Semi-Partitioned Scheduling of Sporadic Task Systems on Mtiprocessors*®

Shinpei Katd, Nobuyuki Yamasakj and Yutaka Ishikawa
"Department of Computer Science, The University of Tokydkybp Japan
‘Department of Information and Computer Science, Keio Uisityy Yokohama, Japan
shinpei@il.is.s.u-tokyo.ac.jp, yamasaki@ny.ics.kagp, ishikawa@is.s.u-tokyo.ac.jp

Abstract set of uniprocessor one after tasks are partitioned. In-addi
tion, it does not incur runtime overhead as much as global
This paper presents a new algorithm for scheduling of scheduling, since tasks never migrate across processors.
sporadic task systems with arbitrary deadlines on idettica However, there is a disadvantage in schedulability bounds.
multiprocessor platforms. The algorithm is based on the In fact, any partitioned scheduling approaches may cause
concept of semi-partitioned scheduling, in which mostdask deadlines to be missed omprocessors, if the total proces-
are fixed to specific processors, while a few tasks migratesor utilization exceedg3tn + 1)/(8 + 1), whereg = |1/a]
across processors. Particularly, we design the algoritim s ande is a maximum utilization of individual tasks [18]. Let
that tasks are qualified to migrate only if a task set cannot @ = 1 andm — o, then the worst-case processor utilization
be partitioned any more, and such migratory tasks migrate is bounded by 50%.
from one processor to another processor only once in each The global scheduling class is attractive in the worst-case
period. The scheduling policy is then subject to Earliest schedulability. In this class, Pfair [7] and LLREF [11] are
Deadline First. Simulation results show that the algorithm known to be optimal algorithms. Any task sets are sched-
delivers competitive scheduling performance to the stéte- uled successfully by those algorithms, if the processer uti
the-art, with a smaller number of context switches. lization is less than or equal to 100%. However, the number
of migrations and context switches is often criticized. sThi
. scheduling class also provides concise algorithms, such as
1 Introduction EDZL [12] and EDCL [14], which perform with less con-
text switches than the optimal ones, but the absolute worst-
Major chip manufacturers have adopted multicore tech- case processor utilization is still 50%.
nologies in recent years, due to the thermal problems that Recent work [1, 4, 2, 3, 13, 15] have made available a
distress traditional single-core chip designs in termsrof p new class, calledemi-partitioned schedulinig this paper,
cessor performance and power consumption. Nowadaysfor the purpose of finding a balance point between parti-
multiprocessor platforms have proliferated in the market- tioned scheduling and global scheduling. In this schedulin
place, not only for servers and personal computers but alscclass, most tasks are fixed to specific processors as parti-
for embedded machines. The research on real-time systemsdoned scheduling to reduce the number of migrations, while
has been therefore renewed for those multiprocessor plata few tasks may migrate across processors to improve avail-

forms, especially in the context of real-time scheduling. able processor utilization as much as possible.
Real-time scheduling techniques for multiprocessors are This paper presents a new algorithm for semi-partitioned
mainly classified intopartitioned schedulingand global scheduling of sporadic task systems with arbitrary deadlin

scheduling In the partitioned scheduling class, tasks are on identical multiprocessor platforms. We primarily aim at
first assigned to specific processors, and then executed odelivering competitive scheduling performance to theestat
those processors without migrations. In the global schedul of-the-art, with a smaller number of context switches, in
ing class, on the other hand, all tasks are stored in a globaterms of the generic-case schedulability rather than the ab
queue, and the same number of the highest priority tasks asolute worst-case schedulability. The algorithm alsodsin
processors are selected for execution. several benefits as summarized below.

The partitioned scheduling class has such an advantage

; L The algorithm allows tasks to migrate across proces-
that reduces a problem of multiprocessor scheduling into a ° 9 9 b

sors only if they cannot be assigned to any individ-

*This work is supported by the fund of Research Fellowshipthef L!al processors, to Strif:tly dom_ipate the preViQUS algo-
Japan Society for the Promotion of Science for Young Scitmti rithms based on classical partitioned scheduling.

e The algorithm allows migratory tasks to migrate from

EDDHP [13] and its extension, EDDP [15], are designed

one processor to another processor only once in eachin consideration of reducing context switches. The resul-

period, to bound the number of context switches to
be smaller than the complementary algorithms of the

tant scheduling is based on priorities, and no time slots are
reserved for migratory tasks. It is shown by simulations

same sort based on semi-partitioned scheduling. Thisthat they also outperform partitioned scheduling algonih
property also helps to keep runtime processor perfor- The worst-case processor utilization is then bounded by
mance as much as possible, particularly with respect65% for implicit-deadline systems.

to local caches.

The algorithm conforms the scheduling policy to Ear-
liest Deadline First (EDF) [17], to make available the
prior analytical results of EDF.

The algorithm is available for all categories of periodic
and sporadic task systems with implicit, constrained,
and arbitrary deadlines.

The rest of this paper is organized as follows. In the
next section, we review the prior work on semi-partitioned
scheduling. The system model is defined in Section 3.

Those algorithms mentioned above have concerns as fol-
lows. First, since tasks may migrate across processons, eve
though they can be assigned to individual processors, we are
not sure that they are truly moréective than classical par-
titioned scheduling approaches. Then, such tasks may re-
peat migrations in and out of the same processor within the
same period, which is likely to cause cache performance to
degrade. The number of context switches is also problem-
atic due to repetition of migrations. In addition, optional
techniques for EDF, such as synchronization protocols [5]
and aperiodic servers [20], may not be easily applicable, be
cause the scheduling policy is more or less modified from
EDF. In this paper, we address those concerns.

Section 4 then presents a new algorithm based on semi-

partitioned scheduling. Section 5 evaluates its schedulin
performance. This paper is concluded in Section 6.

2 Prior Work

The concept of semi-partitioned scheduling was origi-
nally introduced by EDF-fm [1]. EDF-fm assigns the high-
est priority to migratory tasks in a static manner. The fixed

3 System Model

The system contains: identical processorBy, Po, ...,
Pm, and a set of sporadic tasks = {T1, T», ..., Tn}. Each
sporadic tasKj; is characterized by a tuple (d;, p;), where
¢ is a worst-case computation time, is a relative dead-
line, andp; is a minimum inter-arrival time that is also re-
ferred to as a period. The utilization ®f is then denoted

(non-migratory) tasks are then scheduled according to EDF,0Y Ui = Gi/pi. ForanyT;, ¢i < d; andc; < p; are satisfied.
when no migratory tasks are ready for execution. Since In this paper, we consider such arbitrary-deadline systems

EDF-fm is designed for soft real-time systems, the schedu-

lability of a task set is not tightly guaranteed, while the ta
diness is bounded.

EKG [4] is designed to guarantee all tasks to meet dead-

lines for implicit-deadline periodic task systems. Unlike
EDF-fm, migratory tasks are executed in certain time slots,

that allowT; to have any value af;. Note that the presented
algorithm is also fective to constrained-deadline systems
that meet; < p; as well as classical implicit-deadline sys-
tems that meed;, = p;.

Each taskl; generates an infinite sequence of jobs, each
of which has a worst-case computation time equal tcA

while fixed tasks are scheduled according to EDF. Theob of Ti released at timehas a deadline at tinter di. Any
achievable processor utilization is traded with the number intér-arrival intervals of successive jobsfare separated

of preemptions and migrations, by a paramé&tefhe con-
figuration ofk = mon m processors leads EKG to be opti-
mal, with more preemptions and migrations.

In the later work [2], EKG is extended for sporadic task

by at least length op;.

All tasks are independent and preemptive. An individual
job is not allowed to execute in parallel. When the deadline
of a task is greater than its period, it is possible that a job

systems. The extended algorithm is also parametric with re-Of the task may be released before the preceding job of the

spect to the length of the time slots reserved for migratory
tasks. The authors claim thatd § < 4 seems reason-
able. EDF-SS [3] is a further extension of the algorithm for
arbitrary-deadline systems. It is shown by simulations tha
EDF-SS dfers a significant improvement on schedulability
over EDF-FFD [6], the best performer among partitioned

scheduling algorithms. We are not aware of any other algo-

rithms, designed based on semi-partitioned scheduliady, th
are dfective to arbitrary-deadline systems.

task has completed. In this case, two jobs of the same task
are allowed to execute in parallel.

4 New Algorithm

We present a new algorithm, call&dDF with Window-
constraint Migration (EDF-WM) , based on the concept of
semi-partitioned scheduling. Given the migration and pre-
emption costs, EDF-WM allows a task to migrate, only if

release time d deadline
. k .

' » !
Y >

p |

Ty

=

c

2

5 P

E fixed |

S| K fixed fixed Y R fixed P

o
o

0% -*-- Figure 2. Concept of EDF-WM scheduling.
P P, Py P,
Figure 1. Concept of semi-partitioning. be assigned t¢;, and P,, while some tasks may be later

assigned td”3;. Note that the bound of processor utilization
to be filled to depends on algorithms.
no individual processors have remaining capacity enough The remaining tasks are also assigned to processors in
to accept the full share of the task, in such a manner thatthe same manner. Since the utilization Tf.; is small
it is never migrated back to the same processor within theenough to be fixed t&; or Pa, it is assigned td; accord-
same period, once it is migrated from one processor to an-ing to a first-fit heuristic. Ty, is then split acros®; and
other processor. The same approach is introduced in [16]P,. As a result, a processor may include more than one mi-
but is based on the fixed-priority policy, while we consider gratory task, such aB; in the example. Note that a task is

the algorithm with its basis on EDF in this paper. not necessarily split across continuous processors, thibug
_ is done in the example for simplicity of explanation.
4.1 Basic Approach In the scheduling phase, a migratory task must be ex-

ecuted exclusively among processors, since an individual

The approach considered here is a superset of traditionajob is not allowed to execute in parallel. EDF-WM there-
partitioned scheduling. Each task is assigned to an individ fore splits the deadline of each migratory task into the same
ual processor according to a first-fit heuristias long asit number of windows as the processors across which the task
can be. A task is then decided to be migratory, only when is qualified to migrate.
no individual processors have remaining capacity enough Figure 2 shows an example of scheduling a migratory
to accept the full share of the task. In terms of utilization taskTy that is split across the three processors, as the pre-
share, the task isplitinto more than one processor. As are- vious example. The deadline is split into three windows.
sult, EDF-WM strictly dominates the traditional partitesh ~ The task is presumed to be released at the beginning of a
scheduling approaches. To the best of our knowledge, nowindow and to have a deadline at the end of a window. The
previous algorithms based on semi-partitioned schedulingtask is then scheduled according to EDF, based on such a
strictly dominate them. pseudo-deadline, on each processor. Since the task is never

Figure 1 shows an example of semi-partitioning on four executed out of the window, it is guaranteed that multiple
processors. This example assumes that tasks with smalleprocessors never execute the task simultaneously.
index thark are already assigned (fixed) to processors. We An issue of concern here is how to determine the length
then consider a case in which a tdgkcannot be assignedto of a window and the amount of time which a migratory task
any individual processors. In traditional partitioningch is allowed to consume within a window. We will describe
Tk is not schedulable. In semi-partitioning, on the other the details of the algorithm in Section 4.3.
hand,Ty is split across more than one processor, for instance
three processoigy, P, andPs. 4.2 Demand Bound Function

A task is split in such a way that a processor is filled to
capacity by the portion of the task assigned to the proces-

sor. However, only the last processor to which the portion duce the demand bound function [9] that will be used in

is assigned may not be filled to capacity, because the Size[he remainder of this section. The demand bound function

of the portion is not necessanl_y equal to the remaining CE_l_dbf(Ti, L), given by Equation (1), computes the maximum
pacity of the processor. Thus, in the example, no tasks will 4
amount of time, so-callegrocessor deman@¢onsumed by

1n fact, any partitioning methods are available under EDREW all jobs of a taskT; that have both release times and dead-

Before the algorithm description of EDF-WM, we intro-

D W, On splitting a task, we need to determalfg, andc; , for
> each processd?, so that all tasks are guaranteed schedula-
| | [| | | [| | | [| ble. To this end, EDF-WM makes use of the demand bound
function. For a fixed (non-migratory) task, the processor
Dr Dr Dy demand is obviously given by Equation (1). For a migra-
tory taskTy, on the other hand, we need to replakkeand
Ck with dp andck for eachPy. The processor demand of
Tk consumed ofP, is thus given by Equation (5), assuming
thatd, , andc, , are known.

Y

Figure 3. Each window of a migratory task is
separated by at least length of the period.

lines within an interval of length. dbf(T, L) = max(o - df(,xJ + 1) o (5)
) - > Kk, X
P i
L —
dbf(Ti, L) = max(o,{ i |+ 1) Gi (1) We now explain how to compute the valuesdyf and

. Letty be a set of tasks that are already as&gné?t(to
It has been shown [9] that an EDF-feasibility of Then, d; , andc; , must be such values that satisfy Inequa-
arbitrarily-deadline sporadic task systems can be tested b tion (6) for\/L > 0.
the demand bound function: all tasks are guaranteed to meet

deadlines by EDF on single processors, if and only if the Z dbf(Ti, L) + dbf(Ti, L) <L (6)
following condition holds foivL > O. Tier
In order to calculate one af , andd, , back from In-
Z dbf(Ti. L) <L (2) equation (6), the other of them must be known Due to this
Tier dilemma, EDF-WM gives), , such thatd; = dk/s, where

In fact, we only need to verify the condition above for sis the number ofprocessors across wﬁl‘(;hs split. Here-
those values of. that are aligned with deadlines of jobs. after,d,, = di/sfor ¥xis unified byd; = dk/s, since they
According to [10], the length of check points is also reduced all have 'the same value. With sudp) we determine; , as
to a finite number of.* given by Equation (3), wherk, is the minimum of Equation (7) fovL (d, < L < L*) aligned

given by Equation (4) an@{ is a hyperperiod of. with deadlines of jobs. Note that those values.6f d; can
_ be ignored, because the processor demarni oé always
L* = min(La, H) 3) zero.
~ Yre(pi — dh)u; L = Y1er, dbf(Ti, L)
La = max{m, maX(d, | T| € T)} (4) CI;,)(— Ilfdz (7)
[WJ +1

4.3 Algorithm Description: Semi-Partitioning To improve schedulability, it is better to splik across

processors so thaf , is maximized. The value of, ,
dominated by two factors. One isthat dfectsd;. The
Bther iSY1,er, dbf(T;, L) that dfects the available processor
demand. We therefore make the following policy to spiit

The scheduling policy of EDF-WM is strictly subject
to EDF, once tasks are assigned to processors successfull
apart from that the relative deadline of each migratory task
is transformed to the length of a window. All we have to do
in the semi-partitioning phase is thus to assign the window e According to Equation (")« is monotonically in-
and the processor demand to each migratory task in such a creasing with respect i, = di/s. Hence, the value of

way that the processor utilization is maximized without-tim sshould be small. In consideration of this, we first as-
ing violations of the already-assigned tasks. The follavin sumes = 2. We then incremerg until Inequation (8)
describes the details of the algorithm. is met, wherer, denotes a set of processors under

Let T be a migratory task whose share is assigned to a consideration, across whidf is split.
processolPy. We denote the length of a window assigned
to Tk on Px by wix. Here the value ofvy is fixed, once Z CL,X = Ck (8)
it is determined. Thus, each window @f is separated P&
by at least length op on anyPy, as shown in Figure 3.
This means that we can regafd as an arbitrary-deadline
sporadic task with a (relative) deadling x and a period
px- Henceforth, such a pseudo-deadlineTgfis denoted o If sreachesnbut Inequation (8) is not met yely can-
by d, = Wix. The amount of time thafy is allowed to not be successfully split across the processors, which
consume |rd|’(y is also denoted bgz{ex. means thaly is not schedulable with the algorithm.

e Ty is then split across suchprocessors that provide
greater values afy ,.

1. s=2;
2. if s> mthenreturnFAIL; end if
3. dl/< = dk/S;
4, for x=1tomdo
5. c’k,x = calc_exectimg(Ty, Py);
6. end for
7. Ietc;gZ be thesth greatest inc;(,X [1<x<my;
8. mc={Pxlc,>c,}
9. if Xp,en Cx < Ck then
10. s=s+1;
11. goto 2.;
12. else
13 G, =G~ (Xpem Cx — s
14. for each Py € mx do
15. Tx = Tx U {Tk};
16. end for
17. endif
18. returnSUCCESS

Figure 4. Pseudo-code of split_taskTy).

We here need to calculate the lengthL6f Equation (4)
requwesuk x = Ciox/ P while we will obtamc; . afterwards.
In fact, Equation (4) can be transformed to Equation (9) for

7x andTy, whereD = max(; | T; € 7).
d)u,
K k‘X,D} (9)

{ZTierx(pi —di)ui + (px -
La = max

1 - ZTiETx Ui - u/

k,x
Equation (9) implies that, is monotonically increasing
with respect tay, . Here,u; , must satisfy Inequation (10),
otherwise a task set aSS|gned3tp|s not schedulable.

<{1—Zui]pk

Tiery

Based on the discussion above, we first assuge H
andc,, = (1 - Xrer, U)pe If the value ofc , is reduced
by Equation (7), we recalculate Equation (9). Singeis
monotonically increasing with respect ¢, , the value of
L, is also reduced. The procedure of calculattpgs then
finished, wherL reached_, or when the renewed value of
L, is less than or equal to the current valud.of

Finally, the pseudo-code of the functicsplit taskTy),
for splitting a taskT is indicated in Figure 4. It first sets
s = 2, and then calculatesﬁX for each processadpy. If
Ypen Cix dO€S not reachy, the same procedure is repeated
with s = s+ 1. OtherwiseT; is assigned to each & € .
Note thatc, , needs to be adjusted at line 13, sifas the
last processor that is not necessarily filled to capacitynby t
last portion ofT;. The algorithm returns failure only when
sexceedsn (line 2).

u,<1- U © c 10
K, X K, X

Tietx

1. gy=0-Zre Wp L =H;
2. foreachT; e U {Ty} do
3. a=(d-d)/pl,
4, while L = ap; +d/ < L* do
5. ¢ ={L —dbf(rx, L)}/{L(L — d)/px] + 1};
6. if c< C/k,x then
7. Cf<,x =C
8. = Equation (9), wherey , = ¢, /Py
9. end if
10. a=a+1;
11. end while
12. end for
22. returnc ;

Figure 5. Pseudo-code of calc_exectimg(Ty, Py).

Due to limitation of space, we illustrate the function,
calc_exectimg(T, Px), associated with calculating , (at
line 5) in Figure 5. In the pseudo-codejs a natural num-
ber, anddbf(ry, L) represents’y..,, dbf(T;,L). For fixed
tasks, let us definel = d; for unifying the description
of deadlines, since migratory tasks are considered to have
deadlines! = di/s, as we defined before. Then, it finds out
the minimum ofc, , forall L = api + d < L. The value
of @ set at line 3 guaranteds> dy. The value ofL* is then
renewed every time{, is renewed (line 6 t0 9).

The time complexity for calculating eactj, by the
calc_exectimefunction is closely bounded to that of the de-
mand bound function. Since we need to call the function
times to obtairc , for all m processors (line 4-6 in Figure
4), and this procedure may be repeated umte 1 times
(s= 2 tomin Figure 4), the resultant time complexity may
be high, as compared to a simple schedulability test based
on the demand bound function. However, we see this time
complexity problem only when a task cannot be assigned to
any individual processor. So the time complexity is traded
with schedulability improvements.

Task sorting problem. Most partitioning algorithms [6]
sort a task set before they assign tasks to processors, to im-
prove achievable processor utilization. We consider that
EDF-WM is also likely to perform better, if a task set is
sorted in non-increasing order of deadline. The reason is
given as follows. The value df, ,/d;, is greater as the
value ofd, , is smaller, since the avallable processor de-
mand Wlthln a time interval of any length is fixed. It is
clear that the greatecqﬁx/d x = squ/dk is, the greater
U = Cry/ Pk is. We know thafT is split when most tasks
are partitioned, so the value df is likely small by sorting a
task set in non-increasing order of deadline, which leads to
a greater value ofi ,. Given that the processor utilization
achievable by EDF-WM depends on eagh, task sorting
also brings schedulability improvements to EDF-WM.

function schedul€Py): allowed to consume the amount of time beyafyg on Px.

1. if T;existsthene, = e, — (t — tiasy); €nd if Note that, for a migratory tasky represents the remainder

2. tlast=t; _ _ of ¢, on eachP,. The timer set here is deleted,Tf is

3. selecfTy such thaty = min{d; | a < t, Tj € y«}; preempted later before it consunggsg (line 8-10). Finally,

4, if Ty # Tcthen the context is switched fromi, to Ty, if they are diterent

5. if Ty is a migratoryand tasks (line 11).

y = min{z| P; € nrx, z> X} existsthen A migratory task Ty is migrated fromPy to Py by

6. settimer(migrate(Ty, Py, Py), t + &); migrate(Ty, Px, Py). It removesTy from yx and inserts it

7. end if toyy (line 11). It then updates, di, ande (line 12). Since

8. if T¢ is a migratory taskhen Tk will have a pseudo-release tinag on Py, a timer func-

9. deletetimen(Ty); tion is set to invokescheduléPy) at timea,. Although Ty
10. end if is now ready orPy, it is never selected for execution before
11. switch toTy from Tg; a, since only the tasks with release times set earlier than
12. endif the current time will be scheduled, as described at line 2.

We assume thateleas€Ty, Pyx) and completéTy, Py)

function migrate(Ty, Py, Py):
13, wx=yw\{Th yy=w U
14, a=dg dk=ax+d; e = ck
15. settimer(scheduléPy), a);

(T are called wherT k is released and completes respect.ively.
scheduléPy) is then called at the end of those functions,

since we need to schedule a next task. Note that more than

onereleaséTy, Px) may be called at the same time, if more

function completéTy, Py): than one task has the same release time. In this case, we
16, yx=yx \{Tkh do not have to calscheduléP) every time but call it once

17. scheduléPy); after all suchreleaséTy, Py) are executed.

function releaséTy, Py): _ Recall tha_lt Fi_gure 6_is a pseudo-code. The algorithm
18. yx=yxU(Ti &=t |mplementat|o.n in practice depends on develepers. Or_1e of
19. if Teisa migratory taskhen our concerns is that EDF—WM need_s to use kinds of high-
20. e = t+ d; &= ¢ elsedy = t + di; & = Cc; resolution timers for executions of migratory tasks after a
21. endif This is a common problem more or less for such algorithms
22, scheduléPy): [4, 2, 3, 13, 15] that are based on semi-partitioned schedul-

ing. Implementation issues are left open.
Figure 6. Pseudo-code of EDF-WM scheduler. 4.5 The Number of Context Switches

In practical real-time systems, the number of context
4.4 Algorithm Description: Scheduling switches should be bounded, so as to estimate runtime over-
head. Given that a context is switched only when jobs are
Figure 6 shows the pseudo-code of EDF-WM scheduler. preempted or complete in EDF scheduling, the number of
In the pseudo-codey, dy, andec denote the absolute re- context switches is bounded as follows.
lease time, the absolute deadline, and the remaining execu- Letnp(T;, L) andnd(T;, L) be the number of preemptions
tion time of a task respectivelyyy is a set of ready tasks generated by a task and the number of job completions
onPy. T, represents a currenttask Bp. tis a currenttime, of T; respectively, within a time interval [Q).
andtjst is a last time at which the scheduler is invoked. We first considef; as a fixed task. Since the scheduling
Due to limitation of space, we defirsettimer(funcgt) as policy is based on EDH;; may generate a preemption every
a function that sets a timer to invoke the specified function time its job is released, if it has the earliest deadline.dé¢en
funcat timet. We also definéeletetimer(Ty) as afunction ~ we havenp(T;, L) < [L/pi1. The number of job completions
that deletes a timer set previously. Most operating systemsof T; is then bounded to the number of its job releases, so
e.g. Linux, prepare those timer functions. we also haven((Ti,L) < [L/pi]. As a resultnp(T;, L) +
All tasks assigned t®y are scheduled ischedul€Py). no(Ti, L) < 2[L/pi] is derived.
The function first records the remaining execution time of ~ We then considerF; as a migratory task split across more
the current task (line 1), and then selects such a Task than one processor. LB andP, be the first processor and
that has the earliest deadline in a set of ready tasks withthe last processor respectively: jobsTofare released on
release times earlier than the current time (line 3Jlfs a Py and complete of?,. We havenc(T;, L) < [L/p;] for Py,
migratory task, we set a timer to preeniptand migrate it andnd(T;, L) = O for any other processors. The number of
to the next processor at timeeg (line 5-7), becauseitisnot preemptions is bounded as follows.

On the first processoPy, T; may generate a preemp-

“EDF-SS(DT4)” and “EDF-SS(DT)” are EDF-SS with =

tion every time its job is released, and it also generates a4 ands = 1 respectively.

preemption every time it consumeg, time units. Thus,
we havenp(T;,L) < 2[L/p]. On the last processd?,,

Ti may generate a preemption every time its assigned win-
dow begins. Since the window appears at evgrywe
havenp(T;,L) < [L/pi1. On any middle processd? if

it exists, T; may generate a preemption every time its as-

5.1 Simulation Setup

Each task set is randomly generated, with a set of pa-
rameters tfsys M, Umin, Umay), SO that the total processor

signed window begins, and it also generates a preemptiorPt'“Z"J‘t'on gets equal twisysx m, in which the utilization

every time it consumes, time units. As a result, we have
np(Ti, L) < 2[L/p;i1. From the discussion above, we derive
the following condition for anyf;.
L
np(Ti, L) + n(T;, L) < 2{3} (11)
i
Let ncqL, Py) be the number of context switches on any
processoiPx within a time interval [QL). It is then clear
thatncqL, Py) is bounded by Inequation (12).
L

5]

Let E be the execution cost of one context switch. Fi-
nally, we can apply the above analysis to the demand boun
function so that the amount of time available for the execu-
tion of tasks on a processB within a time interval [QL)
is reduced td_ — ncqL, Py) x E.

The number of migrations is also bounded in the same
way. LetT; be a migratory task. Sincg is migrated only

ncqL,Py <2 >

Tietx

(12)

once within a period from one processor to another proces-

sor, the number of migrations fdr within a time interval
[0,L) is at mosts[L/p;], wheres is the number of proces-
sors to which the share af is assigned.

5 Evaluation

This section studies theffectiveness of EDF-WM to
sporadic task systems with arbitrary deadlines, through se
eral sets of simulations. We compare EDF-WM with EDF-
SS [3] and EDF-FFD [6], because (i) we are not aware of
any other algorithms, based on semi-partitioned scheglulin
that are designed for arbitrary-deadline systems, and (i)
EDF-FFD is found to be the champion among partitioned
scheduling algorithms [6]. EDF-SS has a paramétirat
trades schedulability with the number of context switches.
Since the authors claim that4 § < 4 seems reasonable
[3], we prepareé = 1 ands = 4.

The simulation results show that EDF-WNMfers com-
petitive performance to EDF-SS, far beyond EDF-FFD,
with a small number of context switches. Throughout the
simulations, “EDF-WM" denotes the presented algorithm
without task sorting. “EDF-WM(sort)” then denotes the
one with task sorting in non-increasing order of deadline.

of an individual task is uniformly distributed in the range
Of [Umin, Umax- The minimum inter-arrival of an individual
task is randomly determined in the range of [180Q00]. For
every taskT;, onceu; andp; are known, we compute the ex-
ecution time ofT; by ¢; = u; x p;. The deadline of; is then
arbitrarily computed in the range of < d; < 2p; — ¢;.

Due to limitation of space, we conduct simulations with
the following setups. The total processor utilization is se
every 5%. The number of processors is themset4, m =
8, andm = 16. We limit a pair of (min, Umay to (0.1, 1.0),
(0.5,1.0),and (01, 0.5).

We generate 1,000,000 task sets for every prepared set
of (Usys M, Umin, Umay), t0 assess the schedulability of an
algorithm. Throughout simulations, a task set is said to be

d'successfully scheduled, if all tasks in the task set are suc-

cessfully assigned to processors, since the tasks arerguara
teed schedulable under semi-partitioned scheduling ds wel
as partitioned scheduling, once they are successfully as-
signed to processors. Thé&ectiveness of an algorithm is
then estimated bguccess ratinthe ratio of the number of
successfully-scheduled task sets.

The number of context switches bounded by each algo-
rithm, is also measured to estimate runtime overhead. As
we discussed in Section 4.5, the number of context switches
for EDF within a time interval of lengtl. is bounded by
23 1e.[L/pi1. We refer to Inequation (12) for EDF-WM.
For EDF-SS, we refer tdheorem 1 demonstrated in [3],
but we add the number of job completions, bounded by
2Tl L/pi1, to the result of the theorem, because only pre-
emptions are considered there.

5.2 Simulation Results

Figure 7, Figure 8, and Figure 9 show the results of the
guaranteed schedulability for each algorithm, with respec
to differentm, umin, andumax Due to limitation of space, we
briefly discuss the results here.

EDF-WM and EDF-SS outperform EDF-FFD, particu-
larly in the presence of heavy tasks with utilization greate
than 05, as shown in Figure 7 and Figure 8, since heavy
tasks are more likely to fail being assigned to individual
processors than light tasks in partitioning.

Among the four algorithms: EDF-WM, EDF-WM(sort),
EDF-SS(DTV4), and EDF-SS(DT), the best performance

T T T T T T T T T T T T T

B B et = % 1 p—a—a—a—= N B

B 0.8 [B 0.8 B
]]]
® ® ®

@ 1 o 06 1 o 06 1
[[[
0] \ o] o]

g | g “ g ‘
@ b @ 04F 4 @ 04r H
EDF-WM —+— EDF-WM —+— k EDF-WM —+—
EDF-WM(sort) EDF-WM(sort) EDF-WM(sort)
0.2 - EDF-SS(DT/4) ------ b 0.2 - EDF-SS(DT/4) ------ 0.2 - EDF-SS(DT/4) ------ b
EDF-SS(DT) & EDF-SS(DT) & EDF-SS(DT) &
EDF-FFD EDF-FFD EDF-FFD 5
0 L L L ! L L L 0 L L L ! L L 0 L L L ! L L .
06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1
System utilization System utilization System utilization
(@m=4 (b)y m=8 (c) m=16
Figure 7. Guaranteed schedulability: (Umin, Unay) = (0.1, 1.0).
T T T T T T T T
1 1 - KKKy 1 S Bt R

0.6 [0.6

Success ratio

Success ratio
=)

Success ratio

04 04 |

EDF-WM —+— 5 EDF-WM —+— EDF-WM —+——
EDF-WM(sort) EDF-WM(sort) EDF-WM(sort)
0.2 - EDF-SS(DT/4) ---%--- b 0.2 - EDF-SS(DT/4) ---%--- b 0.2 |- EDF-SS(DT/4) ---*--- b
EDF-SS(DT) & EDF-SS(DT) = ol EDF-SS(DT) &
EDF-FFD EDF-FFD EDF-FFD Y
O Il Il Il Il Il O Il Il Il Il Il L O Il Il Il Il L
06 065 07 075 08 085 09 095 1 0.6 065 0.7 075 08 085 0.9 095 1 0.6 065 0.7 075 08 085 0.9 095 1
System utilization System utilization System utilization
(@m=4 (b)y m=8 (c) m=16
Figure 8. Guaranteed schedulability: (Umin, Umay = (0.5, 1.0).

is achieved by EDF-SS(D%). EDF-WM(sort) and EDF- ever not much fiected by the range of periods and dead-
SS(DT) are then competitive to each other. According to the lines, since the scheduling policy is subject to EDF.
results, task sets are often scheduled successfully bg thos In most cases, EDF-SS(IM) causes about four times as
algorithms, even though the system utilization is around many context switches as EDF-SS(DT), regardless of a set
90%. EDF-WM is inferior to them but is still much bet- of m, Umin, @aNdumax. This means that the value éfeflects
ter than EDF-FFD. Notice that EDF-WM does not sort a the number of context switches in EDF-SS. Meanwhile, the
task set in advance, while all other ones do. Particularly number of context switches for EDF-WM is bounded to at
for task sets containing only light tasks, task sorting does most three times as much as EDF-FFD.
not provide much impact any more, as shown in Figure 9. e also observe that the relative number of context
Given that we may not always have a chance to sort a tasksyjitches for EDF-SS is often greater as the system utiliza-
setevery time a new task is generated at runtime in dynamicjon, is lower. Remember that EDF-SS is willing to split
systems, we see théfectiveness of EDF-WM. tasks across processors, even though they can be assigned
Figure 10, Figure 11, and Figure 12 show the results of to individual processors, while no tasks are split by EDF-
the number of context switches relative to EDF-FFD for WM, as long as a task set is partitioned successfully. As
each algorithm, with respect toftérentm, Umin, andumax. a result, the number of context switches for EDF-WM is
Clearly, EDF-SS generates more context switches thanequal to that for EDF-FFD, when the system utilization is
EDF-WM and EDF-FFD, occasionally more than two hun- not much high, meanwhile that for EDF-SS is relatively
dreds times as many as them. In fact, the number of contexigreater. EDF-SS gradually approaches EDF-WM and EDF-
switches for EDF-SS is dependent on the length of periodsFFD as the system utilization approaches 100%, however,
and deadlines, since the size of slots reserved for migrator even for§ = 1, the number is still five to twenty times as
tasks is aligned with the minimum of the periods and dead- much as them. Given that EDF-WM(sort) is competitive to
lines. Therefore, the number would be smaller as the rangeEDF-SS(DT) in terms of schedulability, itsfectiveness is
of periods and deadlines is smaller, whereas it would bemore obvious when the number of context switches is taken
more increased as the range is greater. EDF-WM is how-into account.

T T T T T T T T T T T T T T T T T T T
1 ok 1 o — TR RE] 1 S
A b
. 3
08 08 1 08 1
o o a o m |
s s I I |
s 06 s 06 \ s 06 |5
(%3 (%3 H [1Y
@ @ i @)
Q Q K Q \
S S 1] S |
3 04f 3 04f 14 3 04r 17
EDF-WM —+— EDF-WM —+— \ EDF-WM —+— \
EDF-WM(sort) \ EDF-WM(sort) o | EDF-WM(sort) \
0.2 - EDF-SS(DT/4) -~ 1l 0.2 - EDF-SS(DT/4) -~ h 0.2 |- EDF-SS(DT/4) -~ ¥
EDF-SS(DT) & \ EDF-SS(DT) & | EDF-SS(DT) & oo
EDF-FFD | EDF-FFD EDF-FFD
0 L L L L L L L 0 L L L L L L L 0 L L L L L L L
06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1
System utilization System utilization System utilization
(@m=4 (b)y m=8 (c) m=16
Figure 9. Guaranteed schedulability: (Umin, Unay = (0.1, 0.5).
o 250 T T T o 160 T T T T T o 120 T T T T T
2 EDF-WM —+— 2 . EDF-WM —+— 2 % K EDF-WM —+—
K] ' x EDF-WM(sort) 2 qwofx., N EDF-WM(sort) i K] Y EDF-WM(sort)
2 oo00 L% EDF-SS(DT/4) % | H L « EDF-SS(DT/4) - = 100 [. EDF-SS(DT/4) -
bt L EDF-SS(DT) & £ a0k P EDF-SS(DT) 8- | 2 . «..% EDF-SS(DT) &
3 EDF-FFD 3 % EDF-FFD 3 ook ._ EDF-FFD
z £y 5 . T 80 X R
§ 150 RS B g 100 - KoKy *] 3 Xk K- - K
<] : LxeX k] L% k] wEEL
g e *ox g 80r o 2 60f or
Qo Qo *-- Qo
E 100 - TR E g b] £
2 2 2 40 R
o o o
2 2 40F q 2 a
5 soffm. . ” b K] BB Pgn =] g Begg-8-B.g
® DDDDDDDD ° 20 L -G g-B DDDD— ° 20 + BBegGBg]
© = B © ©
= = = »
06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1

System utilization

(@m=4

Figure 10. The worst-case number of context switches relati

6 Conclusion

System utilization

(b)ym=8

System utilization

(c) m=16

ve to EDF'FFD. (Umin, Umax) = (O.l, 1.0).

References

In this paper, we presented a new algorithm for semi- [1] J. Anderson, V. Bud, and U.C. Devi. An EDF-based Schedul-
partitioned scheduling of sporadic task systems with arbi-
trary deadlines on identical multiprocessor platformse Th
new algorithm strictly dominates the classical partitidne
scheduling approaches, since tasks are qualified to migrate,
only if they cannot be assigned to any individual processors
The numbers of context switches and migrations are also
bounded, since tasks migrate only once in each period. Fur-

thermore, most optional techniques for EDF may be avail-

able on the new algorithm with minimunfferts, since the
scheduling policy is subject to EDF.
According to the simulation results, the new algorithm

offers competitive schedulability to the best known al-

gorithm designed for arbitrary-deadline systems, with a
smaller number of context switches.
In future work, we will consider resource augmentation

[19] bounds for the new algorithm by applying the tech-

nigues presented in [8]. We will also consider windows of

different lengths for the purpose of improving schedulabil-

ity, though the length of windows is evenly split in the pre-
sented approach. The evaluation of the algorithm with more
variety of setups, as the ones in [6], is left open.

[3] B. Andersson, K. Bletsas, and S. Baruah.

(4]

[6] T.P. Baker.

ing Algorithm for Multiprocessor Soft Real-Time Systems.
In Proc. of the Euromicro Conference on Real-Time Systems
pages 199-208, 2005.

B. Andersson and K. Bletsas. Sporadic Multiprocessor
Scheduling with Few Preemptions.Pmoc. of the Euromicro
Conference on Real-Time Systepeges 243-252, 2008.

Scheduling
Arbitrary-Deadline Sporadic Task Systems Multiprocessor
In Proc. of the IEEE Real-Time Systems Sympospages
385-394, 2008.

B. Andersson and E. Tovar. Multiprocessor Schedulinthwi
Few Preemptions. IRroc. of the IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and
Applications pages 322—-334, 2006.

[5] T.P.Baker. Stack-based Scheduling of Real-Time P&es

Real-Time System3:67-99, 1991.

Comparison of Empirical Success Rates of
Global vs. Partitioned Fixed-Priority and EDF Scheduling
for Hard Real Time. Technical report, Department of Com-
puter Science, Florida State University, 2005.

The relative number of context switches

The relative number of context switches

[7

—_—

[8

—_

[9

—_—

[10]

[11]

[12]

[13]

250 T T T o 180 =% T T T T o 160 T T T T
EDF-WM —+— 2 SRS EDF-WM —+— 2 % EDF-WM —+—
e Xex EDF-WM(sort) S 160 | X EDF-WM(sort) g S 1wl x EDF-WM(sort) i
200 L ", EDF-SS(DT/4) ---%-- | H EDF-SS(DT/4) ------ H R S EDF-SS(DT/4) ------
. EDF-SS(DT) @& < 140 EDF-SS(DT) & - < 120 F *, EDF-SS(DT) & |
EDF-FFD 5] 120 ** x_ EDF-FFD 5] * EDF-FFD
150 - KKK Kk E g *** KK § 100 - IR X]
* « 5 100 * oy 5 * *e *
R—— ° = 80 Bl
100 - ’ 1g er 1 £
2 eof g 2 oor i
o o
= b Beg a i = 40 gro.. g B
50 O &-a. i = 40 = = g Bege.g
= ‘E‘i ol BgBgeg-g.. 5.0 a9 | ‘E‘: 20 - Begea Bg-Bm.gg |
2 2
06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1 06 065 0.7 075 08 085 09 095 1
System utilization System utilization System utilization
(@m=4 (b)y m=8 (c) m=16

Figure 11. The worst-case number of context switches relati ve to EDF-FFD: (Umin, Umay = (0.5, 1.0).

80 T T T T o 60 T T T T o 45 T T T T T
EDF-WM —+— 2 EDF-WM —+— 2 3 EDF-WM —+—
0L % EDF-WM(sort) i s x EDF-WM(sort) S 40 x EDF-WM(sort) e
KT ey EDF-SS(DT/4) -~ : 50F X EDF-SS(DT/4) % - H PRIV EDF-SS(DT/4) ------
60 L * EDF-SS(DT) & | 2 xS EDF-SS(DT) & 2 35t - EDF-SS(DT) &
RN EDF-FFD 3 X EDF-FFD H X EDFE.FFD
* € 40| | g € 30| we Ky g
50 * AR g S ook X 8 Kook ¥
5 xR 5 25 e A
40 + L E 5 30 T 5 *oos
K g & 20t 1
L , S S
80 2 20 R 2 15 R
Npg-o.g g 5] £ Begeg - 2 10 Fe-a®re g R
10 v B-g DDDD ERa % 0 - Yfefeies o % 5F TEeRefeag
2 2
i) o e == - = — = = — = — -y
06 065 07 075 08 085 09 095 1 06 065 07 075 08 085 09 095 1 06 065 07 075 08 085 09 095 1
System utilization System utilization System utilization
(@m=4 (b)y m=8 (c) m=16

Figure 12. The worst-case number of context switches relati ve to EDF-FFD: (Umin, Umay = (0.1, 0.5).

S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor- [14] S. Kato and N. Yamasaki. Global EDF-based Scheduling
tionate Progress: A Notion of Fairness in Resource Alloca- with Efficient Priority Promotion. IrProc. of the IEEE In-
tion. Algorithmicg 15:600—625, 1996. ternational Conference on Embedded and Real-Time Com-

S. Baruah and N. Fisher. The Partitioned Dynamic-Ptyori puting Systems and Applicatiorages 197-206, 2008.

Scheduling of Sporadic Task SystenReal-Time Systems [15] S. Kato and N. Yamasaki. Portioned EDF-based Schedul-
36(3):199-226, 2007. ing on Multiprocessors. IiProc. of the ACM International

S. Baruah and A. Mok. Preemptively Scheduling Hard-Real Conference on Embedded Softwarages 139-148, 2008.

Time Sporadic Tasks on One ProcessoPiac. of the IEEE ~ [16] S. Kato and N. Yamasaki. Semi-Partitioned Fixed-Rtyor

Real-Time Systems Symposipages 182190, 1990. Scheduling on Multiprocessors. Rroc. of the IEEE Real-
Time and Embedded Technology and Applications Sympo-

G.C. Buttazzo. HARD REAL-TIME COMPUTING SYS- sium 2009.

TEMS: Predictable Scheduling Algorithms and Applications)))

Second EditionSpringer, 2005. [17] C.L.LiuandJ.W. Layland. Scheduling Algorithms for Mu
. . tiprogramming in a Hard Real-Time Environmeritournal

H. Cho, B. Ravindran, and E.D. Jensen. An Optimal Real- of the ACM 20:46—61, 1973.

Time Scheduling Algorithm for Multiprocessors. Rroc.
of the IEEE Real-Time Systems Symposjeges 101-110,
2006.

S. Cho, S.K. Lee, A. Han, and K.J. Lin. fii€ient Real-
Time Scheduling Algorithms for Multiprocessor Systems.
IEICE Transactions on Communicatiqris85-B(12):2859—
2867, 2002.

[18] J.M. Lopez, J.L. Diaz, and D.F. Garcia. Utlization Badsn
for EDF Scheduling on Real-Time Multiprocessor Systems.
Real-Time System28:39-68, 2004.

[19] C.A.Phnillips, C. Stein, E. Torng, and J. Wein. Optimahe-
Critical Scheduling via Resource Augmentation.Plroc. of
the Annual ACM Symposium on Theory of Compuyfiages
140-149, 1997.

S. Kato and N. Yamasaki. Real-Time Scheduling with Task [20] M. Spuri and G.C. Buttazo. Scheduling Aperiodic Tagks i

Splitting on Multiprocessors. IRroc. of the IEEE Interna- Dynamic Priority Systems.Journal of Real-Time Systems
tional Conference on Embedded and Real-Time Computing 10:179-210. 1996

Systems and Applicationgsages 441-450, 2007.

