
Semi-Partitioned Scheduling of Sporadic Task Systems on Multiprocessors∗

Shinpei Kato†, Nobuyuki Yamasaki‡, and Yutaka Ishikawa†
†Department of Computer Science, The University of Tokyo, Tokyo, Japan

‡Department of Information and Computer Science, Keio University, Yokohama, Japan
shinpei@il.is.s.u-tokyo.ac.jp, yamasaki@ny.ics.keio.ac.jp, ishikawa@is.s.u-tokyo.ac.jp

Abstract

This paper presents a new algorithm for scheduling of
sporadic task systems with arbitrary deadlines on identical
multiprocessor platforms. The algorithm is based on the
concept of semi-partitioned scheduling, in which most tasks
are fixed to specific processors, while a few tasks migrate
across processors. Particularly, we design the algorithm so
that tasks are qualified to migrate only if a task set cannot
be partitioned any more, and such migratory tasks migrate
from one processor to another processor only once in each
period. The scheduling policy is then subject to Earliest
Deadline First. Simulation results show that the algorithm
delivers competitive scheduling performance to the state-of-
the-art, with a smaller number of context switches.

1 Introduction

Major chip manufacturers have adopted multicore tech-
nologies in recent years, due to the thermal problems that
distress traditional single-core chip designs in terms of pro-
cessor performance and power consumption. Nowadays,
multiprocessor platforms have proliferated in the market-
place, not only for servers and personal computers but also
for embedded machines. The research on real-time systems
has been therefore renewed for those multiprocessor plat-
forms, especially in the context of real-time scheduling.

Real-time scheduling techniques for multiprocessors are
mainly classified intopartitioned schedulingand global
scheduling. In the partitioned scheduling class, tasks are
first assigned to specific processors, and then executed on
those processors without migrations. In the global schedul-
ing class, on the other hand, all tasks are stored in a global
queue, and the same number of the highest priority tasks as
processors are selected for execution.

The partitioned scheduling class has such an advantage
that reduces a problem of multiprocessor scheduling into a

∗This work is supported by the fund of Research Fellowships ofthe
Japan Society for the Promotion of Science for Young Scientists.

set of uniprocessor one after tasks are partitioned. In addi-
tion, it does not incur runtime overhead as much as global
scheduling, since tasks never migrate across processors.
However, there is a disadvantage in schedulability bounds.
In fact, any partitioned scheduling approaches may cause
deadlines to be missed onm processors, if the total proces-
sor utilization exceeds (βm+ 1)/(β + 1), whereβ = ⌊1/α⌋
andα is a maximum utilization of individual tasks [18]. Let
α = 1 andm→ ∞, then the worst-case processor utilization
is bounded by 50%.

The global scheduling class is attractive in the worst-case
schedulability. In this class, Pfair [7] and LLREF [11] are
known to be optimal algorithms. Any task sets are sched-
uled successfully by those algorithms, if the processor uti-
lization is less than or equal to 100%. However, the number
of migrations and context switches is often criticized. This
scheduling class also provides concise algorithms, such as
EDZL [12] and EDCL [14], which perform with less con-
text switches than the optimal ones, but the absolute worst-
case processor utilization is still 50%.

Recent work [1, 4, 2, 3, 13, 15] have made available a
new class, calledsemi-partitioned schedulingin this paper,
for the purpose of finding a balance point between parti-
tioned scheduling and global scheduling. In this scheduling
class, most tasks are fixed to specific processors as parti-
tioned scheduling to reduce the number of migrations, while
a few tasks may migrate across processors to improve avail-
able processor utilization as much as possible.

This paper presents a new algorithm for semi-partitioned
scheduling of sporadic task systems with arbitrary deadlines
on identical multiprocessor platforms. We primarily aim at
delivering competitive scheduling performance to the state-
of-the-art, with a smaller number of context switches, in
terms of the generic-case schedulability rather than the ab-
solute worst-case schedulability. The algorithm also brings
several benefits as summarized below.

• The algorithm allows tasks to migrate across proces-
sors only if they cannot be assigned to any individ-
ual processors, to strictly dominate the previous algo-
rithms based on classical partitioned scheduling.

• The algorithm allows migratory tasks to migrate from
one processor to another processor only once in each
period, to bound the number of context switches to
be smaller than the complementary algorithms of the
same sort based on semi-partitioned scheduling. This
property also helps to keep runtime processor perfor-
mance as much as possible, particularly with respect
to local caches.

• The algorithm conforms the scheduling policy to Ear-
liest Deadline First (EDF) [17], to make available the
prior analytical results of EDF.

• The algorithm is available for all categories of periodic
and sporadic task systems with implicit, constrained,
and arbitrary deadlines.

The rest of this paper is organized as follows. In the
next section, we review the prior work on semi-partitioned
scheduling. The system model is defined in Section 3.
Section 4 then presents a new algorithm based on semi-
partitioned scheduling. Section 5 evaluates its scheduling
performance. This paper is concluded in Section 6.

2 Prior Work

The concept of semi-partitioned scheduling was origi-
nally introduced by EDF-fm [1]. EDF-fm assigns the high-
est priority to migratory tasks in a static manner. The fixed
(non-migratory) tasks are then scheduled according to EDF,
when no migratory tasks are ready for execution. Since
EDF-fm is designed for soft real-time systems, the schedu-
lability of a task set is not tightly guaranteed, while the tar-
diness is bounded.

EKG [4] is designed to guarantee all tasks to meet dead-
lines for implicit-deadline periodic task systems. Unlike
EDF-fm, migratory tasks are executed in certain time slots,
while fixed tasks are scheduled according to EDF. The
achievable processor utilization is traded with the number
of preemptions and migrations, by a parameterk. The con-
figuration ofk = m on m processors leads EKG to be opti-
mal, with more preemptions and migrations.

In the later work [2], EKG is extended for sporadic task
systems. The extended algorithm is also parametric with re-
spect to the lengthδ of the time slots reserved for migratory
tasks. The authors claim that 1≤ δ ≤ 4 seems reason-
able. EDF-SS [3] is a further extension of the algorithm for
arbitrary-deadline systems. It is shown by simulations that
EDF-SS offers a significant improvement on schedulability
over EDF-FFD [6], the best performer among partitioned
scheduling algorithms. We are not aware of any other algo-
rithms, designed based on semi-partitioned scheduling, that
are effective to arbitrary-deadline systems.

EDDHP [13] and its extension, EDDP [15], are designed
in consideration of reducing context switches. The resul-
tant scheduling is based on priorities, and no time slots are
reserved for migratory tasks. It is shown by simulations
that they also outperform partitioned scheduling algorithms.
The worst-case processor utilization is then bounded by
65% for implicit-deadline systems.

Those algorithms mentioned above have concerns as fol-
lows. First, since tasks may migrate across processors, even
though they can be assigned to individual processors, we are
not sure that they are truly more effective than classical par-
titioned scheduling approaches. Then, such tasks may re-
peat migrations in and out of the same processor within the
same period, which is likely to cause cache performance to
degrade. The number of context switches is also problem-
atic due to repetition of migrations. In addition, optional
techniques for EDF, such as synchronization protocols [5]
and aperiodic servers [20], may not be easily applicable, be-
cause the scheduling policy is more or less modified from
EDF. In this paper, we address those concerns.

3 System Model

The system containsm identical processorsP1, P2, ...,
Pm, and a set ofn sporadic tasksτ = {T1,T2, ...,Tn}. Each
sporadic taskTi is characterized by a tuple (ci , di, pi), where
ci is a worst-case computation time,di is a relative dead-
line, andpi is a minimum inter-arrival time that is also re-
ferred to as a period. The utilization ofTi is then denoted
by ui = ci/pi . For anyTi , ci ≤ di andci ≤ pi are satisfied.
In this paper, we consider such arbitrary-deadline systems
that allowTi to have any value ofdi. Note that the presented
algorithm is also effective to constrained-deadline systems
that meetdi ≤ pi as well as classical implicit-deadline sys-
tems that meetdi = pi .

Each taskTi generates an infinite sequence of jobs, each
of which has a worst-case computation time equal toci . A
job of Ti released at timet has a deadline at timet+di. Any
inter-arrival intervals of successive jobs ofTi are separated
by at least length ofpi .

All tasks are independent and preemptive. An individual
job is not allowed to execute in parallel. When the deadline
of a task is greater than its period, it is possible that a job
of the task may be released before the preceding job of the
task has completed. In this case, two jobs of the same task
are allowed to execute in parallel.

4 New Algorithm

We present a new algorithm, calledEDF with Window-
constraint Migration (EDF-WM) , based on the concept of
semi-partitioned scheduling. Given the migration and pre-
emption costs, EDF-WM allows a task to migrate, only if

P1 P2

C
P

U
 u

ti
li
z
a

ti
o

n

0%

100%

P3 P4

Tk+1Tk Tk+2

fixed
fixed

fixed
fixed

Figure 1. Concept of semi-partitioning.

no individual processors have remaining capacity enough
to accept the full share of the task, in such a manner that
it is never migrated back to the same processor within the
same period, once it is migrated from one processor to an-
other processor. The same approach is introduced in [16]
but is based on the fixed-priority policy, while we consider
the algorithm with its basis on EDF in this paper.

4.1 Basic Approach

The approach considered here is a superset of traditional
partitioned scheduling. Each task is assigned to an individ-
ual processor according to a first-fit heuristic1, as long as it
can be. A task is then decided to be migratory, only when
no individual processors have remaining capacity enough
to accept the full share of the task. In terms of utilization
share, the task issplit into more than one processor. As a re-
sult, EDF-WM strictly dominates the traditional partitioned
scheduling approaches. To the best of our knowledge, no
previous algorithms based on semi-partitioned scheduling
strictly dominate them.

Figure 1 shows an example of semi-partitioning on four
processors. This example assumes that tasks with smaller
index thank are already assigned (fixed) to processors. We
then consider a case in which a taskTk cannot be assigned to
any individual processors. In traditional partitioning, such
Tk is not schedulable. In semi-partitioning, on the other
hand,Tk is split across more than one processor, for instance
three processorsP1, P2, andP3.

A task is split in such a way that a processor is filled to
capacity by the portion of the task assigned to the proces-
sor. However, only the last processor to which the portion
is assigned may not be filled to capacity, because the size
of the portion is not necessarily equal to the remaining ca-
pacity of the processor. Thus, in the example, no tasks will

1In fact, any partitioning methods are available under EDF-WM.

P1

P2

P3

dk
release time deadline

Figure 2. Concept of EDF-WM scheduling.

be assigned toP1 and P2, while some tasks may be later
assigned toP3. Note that the bound of processor utilization
to be filled to depends on algorithms.

The remaining tasks are also assigned to processors in
the same manner. Since the utilization ofTk+1 is small
enough to be fixed toP3 or P4, it is assigned toP3 accord-
ing to a first-fit heuristic.Tk+2 is then split acrossP3 and
P4. As a result, a processor may include more than one mi-
gratory task, such asP3 in the example. Note that a task is
not necessarily split across continuous processors, though it
is done in the example for simplicity of explanation.

In the scheduling phase, a migratory task must be ex-
ecuted exclusively among processors, since an individual
job is not allowed to execute in parallel. EDF-WM there-
fore splits the deadline of each migratory task into the same
number of windows as the processors across which the task
is qualified to migrate.

Figure 2 shows an example of scheduling a migratory
taskTk that is split across the three processors, as the pre-
vious example. The deadline is split into three windows.
The task is presumed to be released at the beginning of a
window and to have a deadline at the end of a window. The
task is then scheduled according to EDF, based on such a
pseudo-deadline, on each processor. Since the task is never
executed out of the window, it is guaranteed that multiple
processors never execute the task simultaneously.

An issue of concern here is how to determine the length
of a window and the amount of time which a migratory task
is allowed to consume within a window. We will describe
the details of the algorithm in Section 4.3.

4.2 Demand Bound Function

Before the algorithm description of EDF-WM, we intro-
duce the demand bound function [9] that will be used in
the remainder of this section. The demand bound function
db f(Ti, L), given by Equation (1), computes the maximum
amount of time, so-calledprocessor demand, consumed by
all jobs of a taskTi that have both release times and dead-

pk wk,x

pk pk pk

Figure 3. Each window of a migratory task is
separated by at least length of the period.

lines within an interval of lengthL.

db f(Ti, L) = max

(

0,

⌊

L − di

pi

⌋

+ 1

)

ci (1)

It has been shown [9] that an EDF-feasibility of
arbitrarily-deadline sporadic task systems can be tested by
the demand bound function: all tasks are guaranteed to meet
deadlines by EDF on single processors, if and only if the
following condition holds for∀L > 0.

∑

Ti∈τ

db f(Ti , L) ≤ L (2)

In fact, we only need to verify the condition above for
those values ofL that are aligned with deadlines of jobs.
According to [10], the length of check points is also reduced
to a finite number ofL∗ given by Equation (3), whereLa is
given by Equation (4) andH is a hyperperiod ofτ.

L∗ = min(La,H) (3)

La = max

{∑

Ti∈τ
(pi − di)ui

1−
∑

Ti∈τ
ui
,max(di | Ti ∈ τ)

}

(4)

4.3 Algorithm Description: Semi-Partitioning

The scheduling policy of EDF-WM is strictly subject
to EDF, once tasks are assigned to processors successfully,
apart from that the relative deadline of each migratory task
is transformed to the length of a window. All we have to do
in the semi-partitioning phase is thus to assign the window
and the processor demand to each migratory task in such a
way that the processor utilization is maximized without tim-
ing violations of the already-assigned tasks. The following
describes the details of the algorithm.

Let Tk be a migratory task whose share is assigned to a
processorPx. We denote the length of a window assigned
to Tk on Px by wk,x. Here the value ofwk,x is fixed, once
it is determined. Thus, each window ofTk is separated
by at least length ofpk on anyPx, as shown in Figure 3.
This means that we can regardTk as an arbitrary-deadline
sporadic task with a (relative) deadlinewk,x and a period
pk. Henceforth, such a pseudo-deadline ofTk is denoted
by d′k,x = wk,x. The amount of time thatTk is allowed to
consume ind′k,x is also denoted byc′k,x.

On splitting a task, we need to determined′k,x andc′k,x for
each processorPx so that all tasks are guaranteed schedula-
ble. To this end, EDF-WM makes use of the demand bound
function. For a fixed (non-migratory) task, the processor
demand is obviously given by Equation (1). For a migra-
tory taskTk, on the other hand, we need to replacedk and
ck with d′k,x andc′k,x for eachPx. The processor demand of
Tk consumed onPx is thus given by Equation (5), assuming
thatd′k,x andc′k,x are known.

db f(Tk, L) = max

(

0,

⌊L − d′k,x
pk

⌋

+ 1

)

c′k,x (5)

We now explain how to compute the values ofd′k,x and
c′k,x. Let τx be a set of tasks that are already assigned toPx.
Then,d′k,x andc′k,x must be such values that satisfy Inequa-
tion (6) for∀L > 0.

∑

Ti∈τx

db f(Ti, L) + db f(Tk, L) ≤ L (6)

In order to calculate one ofc′k,x andd′k,x back from In-
equation (6), the other of them must be known. Due to this
dilemma, EDF-WM givesd′k,x such thatd′k,x = dk/s, where
s is the number of processors across whichTk is split. Here-
after,d′k,x = dk/s for ∀x is unified byd′k = dk/s, since they
all have the same value. With suchd′k, we determinec′k,x as
the minimum of Equation (7) for∀L (d′k ≤ L ≤ L∗) aligned
with deadlines of jobs. Note that those values ofL < d′k can
be ignored, because the processor demand ofTk is always
zero.

c′k,x =
L −

∑

Ti∈τx
db f(Ti , L)

⌊

L−d′k
pk

⌋

+ 1
(7)

To improve schedulability, it is better to splitTk across
processors so thatc′k,x is maximized. The value ofc′k,x is
dominated by two factors. One iss that affectsd′k. The
other is

∑

Ti∈τx
db f(Ti, L) that affects the available processor

demand. We therefore make the following policy to splitTk.

• According to Equation (7),c′k,x is monotonically in-
creasing with respect tod′k = dk/s. Hence, the value of
sshould be small. In consideration of this, we first as-
sumes = 2. We then increments until Inequation (8)
is met, whereπk denotes a set ofs processors under
consideration, across whichTk is split.

∑

Px∈πk

c′k,x ≥ ck (8)

• Tk is then split across suchs processors that provide
greater values ofc′k,x.

• If s reachesmbut Inequation (8) is not met yet,Tk can-
not be successfully split across the processors, which
means thatTk is not schedulable with the algorithm.

1. s= 2;
2. if s> m then returnFAIL; end if
3. d′k = dk/s;
4. for x = 1 to mdo
5. c′k,x = calc exectime(Tk,Px);
6. end for
7. letc′k,z be thesth greatest in{c′k,x | 1 ≤ x ≤ m};
8. πk = {Px | c′k,x ≥ c′k,z};
9. if

∑

Px∈πk
c′k,x < ck then

10. s= s+ 1;
11. goto 2.;
12. else
13. c′k,z = c′k,z − (

∑

Px∈πk
c′k,x − ck);

14. for each Px ∈ πk do
15. τx = τx ∪ {Tk};
16. end for
17. end if
18. returnSUCCESS;

Figure 4. Pseudo-code of split task(Tk).

We here need to calculate the length ofL∗. Equation (4)
requiresu′k,x = c′k,x/pk, while we will obtainc′k,x afterwards.
In fact, Equation (4) can be transformed to Equation (9) for
τx andTk, whereD = max(di | Ti ∈ τx).

La = max















∑

Ti∈τx
(pi − di)ui + (pk − d′k)u

′
k,x

1−
∑

Ti∈τx
ui − u′k,x

,D















(9)

Equation (9) implies thatLa is monotonically increasing
with respect tou′k,x. Here,u′k,x must satisfy Inequation (10),
otherwise a task set assigned toPx is not schedulable.

u′k,x < 1−
∑

Ti∈τx

ui ⇔ c′k,x <

















1−
∑

Ti∈τx

ui

















pk (10)

Based on the discussion above, we first assumeLa = H

andc′k,x = (1 −
∑

Ti∈τx
ui)pk. If the value ofc′k,x is reduced

by Equation (7), we recalculate Equation (9). SinceLa is
monotonically increasing with respect toc′k,x, the value of
La is also reduced. The procedure of calculatingc′k,x is then
finished, whenL reachesLa or when the renewed value of
La is less than or equal to the current value ofL.

Finally, the pseudo-code of the function,split task(Tk),
for splitting a taskTk is indicated in Figure 4. It first sets
s = 2, and then calculatesc′k,x for each processorPx. If
∑

Px∈πk
c′k,x does not reachck, the same procedure is repeated

with s= s+1. Otherwise,Ti is assigned to each ofPx ∈ πk.
Note thatc′k,z needs to be adjusted at line 13, sincePz is the
last processor that is not necessarily filled to capacity by the
last portion ofTi . The algorithm returns failure only when
sexceedsm (line 2).

1. c′k,x = (1−
∑

Ti∈τx
ui)pk; L∗ = H ;

2. for eachTi ∈ τx ∪ {Tk} do
3. α = ⌈(d′k − di)/pi⌉;
4. while L = αpi + d′i < L∗ do
5. c = {L − db f(τx, L)}/{⌊(L − d′k)/pk⌋ + 1};
6. if c < c′k,x then
7. c′k,x = c;
8. L∗ = Equation (9), whereu′k,x = c′k,x/pk;
9. end if

10. α = α + 1;
11. end while
12. end for
22. returnc′k,x;

Figure 5. Pseudo-code of calc exectime(Tk,Px).

Due to limitation of space, we illustrate the function,
calc exectime(Tk,Px), associated with calculatingc′k,x (at
line 5) in Figure 5. In the pseudo-code,α is a natural num-
ber, anddb f(τx, L) represents

∑

Ti∈τx
db f(Ti , L). For fixed

tasks, let us defined′i = di for unifying the description
of deadlines, since migratory tasks are considered to have
deadlinesd′i = di/s, as we defined before. Then, it finds out
the minimum ofc′k,x for all L = αpi + d′i < L∗. The value
of α set at line 3 guaranteesL ≥ d′k. The value ofL∗ is then
renewed every timec′k,x is renewed (line 6 to 9).

The time complexity for calculating eachc′k,x by the
calc exectimefunction is closely bounded to that of the de-
mand bound function. Since we need to call the functionm
times to obtainc′k,x for all m processors (line 4-6 in Figure
4), and this procedure may be repeated up tom− 1 times
(s= 2 to m in Figure 4), the resultant time complexity may
be high, as compared to a simple schedulability test based
on the demand bound function. However, we see this time
complexity problem only when a task cannot be assigned to
any individual processor. So the time complexity is traded
with schedulability improvements.

Task sorting problem. Most partitioning algorithms [6]
sort a task set before they assign tasks to processors, to im-
prove achievable processor utilization. We consider that
EDF-WM is also likely to perform better, if a task set is
sorted in non-increasing order of deadline. The reason is
given as follows. The value ofc′k,x/d

′
k,x is greater as the

value of d′k,x is smaller, since the available processor de-
mand within a time interval of any length is fixed. It is
clear that the greaterc′k,x/d

′
k,x = sc′k,x/dk is, the greater

u′k,x = c′k,x/pk is. We know thatTk is split when most tasks
are partitioned, so the value ofdk is likely small by sorting a
task set in non-increasing order of deadline, which leads to
a greater value ofu′k,x. Given that the processor utilization
achievable by EDF-WM depends on eachu′k,x, task sorting
also brings schedulability improvements to EDF-WM.

function schedule(Px):
1. if Tc existsthen ec = ec − (t − tlast); end if
2. tlast = t;
3. selectTk such thatd̄k = min{d̄i | āi ≤ t,Ti ∈ γx};
4. if Tk , Tc then
5. if Tk is a migratoryand

y = min{z | Pz ∈ πk, z> x} existsthen
6. set timer(migrate(Tk,Px,Py), t + ek);
7. end if
8. if Tc is a migratory taskthen
9. deletetimer(Tc);

10. end if
11. switch toTk from Tc;
12. end if

function migrate(Tk,Px,Py):
13. γx = γx \ {Tk}; γy = γy ∪ {Tk};
14. āk = d̄k; d̄k = āk + d′k; ek = c′k,y;
15. set timer(schedule(Py), āk);

function complete(Tk,Px):
16. γx = γx \ {Tk};
17. schedule(Px);

function release(Tk,Px):
18. γx = γx ∪ {Tk}; āk = t;
19. if Tk is a migratory taskthen
20. d̄k = t + d′k; ek = c′k,x; elsed̄k = t + dk; ek = ck;
21. end if
22. schedule(Px);

Figure 6. Pseudo-code of EDF-WM scheduler.

4.4 Algorithm Description: Scheduling

Figure 6 shows the pseudo-code of EDF-WM scheduler.
In the pseudo-code, ¯ak, d̄k, andek denote the absolute re-
lease time, the absolute deadline, and the remaining execu-
tion time of a taskTk respectively.γx is a set of ready tasks
onPx. Tc represents a current task onPx. t is a current time,
and tlast is a last time at which the scheduler is invoked.
Due to limitation of space, we defineset timer(f unc, t) as
a function that sets a timer to invoke the specified function
f uncat timet. We also definedeletetimer(Tk) as a function
that deletes a timer set previously. Most operating systems,
e.g. Linux, prepare those timer functions.

All tasks assigned toPx are scheduled inschedule(Px).
The function first records the remaining execution time of
the current task (line 1), and then selects such a taskTk

that has the earliest deadline in a set of ready tasks with
release times earlier than the current time (line 3). IfTk is a
migratory task, we set a timer to preemptTk and migrate it
to the next processor at timet+ek (line 5-7), because it is not

allowed to consume the amount of time beyondc′k,x on Px.
Note that, for a migratory task,ek represents the remainder
of c′k,x on eachPx. The timer set here is deleted, ifTk is
preempted later before it consumesc′k,x (line 8-10). Finally,
the context is switched fromTc to Tk, if they are different
tasks (line 11).

A migratory taskTk is migrated fromPx to Py by
migrate(Tk,Px,Py). It removesTk from γx and inserts it
to γy (line 11). It then updates ¯ak, d̄k, andek (line 12). Since
Tk will have a pseudo-release time ¯ak on Py, a timer func-
tion is set to invokeschedule(Py) at time āk. AlthoughTk

is now ready onPy, it is never selected for execution before
āk, since only the tasks with release times set earlier than
the current time will be scheduled, as described at line 2.

We assume thatrelease(Tk,Px) and complete(Tk,Px)
are called whenTk is released and completes respectively.
schedule(Px) is then called at the end of those functions,
since we need to schedule a next task. Note that more than
onerelease(Tk,Px) may be called at the same time, if more
than one task has the same release time. In this case, we
do not have to callschedule(Px) every time but call it once
after all suchrelease(Tk,Px) are executed.

Recall that Figure 6 is a pseudo-code. The algorithm
implementation in practice depends on developers. One of
our concerns is that EDF-WM needs to use kinds of high-
resolution timers for executions of migratory tasks after all.
This is a common problem more or less for such algorithms
[4, 2, 3, 13, 15] that are based on semi-partitioned schedul-
ing. Implementation issues are left open.

4.5 The Number of Context Switches

In practical real-time systems, the number of context
switches should be bounded, so as to estimate runtime over-
head. Given that a context is switched only when jobs are
preempted or complete in EDF scheduling, the number of
context switches is bounded as follows.

Let np(Ti, L) andnc(Ti, L) be the number of preemptions
generated by a taskTi and the number of job completions
of Ti respectively, within a time interval [0, L).

We first considerTi as a fixed task. Since the scheduling
policy is based on EDF,Ti may generate a preemption every
time its job is released, if it has the earliest deadline. Hence,
we havenp(Ti, L) ≤ ⌈L/pi⌉. The number of job completions
of Ti is then bounded to the number of its job releases, so
we also havenc(Ti, L) ≤ ⌈L/pi⌉. As a result,np(Ti, L) +
nc(Ti, L) ≤ 2⌈L/pi⌉ is derived.

We then considerTi as a migratory task split across more
than one processor. LetPx andPz be the first processor and
the last processor respectively: jobs ofTi are released on
Px and complete onPz. We havenc(Ti, L) ≤ ⌈L/pi⌉ for Pz,
andnc(Ti, L) = 0 for any other processors. The number of
preemptions is bounded as follows.

On the first processorPx, Ti may generate a preemp-
tion every time its job is released, and it also generates a
preemption every time it consumesc′i,x time units. Thus,
we havenp(Ti, L) ≤ 2⌈L/pi⌉. On the last processorPz,
Ti may generate a preemption every time its assigned win-
dow begins. Since the window appears at everypi , we
havenp(Ti, L) ≤ ⌈L/pi⌉. On any middle processorPy if
it exists,Ti may generate a preemption every time its as-
signed window begins, and it also generates a preemption
every time it consumesc′i,y time units. As a result, we have
np(Ti, L) ≤ 2⌈L/pi⌉. From the discussion above, we derive
the following condition for anyTi .

np(Ti, L) + nc(Ti, L) ≤ 2

⌈

L
pi

⌉

(11)

Let ncs(L,Px) be the number of context switches on any
processorPx within a time interval [0, L). It is then clear
thatncs(L,Px) is bounded by Inequation (12).

ncs(L,Px) ≤ 2
∑

Ti∈τx

⌈

L
pi

⌉

(12)

Let E be the execution cost of one context switch. Fi-
nally, we can apply the above analysis to the demand bound
function so that the amount of time available for the execu-
tion of tasks on a processorPx within a time interval [0, L)
is reduced toL − ncs(L,Px) × E.

The number of migrations is also bounded in the same
way. LetTi be a migratory task. SinceTi is migrated only
once within a period from one processor to another proces-
sor, the number of migrations forTi within a time interval
[0, L) is at mosts⌈L/pi⌉, wheres is the number of proces-
sors to which the share ofTi is assigned.

5 Evaluation

This section studies the effectiveness of EDF-WM to
sporadic task systems with arbitrary deadlines, through sev-
eral sets of simulations. We compare EDF-WM with EDF-
SS [3] and EDF-FFD [6], because (i) we are not aware of
any other algorithms, based on semi-partitioned scheduling,
that are designed for arbitrary-deadline systems, and (ii)
EDF-FFD is found to be the champion among partitioned
scheduling algorithms [6]. EDF-SS has a parameterδ that
trades schedulability with the number of context switches.
Since the authors claim that 1≤ δ ≤ 4 seems reasonable
[3], we prepareδ = 1 andδ = 4.

The simulation results show that EDF-WM offers com-
petitive performance to EDF-SS, far beyond EDF-FFD,
with a small number of context switches. Throughout the
simulations, “EDF-WM” denotes the presented algorithm
without task sorting. “EDF-WM(sort)” then denotes the
one with task sorting in non-increasing order of deadline.

“EDF-SS(DT/4)” and “EDF-SS(DT)” are EDF-SS withδ =
4 andδ = 1 respectively.

5.1 Simulation Setup

Each task set is randomly generated, with a set of pa-
rameters (usys, m, umin, umax), so that the total processor
utilization gets equal tousys× m, in which the utilization
of an individual task is uniformly distributed in the range
of [umin, umax]. The minimum inter-arrival of an individual
task is randomly determined in the range of [100, 3000]. For
every taskTi , onceui andpi are known, we compute the ex-
ecution time ofTi by ci = ui × pi. The deadline ofTi is then
arbitrarily computed in the range ofci < di < 2pi − ci .

Due to limitation of space, we conduct simulations with
the following setups. The total processor utilization is set
every 5%. The number of processors is then setm= 4, m=
8, andm = 16. We limit a pair of (umin, umax) to (0.1, 1.0),
(0.5, 1.0), and (0, 1, 0.5).

We generate 1,000,000 task sets for every prepared set
of (usys, m, umin, umax), to assess the schedulability of an
algorithm. Throughout simulations, a task set is said to be
successfully scheduled, if all tasks in the task set are suc-
cessfully assigned to processors, since the tasks are guaran-
teed schedulable under semi-partitioned scheduling as well
as partitioned scheduling, once they are successfully as-
signed to processors. The effectiveness of an algorithm is
then estimated bysuccess ratio: the ratio of the number of
successfully-scheduled task sets.

The number of context switches bounded by each algo-
rithm, is also measured to estimate runtime overhead. As
we discussed in Section 4.5, the number of context switches
for EDF within a time interval of lengthL is bounded by
2
∑

Ti∈τ
⌈L/pi⌉. We refer to Inequation (12) for EDF-WM.

For EDF-SS, we refer toTheorem 1 demonstrated in [3],
but we add the number of job completions, bounded by
∑

Ti∈τ
⌈L/pi⌉, to the result of the theorem, because only pre-

emptions are considered there.

5.2 Simulation Results

Figure 7, Figure 8, and Figure 9 show the results of the
guaranteed schedulability for each algorithm, with respect
to differentm, umin, andumax. Due to limitation of space, we
briefly discuss the results here.

EDF-WM and EDF-SS outperform EDF-FFD, particu-
larly in the presence of heavy tasks with utilization greater
than 0.5, as shown in Figure 7 and Figure 8, since heavy
tasks are more likely to fail being assigned to individual
processors than light tasks in partitioning.

Among the four algorithms: EDF-WM, EDF-WM(sort),
EDF-SS(DT/4), and EDF-SS(DT), the best performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(c) m= 16

Figure 7. Guaranteed schedulability: (umin, umax) = (0.1, 1.0).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(c) m= 16

Figure 8. Guaranteed schedulability: (umin, umax) = (0.5, 1.0).

is achieved by EDF-SS(DT/4). EDF-WM(sort) and EDF-
SS(DT) are then competitive to each other. According to the
results, task sets are often scheduled successfully by those
algorithms, even though the system utilization is around
90%. EDF-WM is inferior to them but is still much bet-
ter than EDF-FFD. Notice that EDF-WM does not sort a
task set in advance, while all other ones do. Particularly
for task sets containing only light tasks, task sorting does
not provide much impact any more, as shown in Figure 9.
Given that we may not always have a chance to sort a task
set every time a new task is generated at runtime in dynamic
systems, we see the effectiveness of EDF-WM.

Figure 10, Figure 11, and Figure 12 show the results of
the number of context switches relative to EDF-FFD for
each algorithm, with respect to differentm, umin, andumax.

Clearly, EDF-SS generates more context switches than
EDF-WM and EDF-FFD, occasionally more than two hun-
dreds times as many as them. In fact, the number of context
switches for EDF-SS is dependent on the length of periods
and deadlines, since the size of slots reserved for migratory
tasks is aligned with the minimum of the periods and dead-
lines. Therefore, the number would be smaller as the range
of periods and deadlines is smaller, whereas it would be
more increased as the range is greater. EDF-WM is how-

ever not much affected by the range of periods and dead-
lines, since the scheduling policy is subject to EDF.

In most cases, EDF-SS(DT/4) causes about four times as
many context switches as EDF-SS(DT), regardless of a set
of m, umin, andumax. This means that the value ofδ reflects
the number of context switches in EDF-SS. Meanwhile, the
number of context switches for EDF-WM is bounded to at
most three times as much as EDF-FFD.

We also observe that the relative number of context
switches for EDF-SS is often greater as the system utiliza-
tion is lower. Remember that EDF-SS is willing to split
tasks across processors, even though they can be assigned
to individual processors, while no tasks are split by EDF-
WM, as long as a task set is partitioned successfully. As
a result, the number of context switches for EDF-WM is
equal to that for EDF-FFD, when the system utilization is
not much high, meanwhile that for EDF-SS is relatively
greater. EDF-SS gradually approaches EDF-WM and EDF-
FFD as the system utilization approaches 100%, however,
even forδ = 1, the number is still five to twenty times as
much as them. Given that EDF-WM(sort) is competitive to
EDF-SS(DT) in terms of schedulability, its effectiveness is
more obvious when the number of context switches is taken
into account.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(c) m= 16

Figure 9. Guaranteed schedulability: (umin, umax) = (0.1, 0.5).

 0

 50

 100

 150

 200

 250

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(a) m= 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(b) m= 8

 0

 20

 40

 60

 80

 100

 120

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(c) m= 16

Figure 10. The worst-case number of context switches relati ve to EDF-FFD: (umin, umax) = (0.1, 1.0).

6 Conclusion

In this paper, we presented a new algorithm for semi-
partitioned scheduling of sporadic task systems with arbi-
trary deadlines on identical multiprocessor platforms. The
new algorithm strictly dominates the classical partitioned
scheduling approaches, since tasks are qualified to migrate
only if they cannot be assigned to any individual processors.
The numbers of context switches and migrations are also
bounded, since tasks migrate only once in each period. Fur-
thermore, most optional techniques for EDF may be avail-
able on the new algorithm with minimum efforts, since the
scheduling policy is subject to EDF.

According to the simulation results, the new algorithm
offers competitive schedulability to the best known al-
gorithm designed for arbitrary-deadline systems, with a
smaller number of context switches.

In future work, we will consider resource augmentation
[19] bounds for the new algorithm by applying the tech-
niques presented in [8]. We will also consider windows of
different lengths for the purpose of improving schedulabil-
ity, though the length of windows is evenly split in the pre-
sented approach. The evaluation of the algorithm with more
variety of setups, as the ones in [6], is left open.

References

[1] J. Anderson, V. Bud, and U.C. Devi. An EDF-based Schedul-
ing Algorithm for Multiprocessor Soft Real-Time Systems.
In Proc. of the Euromicro Conference on Real-Time Systems,
pages 199–208, 2005.

[2] B. Andersson and K. Bletsas. Sporadic Multiprocessor
Scheduling with Few Preemptions. InProc. of the Euromicro
Conference on Real-Time Systems, pages 243–252, 2008.

[3] B. Andersson, K. Bletsas, and S. Baruah. Scheduling
Arbitrary-Deadline Sporadic Task Systems Multiprocessors.
In Proc. of the IEEE Real-Time Systems Symposium, pages
385–394, 2008.

[4] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. InProc. of the IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and
Applications, pages 322–334, 2006.

[5] T.P. Baker. Stack-based Scheduling of Real-Time Processes.
Real-Time Systems, 3:67–99, 1991.

[6] T.P. Baker. Comparison of Empirical Success Rates of
Global vs. Partitioned Fixed-Priority and EDF Scheduling
for Hard Real Time. Technical report, Department of Com-
puter Science, Florida State University, 2005.

 0

 50

 100

 150

 200

 250

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(a) m= 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(b) m= 8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(c) m= 16

Figure 11. The worst-case number of context switches relati ve to EDF-FFD: (umin, umax) = (0.5, 1.0).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(a) m= 4

 0

 10

 20

 30

 40

 50

 60

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(b) m= 8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
h
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
e
s

System utilization

EDF-WM
EDF-WM(sort)
EDF-SS(DT/4)

EDF-SS(DT)
EDF-FFD

(c) m= 16

Figure 12. The worst-case number of context switches relati ve to EDF-FFD: (umin, umax) = (0.1, 0.5).

[7] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor-
tionate Progress: A Notion of Fairness in Resource Alloca-
tion. Algorithmica, 15:600–625, 1996.

[8] S. Baruah and N. Fisher. The Partitioned Dynamic-Priority
Scheduling of Sporadic Task Systems.Real-Time Systems,
36(3):199–226, 2007.

[9] S. Baruah and A. Mok. Preemptively Scheduling Hard-Real-
Time Sporadic Tasks on One Processor. InProc. of the IEEE
Real-Time Systems Symposium, pages 182–190, 1990.

[10] G.C. Buttazzo. HARD REAL-TIME COMPUTING SYS-
TEMS: Predictable Scheduling Algorithms and Applications,
Second Edition. Springer, 2005.

[11] H. Cho, B. Ravindran, and E.D. Jensen. An Optimal Real-
Time Scheduling Algorithm for Multiprocessors. InProc.
of the IEEE Real-Time Systems Symposium, pages 101–110,
2006.

[12] S. Cho, S.K. Lee, A. Han, and K.J. Lin. Efficient Real-
Time Scheduling Algorithms for Multiprocessor Systems.
IEICE Transactions on Communications, E85-B(12):2859–
2867, 2002.

[13] S. Kato and N. Yamasaki. Real-Time Scheduling with Task
Splitting on Multiprocessors. InProc. of the IEEE Interna-
tional Conference on Embedded and Real-Time Computing
Systems and Applications, pages 441–450, 2007.

[14] S. Kato and N. Yamasaki. Global EDF-based Scheduling
with Efficient Priority Promotion. InProc. of the IEEE In-
ternational Conference on Embedded and Real-Time Com-
puting Systems and Applications, pages 197–206, 2008.

[15] S. Kato and N. Yamasaki. Portioned EDF-based Schedul-
ing on Multiprocessors. InProc. of the ACM International
Conference on Embedded Software, pages 139–148, 2008.

[16] S. Kato and N. Yamasaki. Semi-Partitioned Fixed-Priority
Scheduling on Multiprocessors. InProc. of the IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium, 2009.

[17] C. L. Liu and J. W. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard Real-Time Environment.Journal
of the ACM, 20:46–61, 1973.

[18] J.M. Lopez, J.L. Diaz, and D.F. Garcia. Utlization Bounds
for EDF Scheduling on Real-Time Multiprocessor Systems.
Real-Time Systems, 28:39–68, 2004.

[19] C.A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal Time-
Critical Scheduling via Resource Augmentation. InProc. of
the Annual ACM Symposium on Theory of Computing, pages
140–149, 1997.

[20] M. Spuri and G.C. Buttazo. Scheduling Aperiodic Tasks in
Dynamic Priority Systems.Journal of Real-Time Systems,
10:179–210, 1996.

