned scheduling, all jobs of
a task execute on the same processor, whereas migrations
may occur in globally-scheduled systems. A discussion of the
tradeoffs between global and partitioned scheduling is beyond
the scope of this paper and the interested reader is referred to
prior studies [14, 17].

We consider one representative algorithm from each cate-
gory: in the partitioned case, the partitioned EDF (P-EDF)

pre-determined and cannot depend on the current state of the shared object.
With locks, an update can be computed based on the current value.

algorithm, wherein the earliest-deadline-first (EDF) algo-
rithm is used on each processor, and in the global case, the
global EDF (G-EDF) algorithm. However, the synchro-
nization algorithms considered herein apply equally to other
scheduling algorithms that assign each job a fixed priority,
including partitioned static-priority (P-SP) scheduling. Fur-
ther, we consider both hard real-time (HRT) systems in which
deadlines should not be missed, and soft real-time systems
(SRT) in which bounded deadline tardiness is permissible.

Resources. When a job T j
i is going to update (observe) the

state of a resource `, it issues a write (read) requestW` (R`)
for ` and is said to be a writer (reader). In the following
discussion, which applies equally to read and write requests,
we denote a request for ` of either kind as X`.
X` is satisfied as soon as T j

i holds `, and completes when
T j

i releases `. |X`| denotes the maximum time that T j
i will

hold `. T j
i becomes blocked on ` if X` cannot be satisfied

immediately. (A resource can be held by multiple jobs simul-
taneously only if they are all readers.) If T j

i issues another
request X ′ before X is complete, then X ′ is nested within X .
We assume nesting is proper, i.e., X ′ must complete no later
than X completes. An outermost request is not nested within
any other request. A resource is global if it can be requested
concurrently by jobs scheduled on different processors, and
local otherwise.

Infrequent requests. Some infrequently read or updated re-
sources may not be requested by every job of a task. We as-
sociate a request period rp(X ) ∈ N with every request X
to allow infrequent resource requests to be represented in the
task model without introducing unnecessary pessimism. The
request period limits the maximum request frequency: if jobs
of Ti issue X and rp(X ) = k, then at most every kth job of
Ti issues X .

For example, consider a task Tm that reads a sensor `s
at a rate of ten samples per second via a read request Rs

(p(Tm) = 100ms) and that updates a shared variable `a stor-
ing a history of average readings once every two seconds via
a write request Wa. In this case, assuming that every job of
Tm issues Wa when analyzing contention for `a would be
unnecessarily pessimistic. To reflect the fact that only every
20th job of Tm accesses `a, we can define rp(Wa) = 20 and
rp(Rs) = 1.

When sharing resources in real-time systems, a locking
protocol must be employed to both avoid deadlock and bound
the maximum duration of blocking. In the following section,
we present such a protocol.

3 Reader-Writer Synchronization
The flexible multiprocessor locking protocol (FMLP) [8, 12]
is a real-time mutex protocol based on the principles of flex-
ibility and simplicity that has been shown to compare favor-
ably to previously-proposed protocols [8, 11]. In this section,
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we present an extended version of the FMLP with support
for RW synchronization. We begin by giving a high-level
overview of its core design.

The FMLP is considered to be “flexible” for two reasons: it
can be used under G-EDF, P-EDF, as well as P-SP schedul-
ing, and it is agnostic regarding whether blocking is via spin-
ning or suspension. Regarding the latter, resources are catego-
rized as either “short” or “long.” Short resources are accessed
using fair spin locks and long resources are accessed via a
semaphore protocol. Whether a resource should be consid-
ered short or long is user-defined, but requests for long re-
sources may not be contained within requests for short re-
sources. The terms “short” and “long” arise because (intu-
itively) spinning is appropriate only for short critical sections,
since spinning wastes processor time. However, two recent
studies have shown that, in terms of schedulability, spinning
is usually preferable to suspending when overheads are con-
sidered [11, 15]. Based on these trends (and due to space con-
straints), we restrict our focus to short resources in this paper
and delegate RW synchronization of long resources to future
work.

3.1 Reader-Writer Request Rules
The reader-writer FMLP (RW-FMLP) is realized by the fol-
lowing rules, which are based on those given in [8].

Resource groups. Nesting, which is required to cause a
deadlock, tends to occur somewhat infrequently in prac-
tice [10]. The FMLP strikes a balance between supporting
nesting and optimizing for the common case (no nesting) by
organizing resources into resource groups, which are sets of
resources that may be requested together. Two resources are
in the same group iff there exists a job that requests both re-
sources at the same time. We let grp(`) denote the group that
contains `. Deadlock is avoided by protecting each group by
a group lock; before a job can access a resource, it must first
acquire its corresponding group lock.2

Nesting. Read requests may be freely nested within other
read and write requests, but write requests may only be nested
within other write requests. We do not permit the nesting of
write requests within read requests because this would require
an “upgrade” to exclusive access, which is problematic for
worst-case blocking analysis.

Requests. If a job T j
i issues a read or write request X` for

a short resource ` and X` is outermost, then T j
i becomes non-

preemptable and executes the corresponding entry protocol
for grp(`)’s group lock (the details of which are discussed in
the next section). X` is satisfied once T j

i holds `’s group lock.
When X` completes, T j

i releases the group lock and leaves

2Group-locking is admittedly a very simple deadlock avoidance mecha-
nism; however, the FMLP is the first multiprocessor real-time locking proto-
col that allows nesting of global resources at all. Obtaining a provably better
protocol remains an interesting open question.

issued satisfied complete

blocked, job spins critical section

non-preemptive execution

time

Figure 1: Illustration of an outermost request.

its non-preemptive section. The execution of an outermost re-
quest is illustrated in Fig. 1. If X` is not outermost, then it is
satisfied immediately: if the outer request is a write request,
then T j

i already has exclusive access to the group, and if the
outer request is a read request, then X` must also be a read
request according to the nesting rule. In either case, it is safe
to acquire `.

The RW-FMLP can be integrated with the regular FMLP
by replacing the FMLP’s short request rules with the above-
provided rules; regular short FMLP requests are then treated
as short write requests.

3.2 Group Lock Choices

Group locks are the fundamental unit of locking in the FMLP
and thus determine its worst-case blocking behavior. In this
section, we consider four group lock choices (one of them
a new RW lock) and discuss examples showing how using
RW locks and relaxing ordering constraints can significantly
reduce worst-case blocking. Bounds on worst-case blocking
for all three choices are derived in an extended version of this
paper [9].

Task-fair mutex locks are considered here even though they
are clearly undesirable for RW synchronization since they are
the only spin-based locks for which bounds on worst-case
blocking were derived in prior work. Hence, they serve in
our experiments (see Sec. 4) as a performance baseline.

Task-fair mutex locks. With task-fair (or FIFO) locks,
competing tasks are served strictly in the order that they is-
sue requests. Task-fair mutex locks were employed in pre-
vious work on real-time synchronization because they have
two desirable properties: first, they can be implemented ef-
ficiently [27], and second, they offer strong progress guar-
antees. Since requests (in the FMLP) are executed non-
preemptively, task-fair locks ensure that a request of a job is
blocked once by at most m − 1 other jobs irrespective of the
number of competing requests, which may be desirable as this
tends to distribute blocking evenly among tasks.

However, enforcing strict mutual exclusion among read-
ers is unnecessarily restrictive and can in fact cause deadline
misses. An example is shown in Fig. 2(a), which depicts jobs
of five tasks (two writers, three readers) competing for a re-
source `. As `’s group lock is a task-fair mutex lock, all re-
quests are satisfied sequentially in the order that they were
issued. This unnecessarily delays both T4 and T5 and causes
them to miss their respective deadlines at times 12.5 and 13.
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Task-fair RW locks. With task-fair RW locks, while re-
quests are still satisfied in strict FIFO order, the mutual exclu-
sion requirement is relaxed so that the lock can be acquired
by multiple readers. This can lead to reduced blocking, as
shown in Fig. 2(b), which depicts the same arrival sequence
as in Fig. 2(a). Note that the read requests of T3, T4, and T5

are satisfied simultaneously at time 8, which in turn allows T4

and T5 to meet their deadlines.
Unfortunately, task-fair RW locks may degrade to mutex-

like performance when faced with a pathological request se-
quence, as is shown in Fig. 2(c). The only difference in task
behavior between Fig. 2(b) and Fig. 2(c) is that the arrival
times of the jobs of T1 and T4 have been switched. This causes
` to be requested first by a reader (T4 at time 2), then by a
writer (T2 at time 2.5), then by a reader again (T3 at time 3),
then by another writer (T1 at time 3.5), and finally by the last
reader (T5 at time 4). Reader parallelism is eliminated in this
scenario and T5 misses its deadline at time 13 as a result.
Preference RW locks. In a reader preference lock, readers
are statically prioritized over writers, i.e., writers are starved
as long as readers issue consecutive requests [18, 28]. The
lack of strong progress guarantees for writers makes reader
preference locks a problematic choice for real-time systems:
one can easily construct examples in which deadlines are
missed due to writer starvation. Writer preference locks are
an ill choice for similar reasons.

All previously-proposed RW locks fall within one of the
categories discussed so far. Thus, the examples discussed
above demonstrate that no such lock reliably reduces worst-
case blocking (unless there are very few writers).
Phase-fair RW locks. Upon closer inspection, one can
identify two root problems of existing RW locks: first, prefer-
ence locks cause extended blocking due to intervals in which
only requests of one kind are satisfied; and second, task-fair
RW locks cause extended blocking due to a lack of parallelism
when readers are interleaved with writers. A RW lock better
suited for real-time systems should avoid these two pitfalls.

These two requirements are captured by the concept of
phase-fairness. Phase-fair RW locks have the following prop-
erties: (i) reader phases and writer phases alternate; (ii) writ-
ers are subject to FIFO ordering with regard to other writers;
(iii) all unsatisfied read requests are satisfied at the beginning
of a reader phase;3 and (iv) if there are incomplete write re-
quests, then read requests are not satisfied until the start of
the next reader phase. Properties (i) and (iii) ensure that a
read request is never blocked by more than one writer phase
and one reader phase irrespective of m and the length of the
write request queue. Property (iv) ensures that reader phases
end. Properties (i) and (ii) ensure that a write request is never
blocked by more than m − 1 phases. The fact that the bound
on read request blocking is O(1) and not O(m) is very signif-
icant as multicore platforms become larger.

3Exactly one write request is satisfied at the beginning of a writer phase.
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Figure 2: Example schedules of two writers (T1, T2) and three
readers (T3, T4, T5) sharing one resource (tasks assigned to differ-
ent processors). (a) Task-fair mutex group lock. (b) Task-fair RW
group lock (best-case arrival sequence). (c) Task-fair RW group lock
(worst-case arrival sequence). (d) Phase-fair RW group lock.
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Fig. 2(d) depicts a schedule of the pathological arrival se-
quence from Fig. 2(c) assuming a phase-fair group lock. T4

issues the first read request and thus starts a new reader phase
at time 2. T2 issues a write request that cannot be satisfied
immediately at time 2.5. However, T2’s unsatisfied request
prevents the next read request (issued by T3 at time 3) from
being satisfied due to Property (iv). At time 3.5, T1 issues
a second write request, and at time 4, T5 issues a final read
request. At the same time, T4’s request completes and the
first reader phase ends. The first writer phase lasts from time
4 to time 7 when T2’s write request, which was first in the
writer FIFO queue, completes. Due to Property (i), this starts
the next reader phase, and due to Property (iii), all unsatisfied
read requests are satisfied. Note that, when T5’s read request
was issued, two write requests were unsatisfied. However,
due to the phase-fair bound on read-request blocking, it was
only blocked by one writer phase regardless of the arrival pat-
tern. This allows all jobs to meet their deadlines in this exam-
ple, and, in fact, for any arrival pattern of the jobs depicted in
Fig. 2.

3.3 A Phase-Fair Reader-Writer Lock

While the above example suggests that the properties of
phase-fairness can reduce worst-case blocking significantly,
to be a viable choice, phase-fair locks must be efficiently im-
plementable on common hardware platforms. In this section,
we present a simple and efficient phase-fair RW lock that only
depends on hardware support for atomic-add, fetch-and-add,
and atomic stores. The algorithm, as given in its entirety in
Listing 1, assumes a 32-bit little-endian architecture. How-
ever, it can be easily adapted to 16-bit, 64-bit, and big-endian
architectures.

Structure. The lock consists of four counters that count the
number of issued (rin,win) and completed (rout,wout) read
and write requests (lines 1–3 of Listing 1). rin serves multiple
purposes: bits 8–31 are used for counting issued read requests,
while bit 1 (PRES) is used to signal the presence of unsatisfied
write requests and bit 0 (PHID) is used to tell consecutive
writer phases apart. For efficiency reasons (explained below),
bits 2–7 remain unused, as do bits 0–7 of rout for reasons of
symmetry. The allocation of bits in rin and rout is illustrated
in Fig. 3.

Readers. The reader entry procedure (lines 10–13) works
as follows. First, a reader atomically increments rin and
observes PRES and PHID (line 12). If no writer is present
(w = 0), then the reader is admitted immediately (line 13).
Otherwise, the reader spins until either of the two writer bits
changes: if both bits are cleared, then no writer is present
any longer, otherwise—if only PHID toggles but PRES re-
mains unchanged—the beginning of a reader phase has been
signaled. The reader exit procedure (lines 15–16) only con-
sists of atomically incrementing rout, which allows a blocked

1type p f l o c k = record
2r i n , r o u t : unsigned i n t e g e r { i n i t i a l l y 0 }
3win , wout : unsigned i n t e g e r { i n i t i a l l y 0 }

5c o n s t RINC = 0 x100 { r e a d e r i n c r e m e n t }
6c o n s t WBITS = 0x3 { w r i t e r b i t s i n r i n }
7c o n s t PRES = 0x2 { w r i t e r p r e s e n t b i t }
8c o n s t PHID = 0x1 { phase i d b i t }

10procedure r e a d l o c k ( L : ˆ p f l o c k )
11var w : unsigned i n t e g e r ;
12w := f e t c h a n d a d d (&L−>r i n , RINC ) and WBITS ;
13await (w = 0) or (w <> L−>r i n and WBITS)

15procedure r e a d u n l o c k ( L : ˆ p f l o c k )
16a t o m i c a d d (&L−>r o u t , RINC )

18procedure w r i t e l o c k ( L : ˆ p f l o c k )
19var t i c k e t , w : unsigned i n t e g e r ;
20t i c k e t := f e t c h a n d a d d (&L−>win , 1 ) ;
21await t i c k e t = L−>wout ;
22w := PRES or ( t i c k e t and PHID ) ;
23t i c k e t := f e t c h a n d a d d (&L−>r i n , w ) ;
24await t i c k e t = L−>r o u t

26procedure w r i t e u n l o c k ( L : ˆ p f l o c k )
27var l s b : ˆ unsigned byte ;
28l s b := &L−>r i n ;
29{ l s b ˆ = l e a s t−s i g n i f i c a n t b y t e o f L−>r i n }
30l s b ˆ := 0 ;
31L−>wout := L−>wout + 1

Listing 1: Implementation of a phase-fair spin-based reader-writer
lock (algorithm RW-PF).

31 081624

1

unused 

unused

PRES: writer present?

PHID: writer phase id

rin: reads issued count

rout: reads completed count

23 15 7

31 081624 23 15 7

Figure 3: The allocation of bits in the reader entry counter and the
reader exit counter (corresponding to Line 2 of Listing 1).

writer to detect when the lock ceases to be held by readers (as
discussed below, line 24).

Writers. Similarly to Mellor-Crummey and Scott’s simple
task-fair RW lock [28], FIFO ordering of writers is realized
with a ticket abstraction [27]. The writer entry procedure
(lines 18–24) starts by incrementing win in line 20 and wait-
ing for all prior writers to release the lock (line 21). Once
a writer is the head of the writer queue (ticket = wout), it
atomically sets PRES to one, sets PHID to equal the least-
significant bit of its ticket, and observes the number of issued
read requests (lines 22–23). Note that the least-significant
byte of rin equals zero when observed in line 23 since no
other writer can be present. Finally, the writer spins until
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Algorithm Name Complexity Fairness
Mutex Ticket Lock [27] MX-T O(m) task-fair
Mutex Queue Lock [27] MX-Q O(1) task-fair
Reader-Writer Ticket Lock [28] RW-T O(m) task-fair
Reader-Writer Queue Lock [28] RW-Q O(1) task-fair
Phase-Fair Lock (Listing 1) RW-PF O(m) phase-fair

Table 1: Local-spin locking algorithms considered in this paper.
The complexity metric is remote memory references on m cache-
coherent processors.

all readers have released the lock before entering its critical
section in line 24. The writer exit procedure consists of two
steps. First, the beginning off a reader phase is signaled by
clearing bits 0–7 of rin by atomically writing zero to its least-
significant byte (lines 28–30). Clearing the complete least-
significant byte instead of just bits 0 and 1 is a performance
optimization since writing a byte is usually much faster than
atomic read-modify-write instructions on modern hardware
architectures. Finally, the writer queue is updated by incre-
menting wout in line 31.

Phase id bit. The purpose of PHID is to avoid a poten-
tial race between a slow reader (R1) and two writers (W1,
W2). Assume that W1 holds the lock and that R1 and W2

are blocked. When W1 releases the lock, PRES is cleared
(line 30) and wout is incremented (line 31). Subsequently,
W2 re-sets PRES (line 23) and waits for R1 to release the
lock. Assuming the absence of PHID, ifR1 would fail to ob-
serve the short window during which PRES is cleared, then it
would continue to spin in line 13, waiting for the next writer
phase to end. This deadlock between R1 and W2 is avoided
by checking PHID: ifR1 misses the window between writers,
it can still reliably detect the beginning of a reader phase when
PHID is toggled.

Size concerns. Overflowing rin, win, rout, and wout is
harmless as long as there are at most 232 − 1 concurrent writ-
ers and 224 − 1 concurrent readers because the counters are
only tested for equality. Note that there can be most m con-
current readers and writers under the FMLP since requests are
executed non-preemptively.

In Listing 1, the four counters are defined as four-byte in-
tegers each for clarity and performance reasons. However,
requiring 16 bytes per lock may be excessive in the context of
some memory-constrained applications (e.g., embedded sys-
tems). We provide a phase-fair RW lock that only requires 4
bytes and supports up to 127 concurrent readers and writers
each in [9].

Implementation in LITMUSRT. In order to realize group
locks efficiently, we implemented optimized versions of two
local-spin mutex locks and two local-spin RW locks proposed
by Mellor-Crummey and Scott [27, 28], as well as our phase-
fair RW lock, in LITMUSRT, UNC’s Linux-derived real-time
OS [13, 17]. As seen in Table 1, these locks are denoted MX-
T, MX-Q, RW-T, RW-Q, and RW-PF respectively.

We implemented each lock on both Intel’s x86 and Sun’s
SPARC V9 architectures. Intel’s x86 architecture supports
atomic-add and fetch-and-add directly via the add and xadd
instructions. On Sun’s SPARC V9 architecture, a RISC-
like design, only compare-and-swap is natively supported and
hence both instructions are emulated.

One commonly-used complexity metric for locking algo-
rithms is to count remote memory references (RMR) [2], i.e.,
on a cache-coherent multiprocessor, locks are classified by
how many cache invalidations occur per request under max-
imum contention. In theory, O(1) locks, e.g., MX-Q, RW-
Q, should outperform O(m) locks, e.g., MX-T, RW-T, since
frequent cache invalidations cause memory bus contention.
However, micro benchmarks in which a lock was accessed
repeatedly in a tight loop revealed that—on both x86 and
SPARC V9 platforms—the MX-Q and RW-Q locks incur sig-
nificantly higher overheads than the ticket-based MX-T and
RW-T locks. The reason is that the O(1) locks inherently re-
quire additional slow compare-and-swap instructions. In our
micro benchmarks, the positive effects of their lower RMR
complexity (i.e., reduced bus traffic) only starts to outweigh
the increased entry and exit overheads at unrealistic con-
tention levels, i.e., spinning must comprise a majority of the
system’s load in order to break even, which is rather unlikely
to occur in well-designed real-time systems. Hence, we only
consider the MX-T and RW-T locks in the rest of this paper.

4 Experimental Evaluation
To compare the various synchronization options discussed
above, we determined the HRT and SRT schedulability of
randomly-generated task sets under both partitioned and
global scheduling assuming the use of MX-T, RW-T, and RW-
PF group locks. The methodology followed in this study, and
our results, are discussed below.

4.1 Overheads

In order to capture the impact (or lack thereof) of RW syn-
chronization as accurately as possible, we conducted our
study under consideration of real-world system overheads as
incurred in LITMUSRT on a Sun UltraSPARC T1 “Niagara”
multicore platform. The Niagara is a 64-bit machine con-
taining eight cores on one chip running at 1.2 GHz. Each
core supports four hardware threads, for a total of 32 log-
ical processors. On-chip caches include a 16K (respective,
8K) four-way set associative L1 instruction (respective, data)
cache per core, and a shared, unified 3 MB 12-way set asso-
ciative L2 cache. Our test system is configured with 16 GB of
off-chip main memory. Most relevant system overheads (e.g.,
scheduling overhead, context-switch overhead, etc.) were al-
ready known from a recent study [14] and did not have to be
re-determined. Only synchronization-related overheads had
to be obtained and are given in Table 2. When determining
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Overhead Worst-Case Average-Case
task-fair mutex: read/write request 0.130 0.129
task-fair reader-writer lock: read request 0.160 0.157
task-fair reader-writer lock: write request 0.154 0.153
task-fair phase-fair lock: read request 0.144 0.142
task-fair phase-fair lock: write request 0.180 0.178
leaving non-preemptive section 2.137 1.570

Table 2: Worst-case and average-case costs of synchronization over-
heads (in µs). Based on the methodology explained in detail in [14],
the results were obtained by computing the maximum (resp. aver-
age) cost of 1,000,000 requests after discarding the top 1% to remove
samples that were disturbed by interrupts and other outliers.

HRT (SRT) schedulability, we assume worst-case (average-
case) overheads (as in [14]).

4.2 Task Set Generation
In generating random task sets for conduction schedulability
comparisons, task parameters were selected—similar to the
approach previously used in [11, 14, 15]—as follows. Task
utilizations were distributed uniformly over [0.1, 0.4] and pe-
riods were chosen from [10ms,100ms]. We only considered
implicit deadlines, i.e., p(Ti) = d(Ti), since most G-EDF
schedulability tests require this constraint. Task execution
costs were calculated based on utilizations and periods. Pe-
riods were defined to be integral, but execution costs may be
non-integral. Task sets were obtained by generating tasks un-
til a utilization cap (ucap) was reached. We selected these
parameter ranges because they correspond to the “medium
weight distribution” previously considered in [14]. The ef-
fect of choosing heavier or lighter utilization distributions is
considered in the discussion of the results below.

Resource sharing. The total number of generated tasks N
and the average number of resources per task (res) was used
to determine the total number of resources R = N · res.
Based on R and the average number of requests per re-
source per second (contention), the total request density
Q = R · contention was computed. Note that request den-
sity is a normalized measure similar to task utilization and not
necessarily integral. Q was further split based on the ratio of
write requests (wratio) into write density, Qw = Q ·wratio,
and read density, Qr = Q · (1− wratio).

In the next step, we generated read (write) requests and
randomly assigned them to tasks until the total request den-
sity of the generated read (write) requests equalled Qr (Qw).
Request density is the normalized rate at which a request is
issued.4 We chose a request period of one unless that would
have exceeded Qr (Qw).5 Based on the nesting probability
(nest), each request contained d levels of nested requests with
a probability of nestd. Resource groups as mandated by the
FMLP were computed during request generation. Due to the

4A request X assigned to Ti has a density of 1000ms
p(Ti)·rp(X )

. The factor of
1000ms is due to the use of one second as the normalization interval.

5Larger request periods are common for low wratios.

randomized assignment of requests, some tasks may not re-
quest resources at all, and some tasks may both read and write
the same resource. However, we ensured that each resource
is requested by at least one writer and one reader that are not
identical. The duration of requests was distributed uniformly
in [1.0µs, 15.0µs]. This range was chosen to correspond to
request durations considered in prior studies on mutex syn-
chronization [11, 15], which in turn were based on durations
observed in actual systems [10]. The effect of allowing longer
durations is discussed below.

4.3 Schedulability Tests

After a task system was generated, its schedulability assuming
MX-T, RW-T, and RW-PF group locks was tested as follows.
System and synchronization overheads were accounted for by
inflating worst-case execution costs and the durations of outer-
most requests using standard techniques [26]. Per-task bounds
on worst-case blocking were computed as detailed in [9], and
each task’s worst-case execution cost was inflated to account
for the corresponding utilization loss due to spinning.

Under G-EDF, a task system was deemed SRT schedu-
lable if the total utilization after inflation did not exceed
m = 32 [19]. Determining whether a task system is hard-
schedulable under G-EDF is more involved. There now are
five major sufficient (but not necessary) HRT schedulability
tests for G-EDF [4, 5, 6, 7, 20]. Interestingly, for each of these
tests, there exist task sets that are deemed schedulable by it but
not the others [5, 7]. Thus, a task system was deemed HRT
schedulable under G-EDF if it passed at least one of these five
tests.

Under P-EDF, a task system was deemed schedulable if
it could be partitioned using the worst-fit decreasing heuris-
tic and the utilization after inflation did not exceed one on
any processor (HRT and SRT schedulablity under P-EDF is
the same except for the use of worst-case versus average-
case overheads.) [25]. Note that partitioning must precede the
blocking-term calculation.

4.4 Study

In our study, we assessed SRT/HRT schedulability under
both G-EDF and P-EDF while varying five parameters:
(i) ucap ∈ [1.0, 32.0], (ii) contention ∈ [50, 550], (iii)
wratio ∈ [0.01, 0.5], (iv) nest ∈ [0.0, 0.5], and (v) res ∈
[0.1, 5.0]. Each of these parameters was varied over its stated
range for all possible choices of the other parameters aris-
ing from ucap ∈ {6.0, 9.0, 12.0} for HRT and ucap ∈
{15.0, 18.0, 21.0} for SRT, contention ∈ {100, 250, 400},
wratio ∈ {0.05, 0.2, 0.35}, nest ∈ {0.05, 0.2, 0.35}, and
res ∈ {0.5, 2.0, 3.5}, under both SRT and HRT and both
G-EDF and P-EDF scheduling. Sampling points were cho-
sen such that the sampling density is high in areas where
curves change rapidly. For each sampling point, we gener-
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ated (and tested for schedulability) 50 task sets, for a total of
over 1,600,000 tested task sets.

Trends. It is clearly not feasible to present all 1,620 result-
ing graphs. However, the results show clear trends. We be-
gin by making some general observations concerning these
trends. Below, we consider a few specific graphs that support
these observations.

In the majority of the tested scenarios, RW-PF locks were
clearly the best-performing algorithm. MX-T locks were
preferable in only 23 of the 1,620 tested scenarios (12 un-
der G-EDF, 11 under P-EDF). Due to the wide range of
parameter values considered, some parameter combinations
did not exhibit discernible trends since they were either “too
easy” (low contention, res, ucap) or “too hard” (high ucap,
contention, wratio, nest)—either (almost) all or none of the
task sets were schedulable in these scenarios regardless of the
group lock type. Where RW synchronization was preferable
to mutual exclusion, RW-T locks never outperformed RW-PF
locks.

Generally speaking, RW-PF locks were usually more re-
silient to increases in contention, res, ucap, nest, and
wratio, i.e., they exhibited higher schedulability than the
other two choices under increasingly adverse conditions.
Hence, it is more illuminating to consider the two exceptions:
(i) under which conditions are MX-T locks preferable to RW-
PF locks (and why), and (ii) under which conditions do RW-T
locks perform as well as RW-PF locks? Regarding (i), all 23
cases exhibit a combination of high request density, deep and
frequent nesting, and many writers (wratio ≥ 0.35). Hence,
writer blocking, which is not improved by RW locks, becomes
the dominating performance factor. This explains why RW-
PF (and RW-T) locks do not perform better than MX-T locks
in some cases, but why do they perform worse? The reason
is additional pessimism in the worst-case blocking analysis of
RW-PF locks that is only triggered by scenarios that involve
many writers and frequent, long requests (see [9]). The an-
swer to (ii) reinforces the intuition that task-fair locks are very
sensitive to the number of concurrent writers: all scenarios in
which RW-T locks perform as well as RW-PF locks (and in
which RW synchronization is preferable to mutual exclusion)
exhibit a very low write density (wratio = 0.05). However,
the inverse is not true: there are scenarios in which RW-PF
locks clearly perform better than RW-T locks (in terms of
schedulability) where wratio = 0.05.

Example graphs. Insets (a)-(j) of Fig. 4 display ten selected
graphs that illustrate the above trends. In order to show a wide
variety of scenarios, we chose to exhibit one HRT schedula-
bility result under P-EDF (left column) and one SRT schedu-
lability result under G-EDF (right column) for each of the five
parameters that we varied (rows).

Insets (a)-(b) show schedulability as a function of ucap. In
both cases, RW-PF locks yield better schedulability: under
P-EDF (resp., G-EDF), with MX-T and RW-T locks, per-

formance starts to degrade ucap ≈ 8 (resp., ucap ≈ 13),
whereas RW-PF locks can sustain high schedulability un-
til ucap ≈ 10 (resp., ucap ≈ 16). Note that with only
20% writes RW-T locks perform almost as badly as MX-
T locks. Insets (c)-(d) show schedulability as a function of
contention. For both P-EDF and G-EDF, RW-PF locks can
sustain almost twice as much contention as either MX-T or
RW-T locks before performance degrades. This highlights the
significance of the RW-PF lockO(1) bound on read blocking
under high contention. Again, RW-T locks offer little advan-
tage over MX-T locks. Insets (e)-(f) show schedulability as
a function of wratio. Inset (e) illustrates under which con-
ditions MX-T locks are (partially) preferable. Due to high
contention, nest, and res, RW-PF locks start to perform
worse than MX-T locks when wratio ≥ 0.35 due to pes-
simism in the analysis with regard to high number of writ-
ers. In contrast, inset (f) shows a more representative sce-
nario in which RW-PF locks can sustain high schedulabil-
ity until wratio ≈ 0.3, whereas RW-T locks are only us-
able when there are virtually no writes even with moderate
nest and res. Insets (g)-(h) show schedulability as a function
of nest. In both cases, RW-PF locks perform significantly
better than either MX-T and RW-T locks as resource groups
become fewer in number and larger, even under high res (P-
EDF case) and high contention (G-EDF case). Finally, in-
sets (i)-(j) show schedulability as a function of res. Once
again, RW-PF locks can sustain significantly higher schedu-
lability and RW-T locks perform only little better than MX-T
locks.

Varying weights, periods, and request lengths. With
lighter utilization distributions, the differences between the
locks would be magnified since the number of tasks increases
and bounds on worst-case blocking become larger relative
to the average worst-case execution cost. Similarly, longer
request durations would also magnify differences in perfor-
mance. Lengthening periods causes a decrease in average per-
request density, which in turn causes the number of requests
per task to increase. Further, the interval for which interfer-
ence needs to be analyzed increases [9]. In both cases, the
bounds on worst-case blocking would be more pessimistic,
and hence differences in performance would be magnified.

5 Conclusion
We have presented the first analysis of reader-writer locking in
shared-memory multiprocessor real-time systems and demon-
strated that preference- and task-fair locks can be problem-
atic in such systems. We also have proposed phase-fair locks,
an alternative lock design with asymptotically lower worst-
case read blocking. Our experiments revealed that (in terms
of schedulability) phase-fair locks are almost always the best
choice—oftentimes by a significant margin.

In future work, we would like to extend the RW-FMLP
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Figure 4: Schedulability (the fraction of generated task systems deemed schedulable) as a function of (a)-(b) task system utilization (ucap),
(c)-(d) average requests per resource per second (contention), (e)-(f) ratio of write requests (wratio), (g)-(h) probability of nested requests
(nest), (i)-(j) average number of resources per task (res). The left column shows hard schedulability under P-EDF; the right right column
shows soft schedulability under G-EDF. The y-axis of each graph gives the fraction of successfully-scheduled task sets. The scenario
considered in each graph is indicated above that graph.
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to support suspension-based real-time reader-writer synchro-
nization. Further, we would like to develop a phase-
fair reader-writer lock with O(1) RMR complexity and re-
evaluate the performance of reader-writer lock choices in the
absence of shared, coherent caches.
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A Bounding Blocking Time
Blocking is any delay encountered by a job that would not have arisen if all tasks were independent. The maximum blocking
duration must be bounded and accounted for when testing schedulability. In this appendix, we derive such bounds for the
scheduling and synchronization algorithms considered in this paper. In this section, we first give an overview over our notation
(A.1), discuss the common analysis approach (A.2), and provide basic definitions (A.3). In the following sections, we then
derive bounds on direct blocking for fair mutex locks (A.5), task-fair RW locks (A.6), and phase-fair RW locks (A.7). Finally,
the impact of arrival blocking is considered (A.8).

A.1 Notation
For convenience, some of the earlier definitions are repeated.

m The number of processors.
Ti The ith of n sporadic tasks (with implicit deadlines).
T j

i The jth job of Ti.
r(T j

i ) The release time of T j
i . T j

i is pending from r(T j
i ) until it completes.

p(Ti) The period of Ti.
d(Ti) The relative deadline of Ti.
c(Ti) The completion-time requirement for task Ti.

Under hard real-time scheduling, c(Ti) = d(Ti).
Hence, with implicit deadlines and hard real-time scheduling, c(Ti) = p(Ti).
Under soft real-time scheduling, c(Ti) is bounded by d(Ti) and Ti’s tardiness bound.

` A resource.
grp(`) The resource group that contains `.
R A read request for a resource.
W A write request for a resource.
X A request for a resource (either read or write).
res(X ) The resource requested by X .
tsk(X ) The task that issues X .
rp(X ) The request period of X (see below).
|X | An upper bound on the maximum duration for which res(X ) will be held.

Does not include blocking due to X .
reads(Ti) A set of outermost read requests that bounds the worst-case reading behavior of any one job of Ti.
writes(Ti) A set of outermost write requests that bounds the worst-case writing behavior of any one job of Ti.

For notational convenience, we assume max(∅) = 0. Under both P-EDF and P-SP scheduling, we assume that the task set has
been successfully partitioned prior to computing blocking terms and let P(Ti) denote the processor (1, . . . ,m) to which Ti is
assigned. Under P-SP scheduling, we further assume that tasks are indexed by decreasing priority (i.e., Ti has higher priority
than Tj iff i < j) and that priorities are unique.

Two requests X1 and X2 (either read or write) interfere with each other if tsk(X1) 6= tsk(X2), grp(res(X1)) =
grp(res(X2)), and the issuing jobs can potentially execute concurrently.

A.2 Approach
The maximum number of times that a job T j

i is directly blocked can be bounded by the minimum of both the number of times
that T j

i issues outermost requests and the number of times that remote jobs issue interfering requests.6 Bounding the maximum
duration of direct blocking is hence a two-step process: first, the set of possibly-interfering remote jobs must be derived (this
varies by scheduling algorithm); and second, the worst-case pattern of interfering requests that can delay T j

i must be derived
(this varies by synchronization protocol). Since groups are independent, analysis can be done on a group-by-group basis. Given
a bound dbg(Ti, g) on the maximum duration of direct blocking incurred by one job of Ti due to requests issued for resources

6Note that this is a direct consequence of using FIFO queuing: if T j
i makes only one request for a resource `, then it can be directly blocked at most once

by jobs on each remote processor no matter how many conflicting requests are issued while T j
i is pending. In contrast, if wait queues were ordered by priority,

then a single request by T j
i could lead to T j

i being blocked multiple times by each remote higher-priority task.
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p(Ti) = 2

c(Ti) = 6.6 t = 7.25

carry-in jobs jobs in t last job partially in t

T 1
i T 2

i T 3
i T 4

i T 5
i T 6

i T 7
iT 0

i

s eb

Figure 5: An illustration of (2). At most seven jobs of Ti with p(Ti) = 2 and c(Ti) = 6.6 can be pending in any interval [s, e) of length
e− s = t = 7.25 (illustration drawn to scale). Only jobs released at or after b = s− c(Ti) and before e can be pending in [s, e]. In the worst
case (i.e., with periodic arrivals and jobs completing as late as possible), jobs T 1

i , T 2
i , and T 3

i carry execution into [s, e]. Jobs T 4
i , T 5

i , and
T 6

i are released and complete in [s, e], and T 7
i is released before e. Note that moving the start of the interval s to an earlier point such that

r(T 0
i ) ≥ b causes the last counted job T 7

i to no longer be pending within [s, e), i.e. e < r(T 7
i ). Hence maxjobs(Ti, 7.25) =

˚
13.85
2.0

ˇ
= 7.

in resource group g, a bound on total direct blocking can be obtained summing over the bounds on blocking for each group that
Ti accesses, i.e.,

DB(Ti) =
∑

g ∈ xgrps(Ti)

dbg(Ti, g), (1)

where xgrps(Ti) is the set of resource groups that Ti accesses (see Eq. (27)). Specific bounds on dbg(Ti, g) are derived in
Secs. A.5, A.6, and A.7.

Non-preemptive execution of lower-priority jobs must also be taken into account since this may cause arrival blocking.
Bounds on arrival blocking, which vary by scheduling algorithm, are given in Sec. A.8.

A.3 Basic Definitions
In this subsection, we define terms for recurring concepts in the derivation of the blocking terms. The maximum number of
jobs of Ti that can execute in an interval of length t given by

maxjobs(Ti, t) =
⌈
t+ c(Ti)

p(Ti)

⌉
, (2)

as illustrated in Fig. 5. Similarly, based on the concept of a request period, the maximum number of times that a request X can
be issued in an interval of length t is given by

maxreqs(X , t) =
⌈

maxjobs(tsk(X ), t)
rp(X )

⌉
. (3)

The set of read requests issued by a task Ti that interfere with requests for resources in group g is given by

rconflict(Ti, g) =
{
R
∣∣∣R ∈ reads(Ti) ∧ grp(res(R)) = g

}
. (4)

Similarly, the set of interfering writes is defined as

wconflict(Ti, g) =
{
W
∣∣∣W ∈ writes(Ti) ∧ grp(res(W)) = g

}
. (5)

Next, we define read/write/request interference, a central concept in the derivation of the blocking terms. The worst-case read
interference of task Ti affecting group g during an interval of length t, denoted as rif (Ti, g, t), is a set of read requests that
represents the worst-case sequence of read requests that can be issued by Ti over any interval of length t, i.e., the sequence of
requests created if jobs of Ti arrive periodically and issue maximum-duration requests as often as possible (respecting both task
and request periods). Note that requests can be issued repeatedly if t is sufficiently large; hence rif (Ti, g, t) is a multiset. (The
multiset is constructed by tagging individual requests.)

rif (Ti, g, t) =
{

(R, k)
∣∣∣R ∈ rconflict(Ti, g) ∧ k ∈ {1, . . . ,maxreqs(R, t)}

}
. (6)
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Likewise, we define write interference as

wif (Ti, g, t) =
{

(W, k)
∣∣∣W ∈ wconflict(Ti, g) ∧ k ∈ {1, . . . ,maxreqs(W, t)}

}
(7)

and request interference as

xif (Ti, g, t) =
{

(X , k)
∣∣∣ X ∈ rconflict(Ti, g) ∪ wconflict(Ti, g) ∧ k ∈ {1, . . . ,maxreqs(X , t)}

}
. (8)

Let A = {(Xi, yi)} be a (finite) multiset of requests, let A≥ denote A ordered by non-decreasing request duration, and let A≥k
denote the kth item in A≥ (if it exists), i.e., A≥ is the list obtained by sorting A with the following relation:

(X , y) ≥ (X ′, y′)⇔ |X | ≥ |X ′|. (9)

We define the set of the l longest requests in A as

longest(l, A) =
{

(X , y)
∣∣∣ (X , y) = A≥k ∧ k ∈ {1, . . . ,min(l, |A|)}

}
(10)

and the sum of their durations as
total(l, A) =

∑
(X ,y) ∈ longest(l,A)

|X |. (11)

The set of the |A| − l shortest requests in A is denoted as

rest(l, A) = A \ longest(l, A). (12)

In the derivation of the blocking terms, two subsets of tasks are of particular interest. The set of all tasks but a given task Ti is
given by

others(i) =
{
Tx

∣∣∣ x ∈ {1, . . . , n} ∧ x 6= i
}
. (13)

Under partitioning, the set of tasks assigned to processor p is given by

partition(p) =
{
Ti

∣∣∣ i ∈ {1, . . . , n} ∧ P(Ti) = p
}
. (14)

Given a set of tasks S, we denote the multiset of the l longest potentially interfering (with respect to group g) read requests of
each task during t as

rifs(S, g, t, l) =
⋃

Ti∈S

longest(l, rif (Ti, g, t)). (15)

Analogously, we define
wifs(S, g, t, l) =

⋃
Ti∈S

longest(l,wif (Ti, g, t)) (16)

with respect to write interference and

xifs(S, g, t, l) =
⋃

Ti∈S

longest(l, xif (Ti, g, t)) (17)

with respect to request interference. In the case of partitioned scheduling, we define the set of the l longest interfering read
requests on each remote processor as

pwifs(Ti, g, t, l) =
m⋃

p=1
p 6=P(Ti)

longest
(
l,wifs(partition(p), g, t, l)

)
. (18)

Again, we define analogously

prifs(Ti, g, t, l) =
m⋃

p=1
p 6=P(Ti)

longest
(
l, rifs(partition(p), g, t, l)

)
(19)
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with respect to write interference and

pxifs(Ti, g, t, l) =
m⋃

p=1
p 6=P(Ti)

longest
(
l, xifs(partition(p), g, t, l)

)
(20)

with respect to request interference. The longest non-preemptive section of a set of tasks S is given by

maxnp(S) = max
({
|X |

∣∣∣ Ti ∈ S ∧ X ∈ reads(Ti) ∪ writes(Ti)
})

. (21)

The maximum number of read requests for resources in group g issued by any job of Ti is denoted as

rcount(Ti, g) =
∣∣∣{R ∣∣∣R ∈ reads(Ti)) ∧ g = grp(res(R))

}∣∣∣ ; (22)

likewise
wcount(Ti, g) =

∣∣∣{W ∣∣∣W ∈ writes(Ti)) ∧ g = grp(res(W))
}∣∣∣ (23)

and
xcount(Ti, g) = rcount(Ti, g) + wcount(Ti, g). (24)

The set of groups that are subject to read requests issued by Ti is given by

rgrps(Ti) =
{

grp(R)
∣∣∣R ∈ reads(Ti)

}
; (25)

likewise
wgrps(Ti) =

{
grp(W)

∣∣∣W ∈ writes(Ti)
}

(26)

and
xgrps(Ti) = rgrps(Ti)

⋃
wgrps(Ti). (27)

A.4 Lock Properties
Next, we establish the fundamental lock properties that we require to derive bounds on the worst-case duration of blocking.

Lemma 1. Let b the number of reader and writer phases that block a request X (either read or write) before it is satisfied. If
contending requests are satisfied in FIFO order and if requests are executed non-preemptively, then b ≤ m− 1.

Proof. Since requests are satisfied in FIFO order, later arriving requests cannot blockX . Hence, only requests that were already
issued but not yet complete when X was issued can block X . In the worst case, because a job is not preempted while executing
a request, at most one job on every other processor can have issued a request that blocks X .

Lemma 2. Let b the total number of reader and writer phases that block outermost requests (either read or write) issued by
T j

i for resources in group g. If T j
i ’s requests for resources in g interfere with at most w write requests and with at most r read

requests, then b ≤ r + w.

Proof. Trivial, since every interfering request can block a request of T j
i only once.

Lemma 3. Let c be the number of outermost requests (either read or write) that a job T j
i issues for resources in group g. If

contending requests are satisfied in FIFO order, then at most c interfering outermost requests issued by jobs of a task Tx can
block T j

i .

Proof. By contradiction. If more than c outermost requests issued by jobs of Tx (for resources in g) block T j
i , then at least one

outermost request X i issued by T j
i was blocked by at least two outermost requests (X x

1 ,X x
2 ) of jobs of Tx. Because both X x

1

and X x
2 blocked X i, neither of the two was complete when X i was issued, but both were complete by the time that X i was

satisfied. Without loss of generality, assume that X x
1 was issued prior to X x

2 . Because tasks are sequential (and because both
X x

1 and X x
2 are outermost), X x

1 must have been complete when X x
2 was issued. Hence X x

2 was issued after X i was issued, but
satisfied before X i was satisfied. This contradicts the assumption that contending requests are satisfied in FIFO order.
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bw ≤ 2w + 1

bw+1 ≤ bw + 2
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blocking requests containing      writersw
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Figure 6: Illustration of Lemma 4 for the case cW = 1 wherein a job T j
i issues only one write request Ŵ . (a) Base case w = 0: at most

one reader phase can block Ŵ . (b) Induction step: allowing one additional write requestWx increases the maximum number of blocking
phases by at most two.

Lemma 4. Let cR be the number of outermost read requests and let cW be the number of outermost write requests that a job T j
i

issues for resources in group g, and let bw be the total number of reader and writer phases that block T j
i across all outermost

requests for resources in g. If g is protected by a RW lock (either task-fair or phase-fair) and if T j
i ’s requests interfere with at

most w write requests, then bw ≤ 2w + cW .

Proof. By induction over w.
Base case w = 0: if there are no interfering write requests, then T j

i ’s read requests (if any) do not incur blocking at all (since
interfering read requests do not block each other), and T j

i ’s write requests (if any) can only be blocked by one reader phase
each. Hence, T j

i is blocked by at most cW reader phases, and thus bw ≤ 2w + cW . This is illustrated in inset (a) of Fig. 6.
Induction step w → w + 1: adding one interfering write requestWx increases the number of phases blocking T j

i by at most
two: firstly,Wx can directly block T j

i once, and, secondly,Wx can itself be blocked by one additional reader phaseRy , which
then transitively also blocks T j

i . This is illustrated in inset (b) of Fig. 6. Since by the induction hypothesis bw ≤ 2w + cW and
bw+1 ≤ bw + 2, it follows that bw+1 ≤ bw + 2 ≤ (2w + cW) + 2 = 2(w + 1) + cW .

Note that Lemma 4 holds irrespective of the number of interfering read requests r. If r ≤ w, then Lemma 4 trivially holds by
Lemma 2 since, in this case, 2w + cW ≥ w + r; if r > w, then some of the interfering read requests are satisfied concurrently,
as read requests can only block each other when they are “separated” by a write request (of which there are, by assumption,
only w).

Lemma 5. Let cW be the number of outermost write requests that a job T j
i issues for resources in group g. If T j

i is
blocked by b interfering requests across all outermost requests issued for resources in group g, then T j

i is blocked by at
least max

(
0,
⌈

b−cW
2

⌉)
interfering writer phases.

Proof. By contradiction. Assume b−cW
2 > 0 (otherwise the claim is trivially true), and further assume that T j

i interfered with
w < b−cW

2 writer phases (w ∈ N0; note the absence of the ceiling). Then, by Lemma 4:

b ≤ 2w + cW
⇒ b < 2

(
b−cW

2

)
+ cW

⇔ b < b.

Contradiction. Hence, b−cW
2 , which may not be integral, is a lower bound on w. Since T j

i can only be blocked by an integral
number of writer phases, the claim follows.

A.5 Task-Fair Mutex Locks

With task-fair mutex locks (e.g., ticket locks [27]), both readers and writers gain exclusive access to resource groups. Hence,
when bounding direct blocking under task-fair mutex locks, the request type (read or write) is irrelevant.

15



Theorem 1. Let c = xcount(Ti, g) be the maximum number of requests issued by any T j
i for resources in group g, and let

t = c(Ti) be the maximum interval that any any T j
i can be active. Under global scheduling, direct blocking incurred by any

T j
i through group g is bounded by

dbgMTX
GLOBAL(Ti, g) = total

(
(m− 1) · c, xifs(others(i), g, t, c)

)
. (28)

Proof. Under global scheduling, jobs of every other task in the system can cause interference while T j
i is active. By Lemma 1,

at most (m−1) remote jobs can cause direct blocking (per request). Hence, at most (m−1) ·c requests interfering requests can
block T j

i in total. By Lemma 3, each remote job can block Ti with no more than c interfering requests. Therefore, the maximum
blocking duration is bounded by the sum of the durations of the (m− 1) · c longest requests in xifs(others(i), g, t, c).

Theorem 2. Let c = xcount(Ti, g) be the maximum number of requests issued by any T j
i for resources in group g, and let

t = c(Ti) be the length of the maximum interval in which any T j
i can be active. Under partitioned scheduling, direct blocking

incurred by any T j
i through group g is bounded by

dbgMTX
PART(Ti, g) = total

(
(m− 1) · c, pxifs(Ti, g, t, c)

)
. (29)

Proof. Similarly to Theorem 1, the maximum number of blocking requests is bounded by (m − 1) · c. However, the set of
potentially interfering tasks is limited to remote partitions. Therefore, the maximum blocking duration is bounded by the sum
of the durations of the (m− 1) · c longest requests in pxifs(Ti, g, t, c).

Note that Eq. (29)—but not Eq. (28)—was derived previously in [11].

A.6 Task-Fair RW Locks
With task-fair RW locks, writers gain exclusive access to resource groups, whereas reads may access resource groups concur-
rently. However, jobs gain access to resource groups in strict FIFO order: a writer that is directly blocked by a reader transitively
blocks later-arriving readers while it is waiting.

A.6.1 Bounding Direct Blocking under Global Scheduling

In the following discussion, let cR = rcount(Ti, g), cW = wcount(Ti, g), and c = cR + cW denote the maximum number of
read, write, and all requests issued by any job T j

i of Ti for resources in group g (respectively), and let t = c(Ti) denote the
length of the maximum interval that T j

i can be active. Further, let

R = rifs
(
others(i), g, t, c

)
, W = wifs

(
others(i), g, t, c

)
, and X = xifs

(
others(i), g, t, c

)
denote the worst-case read, write, and request interference (respectively) incurred by T j

i during any interval of length t. By
Lemmas 1, 2, and 4, at most

b = min
(|W |+ |R| , |W | · 2 + cW , (m− 1) · c)

phases can block requests of T j
i . Similarly to Theorem 1, one upper bound for the maximum duration of blocking incurred is

the sum of the b longest interfering requests in X . However, if writer phases are short and there are many long reader phases,
then this simple bound could be very pessimistic as it does not differentiate between reader and writer phases, i.e., the bound
could equal the sum of the b longest reader phases, even though that is clearly not a feasible scenario. By Lemma 5, if T j

i is
blocked by b phases, then at least

w = max
(

0,
⌈
b− cW

2

⌉)
writer phases block T j

i . This can be used to obtain a second, potentially tighter bound: the sum of the the durations of the w
longest requests in W and the b − w longest requests in X (that are not also among the w longest requests in W ) also bounds
T j

i ’s worst-case blocking time (the b−w requests can be either read or write requests). However, note that the latter bound can
be more pessimistic than the former bound in pathological cases wherein few remote tasks have both long read and long (but
slightly shorter) writer requests because then the bound may represent a scenario in which some task(s) block T j

i with more
than c requests, which is impossible (by Lemma 3). Hence, it is beneficial to compute both bounds.
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Theorem 3. Under global scheduling, if g is protected by a task-fair RW lock, then blocking incurred by T j
i through group g

is bounded by

dbgTF
GLOBAL(Ti, g) = min

(
total

(
b,X

)
, total

(
w,W

)
+ total

(
b− w,X \ longest (w,W )

))
. (30)

Proof. Follows from the preceding discussion.

A.6.2 Bounding Direct Blocking under Partitioned Scheduling

The only difference of blocking under partitioned scheduling to blocking under global scheduling is how read, write, and
request interference is computed as only tasks belonging to remote partitions must be considered. Hence, assume t, cR, cW , c,
b, and w are defined as before in Sec. A.6.1, and let

R = prifs
(
Ti, g, t, c

)
, W = pwifs

(
Ti, g, t, c

)
, and X = pxifs

(
Ti, g, t, c

)
denote the worst-case read, write, and request interference (respectively) incurred by T j

i during any interval of length t. Note
that, by definition, |X| ≤ (m− 1) · c (see Eq. (20)).

Theorem 4. Under partitioned scheduling, if g is protected by a task-fair RW lock, then blocking incurred by T j
i through group

g is bounded by

dbgTF
PART(Ti, g) = min

(
total

(
b,X

)
, total

(
w,W

)
+ total

(
b− w,X \ longest (w,W )

))
. (31)

Proof. Similar to the proof of Theorem 3.

A.7 Phase-Fair RW Locks
With phase-fair RW locks, writers gain access in strict FIFO order with respect to other writers. Readers and writers, however,
are only ordered with regard to phases. Under contention, reader and writer phases alternate, and with the beginning of a reader
phase, all currently blocked readers gain concurrent access. Hence, a reader may gain access to a resource group prior to an
earlier-arrived writer.

Lemma 6. If a resource group g is protected by a phase-fair RW lock, then a read request R for a resource in g is blocked by
at most one writer phase and one reader phase.

Proof. Follows from the definition of phase-fairness (see Sec. 3).

Lemma 7. If a resource group g is protected by a phase-fair RW lock, then a write requestW for a resource in g is blocked by
at most m− 1 writer phases and m− 1 reader phases.

Proof. Since write requests are satisfied in FIFO order with respect to each other, at most m− 1 writer phases can blockW by
Lemma 1. However, since writer and reader phases alternate and because later-arriving readers can initiate reader phases that
blockW , in the worst-case, every of the m writer phases (includingW) can be separated by a reader phase, for a total of m− 1
reader phases.

Lemma 8. Let cR be the number of outermost read requests and cW the number of outermost write requests that a job T j
i

issues for resources in group g (which is protected by a phase-fair RW lock). Jobs of a task Tx can block T j
i with at most

cR + cW interfering outermost write requests and cR + (m− 1) · cW outermost read requests.

Proof. By Lemmas 3 and 6, jobs of Tx can block T j
i with a write request at most once each time T j

i issues a request (either
read or write) for resources in g. Hence, Tx blocks T j

i with at most cR+ cW write requests. By Lemma 6, jobs of Tx can block
T j

i with a read request at most once each time that T j
i issues a read request for resources in g. By Lemma 7, no more than

m − 1 read requests issued by jobs of Tx can block T j
i each time that T j

i issues a write request for resources in g. Hence, Tx

blocks T j
i with at most cR + (m− 1) · cW read requests.
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A.7.1 Bounding Direct Blocking under Global Scheduling

As before, let cR = rcount(Ti, g), cW = wcount(Ti, g), and c = cR+ cW denote the maximum number of read, write, and all
requests issued by any job T j

i of Ti for resources in group g (respectively), and let t = c(Ti) denote the length of the maximum
interval that T j

i can be active. By Lemma 8, a remote task Tx can block T j
i with at most qw = cR + cW write requests and at

most qr = cR + cW · (m− 1) read requests. Therefore, let

R = rifs
(
others(i), g, t, qr

)
,W = wifs

(
others(i), g, t, qw

)
, and X = rifs

(
others(i), g, t, qr

)
denote the worst-case read, write, and request interference (respectively) incurred by T j

i during any interval of length t.7 By
Lemmas 6 and 7, T j

i is blocked by no more than b1 = cR + cW · (m − 1) reader and writer phases each. A (potentially
pessimistic) bound on worst-case blocking is hence given by the sum of the durations of b1 longest requests in R and the b1
longest requests in W .

Similarly to Theorem 3, a second bound can be obtained by considering the lower bound on the number of blocking writer
phases (i.e., Lemma 5) . By Lemmas 2 and 4, at most

b2 = min
(
|W |+ |R| , |W | · 2 + cW , 2 · b1

)
phases (either read or write) can block requests of T j

i . By Lemma 5, if T j
i is blocked by b2 phases, then at least

w = max
(

0,
⌈
b2 − cW

2

⌉)
writer phases block T j

i . This yields a second bound: the sum of the the durations of the w longest requests in W and the b2−w
longest requests in X (that are not among the w longest requests in W ) also bounds T j

i ’s worst-case blocking time.

Theorem 5. Under global scheduling, if g is protected by a phase-fair RW lock, then blocking incurred by T j
i through group g

is bounded by

dbgPF
GLOBAL(Ti, g) = min

(
total

(
b1,W

)
+ total

(
b1, R

)
, total

(
w,W

)
+ total

(
b2 − w,X \ longest (w,W )

))
. (32)

Proof. Follows from the preceding discussion.

A.7.2 Bounding Direct Blocking under Partitioned Scheduling

As before with Theorem 4, a bound for direct blocking with phase-fair RW locks under partitioned scheduling can be obtained
analogously to previous derivation—the bounds only differ in the computation of read and write interference. Let

R = prifs
(
Ti, g, t, qr

)
,W = pwifs

(
Ti, g, t, qw

)
and X = pxifs

(
Ti, g, t, qr

)
denote the worst-case write and read interference (respectively) incurred by T j

i .

Theorem 6. Under partitioned scheduling, if g is protected by a phase-fair RW lock, then blocking incurred by T j
i through

group g is bounded by

dbgPF
PART(Ti, g) = min

(
total

(
b1,W

)
+ total

(
b1, R

)
, total

(
w,W

)
+ total

(
b2 − w,X \ longest (w,W )

))
. (33)

Proof. Similar to Theorem 6.

7Since tasks are sequential, a remote task Tx cannot execute an outermost read request and an outermost write request concurrently, and hence can block
T j

i with at most max(qr, qw) = qr requests of any kind.

18



A.8 Arrival Blocking
Arrival blocking is bounded by the length of the longest non-preemptive section. Since requests are executed non-preemptively,
the bound on the length of a non-preemptive section due to a request X depends on both the bound on per-request worst-case
blocking time, denoted b(X ), and the maximum request duration |X |. A bound on worst-case arrival blocking incurred by jobs
of task Ti is hence given by

ABGLOBAL(Ti) = max

{|X |+ b(X )
∣∣∣ X ∈ ⋃

Tx∈others(i)

(
reads(Tx) ∪ writes(Tx)

)} (34)

in the case of global scheduling and

ABPART(Ti) = max

{|X |+ b(X )
∣∣∣ X ∈ ⋃

Tx∈partition(P(Ti))

(
reads(Tx) ∪ writes(Tx)

)} (35)

in the case of partitioned scheduling. For each request X , the per-request bound b(X ) can be obtained by computing
dbg(Tx,grp(res(X ))) while assuming that X is the only request issued by Tx (as given by Theorems 1-6, respectively), i.e.,
the worst-case blocking that X can incur is clearly no more than the worst-case blocking that Tx would incur if X were the
only request issued by Tx. Hence, b(X ) = dbg(Tx,grp(res(X ))) if dbg(Tx,grp(res(X ))) is evaluated under the assumption
that reads(Tx) ∪ writes(Tx) = {X}.

B A Phase-Fair Lock for Memory-Constrained Systems
A phase-fair reader-writer lock implementation that only requires four bytes (i.e., one 32 bit word, as shown in Fig. 7) of
memory is given in Listing 2. It closely resembles the implementation given in Listing 1, hence we focus on the notable
differences in the following discussion.

The four ticket counters, named rin, rout, win, and wout in Listing 1, are collapsed into four 7-bit-wide fields of the lock, as
shown in Fig. 7. The bit fields are separated by one bit each that serves as an overflow guard. The ticket counters are updated
with fetch-and-add, atomic-add, and atomic-sub operations in which the second operand has been shifted by the offset of the
to-be-updated ticket counter. The respective offsets are given in lines 3-6 of Listing 2.

The position of the PHID bit and the PRES bit are reversed in order to overlay PHID with the least-significan bit of wout:
bit zero is used to signal the presence of a writer (PRES), and bit one, which is also the least-significant bit of wout, is used by
readers to tell consecutive writer phases apart (PHID).

Overflowing rin and win is avoided by clearing the respective overflow guard bit whenever it becomes set (lines 13-15 and
28-30). Overflowing rout is harmless since the state of the lock is truncated automatically processor when rout overflows.
Allocating rout in the most-significant bits of the lock word is hence an optimization of the reader exit procedure. Since wout is
never updated concurrently, a possible overflow can be detected before it is updated (lines 38-44). The overflow guard between
win and wout is therefore unused, but cannot be allocated to either win or wout since they must be equal in size.

31 08162324 15 7

overflow guard

PRES

rout

1

PHID

rin win wout

Figure 7: Bit fields in the 32-bit implementation of the phase-fair reader-writer lock. The four ticket counters rin, rout, win, and wout consist
of seven bits each. Due to the limited size of the ticket counters, at most 127 readers and 127 writers may issue requests concurrently. Note
that PHID is the least-significant bit of wout.
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1 type p f l o c k 3 2 = unsigned i n t e g e r

3 c o n s t WO SHIFT = 1 ;
4 c o n s t WI SHIFT = 9 ;
5 c o n s t RI SHIFT = 1 7 ;
6 c o n s t RO SHIFT = 2 5 ;
7 c o n s t MASK = 0 x7f ;
8 c o n s t WBITS = 0x3 ;

10 procedure r e a d l o c k ( L : ˆ p f l o c k 3 2 )
11 var t i c k e t , w : unsigned i n t e g e r ;
12 t i c k e t := f e t c h a n d a d d ( L , 1 s h l RI SHIFT ) ;
13 i f ( t i c k e t s h r RI SHIFT ) and MASK = MASK then
14 { a v o i d o v e r f l o w o f r i n }
15 a t o m i c s u b ( L , 1 s h l ( RI SHIFT + 7 ) ) ;
16 w := t i c k e t and WBITS ;
17 await (w and 1 = 0) or { no w r i t e r p r e s e n t }
18 (w <> L ˆ and WBITS) { t o g g l e d e t e c t e d }

20 procedure r e a d u n l o c k ( L : ˆ p f l o c k 3 2 )
21 { r o u t may o v e r f l o w w i t h o u t c a u s i n g prob lems }
22 a t o m i c a d d ( L , 1 s h l RO SHIFT )

24 procedure w r i t e l o c k ( L : ˆ p f l o c k 3 2 )
25 var t i c k e t : unsigned i n t e g e r ;
26 t i c k e t := f e t c h a n d a d d ( L , 1 s h l WI SHIFT ) ;
27 t i c k e t := ( t i c k e t s h r WI SHIFT ) and MASK;
28 i f t i c k e t = MASK then
29 { a v o i d o v e r f l o w o f win }
30 a t o m i c s u b ( L , 1 s h l ( WI SHIFT + 7 ) ) ;
31 await t i c k e t = ( L ˆ s h r WO SHIFT ) and MASK;
32 t i c k e t := f e t c h a n d a d d ( L , 1 ) ;
33 t i c k e t := ( t i c k e t s h r RI SHIFT ) and MASK;
34 await t i c k e t = ( L ˆ s h r RO SHIFT ) and MASK

36 procedure w r i t e u n l o c k ( L : ˆ p f l o c k 3 2 )
37 var u p d a t e : unsigned i n t e g e r ;
38 i f ( L ˆ s h r WO SHIFT ) and MASK = MASK then
39 { a v o i d o v e r f l o w o f t h e wout => c l e a r wout }
40 { t h i s i m p l i c i t l y t o g g l e s PHID }
41 u p d a t e := (MASK s h l WO SHIFT )
42 { u n b l o c k r e a d e r s by c l e a r i n g PRES }
43 a t o m i c s u b ( L , u p d a t e − 1)
44 e l s e
45 { no danger o f o v e r f l o w => i n c r e a s e wout by one }
46 u p d a t e := (1 s h l WO SHIFT ) ;
47 { u n b l o c k r e a d e r s by c l e a r i n g PRES }
48 a t o m i c a d d ( L , u p d a t e − 1)

Listing 2: Implementation of a phase-fair reader-writer lock that fits within four bytes.
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