The Demand Bound Function Interface of Distributed Sporadt Pipelines of Tasks
Scheduled by EDF

Nicola Serreli, Giuseppe Lipari, Enrico Bini
Scuola Superiore Sant’/Anna, Pisa, Italy
Email: {n.serreli,g.lipari,e.binj @sssup.it

Abstract—In distributed real-time embedded systems In distributed real-time embedded (DRE) systems, a
(DRE), it is common to model an application as a set of task component is often modeled as a chain of tasks (also called
chains. Each chain is activated cyclically and must complet transaction or pipeline) [3]. Each task of the pipeline is

before an end-to-end deadline. Each task of the chain is . . .
bound to execute on a particular processing element. allocated on a (possibly different) processing node. The

The complexity of designing and analyzing a DRE can first task in the pipeline is activated periOdica"y, or by
be reduced by applying a component-based methodology: external events characterized by a minimum interarrival
each pipeline can be seen as a component with its temporal time. The other tasks must respect the pipeline precedence
characteristic summarized in its interface. Analysis can be order, i.e. start executing after the completion of the

carried out in two different steps: 1) derivation of the . . . o
temporal interface of a component pipeline; 2) analysis of ~Previous task. Finally, the last task in the pipeline must

the whole system by integrating the temporal interfaces of ~complete within arend-to-end(EE) deadline relative to
the components. . . the activation time of first task. In general, the end-to-end
In this paper, we propose to describe the temporal inter- deadline can be smaller, equal or larger than the period (or

face of a task pipeline by a set ofdemand bound functions . ; ; ; ; :
(dbf), one per egf:)h node{)n which the pipeline executes, and minimum interarrival time). Large EE deadlines are quite

we describe an algorithm for computing the dbfs. First, we ~ cOMmon in real applications. For example, in multimedia
show that the scenario of strictly periodic activations is mt Streaming the period at which video frames are generated
the worst when the pipelines are sporadically activated. Tan, and processed may be much lower than the EE deadline
we propose an exact algorithm for computing the dbfs. We o delivering the frames to the user.

show by experimental analysis that the computation time of When integrating the components (that we assume to
the algorithm on pipelines with reasonable size is below one

second on common PCs. Finally, we estimate the pessimism be modele_q by pip_elines) it isl important.to ch.eck. the
introduced by our analysis with respect to holistic analyss ~ schedulability of entire system, i.e. to test if all pipei

by an extensive set of simulations. will complete before their EE deadline under worst-case
conditions. In fixed priority systems, theolistic analy-
. INTRODUCTION sis [3], [4] consists in reducing the overall distributed

Today's applications are often developed by differentschedulability problem intg single-node problems that
vendors, each one providing separate components. As thgin be solved using classical schedulability analysishEac
application is distributed over several processing elémen task is assigned a priority, and task parameters like affset
components are of distributed nature as well. For examplgitters and response times are calculated so that the prece-
this is the typical scenario in the automotive context [1],dence constraints are automatically guaranteed. Since all

[2]. _ - _ schedulability problems depend on one another (i.e. the
In the analysis of su_ch a system it is of key importanceactivation of an intermediate task, and hence its jitter,
to preserve the following properties: depends on the response time of the preceding task),

1) each vendor provides only a synthetic informationthe analysis is iterated until either a fixed-point solution
on the developed component (called component inis found or the set is deemed not schedulable. Similar

terface); techniques have been applied to EDF scheduling [5]-[8].
2) the integration of the components is made only onin this case, each task must be assigned an intermediate
the information contained in the interface. deadline instead of a fixed priority. Holistic analysis also

In real-time systems, a component is equipped also witkallows to mix different schedulers on different nodes, as
a temporal interfacethat contains information related to long as the designer is able to compute the worst-case
the amount of computational resource required by theesponse time of every task.
component over time. The analysis is then performed in Unfortunately, the holistic analysis is unfit for
two steps: in the first step, each component is analyzedomponent-based analysis, since it requires to know the
in isolation, summarizing its temporal behavior with a parameters of the tasks of all pipelines (of the other
(possibly small) set of temporal parameters. Such temeomponents as well). In fact, at each step it is not possible
poral parameters will be part of the component interfacdo calculate the response times of the tasks, because they
along with the functional and behavioral parameters. Independ on the presence of all other pipelines, so we cannot
the second step (integration), we must verify that theset the offsets and the jitters of intermediate tasks. In
overall system is schedulable by integrating the temporabther words, following the holistic model we cannot easily
interfaces derived in the previous step. compute the temporal interface of the component.

A different approach consists in fixing the offset and later extended to more complex task models, such as the
the relative deadline of intermediate tasks to appropriatgeneralized multiframe tasks [15]. Recently, Zhang and
values, so that precedence constraints are respecteds In tfBurns [16] proposed a technique to reduce the number of
way, each task can be treated independently of the otherpoints to check during analysis based on demand bound
This approach is calledlicing in [9]. In practice, the EE function.
deadline is sliced into non-overlappiegecution windows The processor demand criterion has been extended to
for the task. the analysis of distributed real-time pipelines by Rahni et

Following the slicing method, under EDF the temporalal. [8]. However, their methodology is still based on the
characteristics of the pipelines are abstracted by a set dfolistic analysis: the activation time of a task is set equal
demand bound function@bfs) [10], one for each node. to the finishing time of the previous task in the pipeline.
Then, the first step consists in computing thisf of In [9] authors proposed a methodology to analyze
every pipeline on every processor. This setdbf (or the schedulability of task graphs. The methodology also
an approximation of them) form of the temporal interfacecomputes intermediate deadlines by using an heuristic
of the pipeline. Then, the integration analysis consists imapproach, and it is based on tkkcing approach: each
summing all thedbfs for every node, and check that the task is assigned a slice that does not overlap with the slices
resulting function never exceeds the computational poweof other tasks. Later [17] uses time slices to decouple
of the node. the schedulability analysis of each node, reducing the

This method is pessimistic with respect to the holisticcomplexity of the analysis. Such an approach improves
analysis. In fact, fixing a-priori the offset of every task the robustness of the schedule, and allows to analyze each
to the deadline of the preceding one adds additionapipeline in isolation. We recently proposed a heuristic
constraints to the problem, reducing the chance of aalgorithm for assigning intermediate task deadlines based
system to result schedulable. However, in our opinionon the slicing approach [18]. Our methods enables a
the advantages of a component-based design methodologgmponent-based analysis.
overcomes the loss of schedulability (that is however In the context of component-based analysis, Lorente et
experimentally evaluated in this paper). al. [19] proposed the holistic analysis onto a set of virtual

In this paper, we propose an algorithm to exactlyprocessors, rather than fully available ones. However the
compute thedbf of periodic and sporadic pipelines. We component interface was not specified.
first show that, when the EE deadline is larger than A notable alternate analysis was proposed by Jay-
the period, the worst case arrival pattern for a sporadi@chandran and Abdelzaher [20], who developed several
pipeline is not necessarily the periodic one. Then, wetransformations to reduce the analysis of a distributed
describe our algorithm, and compute its complexity, whichsystem to the single processor case. However, in their
is exponential in the number of tasks and in the ratioanalysis, the isolation between transactions is not edsure
between the end-to-end deadline and the period. However,
we show by experimental analysis that the computation Il. SYSTEM MODEL AND NOTATION
time of the algorithm on pipelines with reasonable size is A distributed real-time application is modeled by a set
below one second on common PCs, which is acceptablef pipelines{7i,...,7,,}. To simplify the presentation,
for all practical uses. Finally, we estimate the pessimisnfince our work investigates each pipeline in isolation,
introduced by our analysis with respect to the state of théhroughout the paper we drop the index of the pipelines.

art holistic algorithm in the literature. Pipeline7 is composed by a set eftasks{r, ..., 7,}.
Taskr; has a computation timé’;.
[l. RELATED WORK The first taskr; of the /" instance of the pipeline is

The classic method for guaranteeing the EE deadline oRctivated at®’, that is calledabsolute activationwhile
chains of distributed tasks is the holistic analysis [3], [4 t@sksi, with i > 1, are activated upon the completion of
[6], [7]. In these approaches the run-time behavior of thehe preceding Onfifl- o
tasks is iteratively simulated until it converges to a fixed e denote byr; the /7" instance of the task;, that we
point. As widely discussed earlier this approach is not welloften call job in accordance with a commonly adopted ter-

quited for component-based analysis. minology. We consider sporadic pipelines with minimum
Other approaches [1], [11] are based on the propagdterarrival ime7'. Hence we have
tion of sequences of events [12] and analyze the sys- -l >T 1)

tem through the real-time calculus [13]. To best of our
knowledge, however, the correlation between activation To describe a possible scenario of activations for the
of consecutive activation of the same pipeline is lostsporadic pipeline under analysis, we need to list the
introducing some pessimism in the analysis. possible values of absolute activatio®$. We label the
The use of the demand bound function was initially instance of the pipeline under analysis by Moreover,
proposed by Baruah et al., for testing the schedulabilitywe operate a time translation, so to set the activation of
of set of tasks scheduled by EDF on single processorthis pipeline at time referende Therefore, we seb’ = 0.
[10]. This methodology is also known as “Processor Thefuture instance$w.r.t. the0O-the one under analysis)
Demand Criterion” [14]. The computation of thiéf was will be denoted by positive indexeé > 0, and their

absolute activations byb', ®2 ... Similarly, the past notation introduced so far, the absolute deadline of¢the
instanceswill be denoted by negative indexés< 0, and instance ofr;, is
their absolute activations b1, &2, ... —
A ¢ AR . : di ="+ D;. 4
sequence{®‘},c; represents a possible scenario i

of absolute activations of all the instances. However, We enforce the precedence re|ationship between tasks
when we are investigating the demand on a finite intervaby the slicing technique [9]: for each task we set the
[to, 1], only a finite number of instances may overlap with activation offsets;, relative to the activation of the pipeline
the interval. Hence we represent thporadic activation ¢‘ equal to the intermediate deadline of the preceding

patternas follows one:

6:(®—k07'.'7¢k}1) (2) ¢1 =0, ¢i:Di—1 1=2,...,n (5)
where indexes of the instances are taken frohy to k;, ~ C'early, the task absolute activation is

¢ ¢
D—t t a; = D° + ¢;. 6
ko[0}1 kl[—ﬂL (3) ¢ ©)
T T Moreover, we define the tasklative deadlineD; as

In Figure 1 we show the interpretation if the instance D, ® D, —

indexes—ky andk; compared with an intervaty, ¢1].
The relationship between activation offsets and relative

4 instance—k(ﬂ | D=DD
t ' ‘ — =
t i *[s | \D1=D; Do D,
| | instancek,
" fam ! G fee e juim
Figure 1: Example of calculation df, and k; . $2 =
¢3=D> —=
stn:anl

We remark that, similarly to what it happens in multi- T

processor scheduling [21], activating the pipelines alyear
as possible (i.e. periodicallyiy not the worst-casefor
the activation pattern. In Section V we show this by an

Figure 2: Notation for tasks.

deadlines is depicted in Figure 2. Clearly,

example.
Each pipeline7 has anend-to-end deadling that n
is the maximum tolerable time from the activation of ZDZ' =D 7
the first taskr, to the completion of the last task,. i=1
Since the analysis of the constrained deadlibe< T°) The values ofl’, ®, D, C;, D;, D;, ¢; are all real num-

is a straightforward extension of the classic analysishers. Finally, we use the notatign < max{0,-}.
throughout the paper we always assume> 7T'. In such
a case, it may happen that a task is activated before its V- PERIODIC DEMAND BOUND FUNCTION
previous instance has completed. In this paper, we assumeFirst, we recall the concept of demand bound function
that the activations of each task are served in a FIFO ordefor a pipeline that is strictly periodic (i.e/, ®* = (T).

The application is distributed acrosprocessing nodes, Then, in the next section we extend the demand bound
and each taskr; of the pipeline7 is mapped onto function to the sporadic case.
computational noder; € {1,...,p}. Hence, we define The computational requirement of the sulifebf tasks
T, = {mn € T : z; = k} as the subset of tasks il allocated on node: is modeled by itsdemand bound

mapped onto nodé andn,, as the cardinality of7y,. function (dbf).

The de|ay due to network communication can be eas- Definition 1: The demand functiomn nodek, denoted
ily taken into account by considering the network asby dfi(to,?1), is the total computation time of all the
a special processing node, and messages as tasks. TiR&tances of the tasks if;, having activation time and
methodology presented in this paper is valid also wherfleadline withinto, ¢1].
different scheduling policies are used on the processing For periodic pipeline, the demand function can be
nodes. However, to simplify the presentation, in this pape€omputed as follows [10]:

we make two assumptions: we neglect the delay due . e

. . . def tl Dz tO ¢z
to network communication (for example, restricting to df(to,t1) = Z T - T +1) C;
a multiprocessor system with shared memory); and we T €T 0
assume EDF as the only scheduling algorithm in the (8)

As suggested by Rahni et al. [8], the overddmand

system.) , i ‘ i
bound functiorof 7;, in an interval of length, is defined

Each task is assigned amermediate deadlin®;, that _
is the interval of time between the activation of the pipelin 25

def
and the absolute deadline of the task. Hence, using the dbf.(t) = H{f}de’f(tOvtO +1) ©)

Periodic

Ccpul [
h—i:l_——; Cpu 2
W ey S T R

Sporadic

? et e —

Figure 4: Example of sporadic pipeline.

10 12 1€
pipeline has periodl’ = 5 and end-to-end deadline

Figure 3: Example of demand bound function. D = 12. The task parameters are reported in Table I.

Task | C; | proc. | D;
A necessary and sufficient schedulability test for non- 71 é fl’ 3
concrete pipelines (i.e. periodic pipelines with freeialit Z 3 0 5
offset), scheduled by EDF consists in checking that the
demand never exceeds the length of the interval on every Table I: Parameters for the example

processor _ . o
In Figure 4, we show two possible activation patterns.

Vek=1,...,p Vt>0 Zdbfk(T, 1)<t (10) The first one corresponds to a periodic activatidr &
T T): in this case, it is easy to see that the maximum demand
on processol in any interval of lengttd is at most3 units
M computation.
In the second activation pattern, the activation of the
second instance is delayed by 2 units of tirnké & T+2).
As a consequence, the demand in intefval 2] becomes
4 units of time, because one extra instancerpfenters

where the sum is made over all the pipelines in the syste
anddbf(7,t) denotes the demand bound functionof
on nodek. In this case, first thebf is computed for each
pipeline and for each node (applying the max operator)
and then we sum all thebf together to compute the

overall_ computatlo_nal requwemel’mh‘_op_node_k. . the interval. Thus, delaying an instance can increase the
In Figure 3 we illustrate the definitions introduced in demand

this section by an example. Consider a pipeline whose ponce the analysis based on the classic periodic de-
parameters are: peridl = 5, end-to-end deadlin® = 8, .34 pound function is not applicable if pipelines are

task deadlinesD, = 2 and D, = 6, computation ime g3 ic_One of the contributions of this paper is to extend
Ci = 1 and (> = 3. Both tasks are assigned 10 a yhe gemand bound function to sporadic pipelines.

single node. In the lower part of Figure 3, we show three A job 7! in Ty, runs inside intervalto, ¢,] if its absolute
consecutive instances of the pipeline on three diﬁerenHeadlinecE‘f is not later thart,
2

lines. In the upper part, we show the values of 3 functions: o
the demand in0,¢]; the demand in2,2 + ¢]; and the ty > d; = D; + @ (11)
demand bound function. We represent the points whergnd its activation is not earlier thap
the dbf has a step by a thick dot. The steps are tightly
related to task deadlines. For example in the figure, the to < af = ¢; + @° (12)
pointspy, p2, p3 depend on the deadlines of task while
the pointsp,, ps depend on the deadlines of.

To compute thelbf of a periodic pipeline, it is sufficient step(x) = {0 if £<0 (13)

By introducing the function

to consider the value of the demand functions obtained 1 ifxz>0
on the intervals that start with the activation of a task,
as shown in [8]. Also, thelbf has a periodic pattern: its

value for a generic large intervalcan be computed as jobin’(ty, ¢1) & step(t; — D; — ®°) - step(; + D — to)

we can define the following binary-valued function

dbf(t') + jC, whereC = > . C;, j > 0 andt’ = (14)
t — jT (see Section 4.1 in [8]). that returnsl if the job 7/ has both activation and deadline
in [to,¢1], and it returnd) otherwise.
V. DEMAND BOUND FUNCTION OF SPORADIC Hence, the demand of all the tasks belonging to the
PIPELINES pipeline 7;, can be expressed as:

Unfortunately, for sporadic pipelines, the worst case ks
does not occur with periodic activations. Consider the df, (¢o,¢,) £ max Z Z jobInt(to, t1)C; (15)
following pipeline with 3 tasks on 2 processors. The el T T

wherek, andk; are indexes of pipeline instances, defined intervalSet — 0 > initialize the set of intervals

in Eq (3), that may have an effect on the demand in 2: STOREI NTERVALS . > Stqre intervals inntervalSet
[tO tl] : sortintervalSet by |ncreaS|ng1 —1p

The sum on all the pipeline instancéscan be split % lastDBFval <0

w

in three parts: the first part is the sum over the indexes 5 " eachlto, 1] € intervalSet do > loop on all
corresponding to th@ast instancegfrom —ky to —1); |nterv_als+ .
the second part is theurrent instancgwith ¢ = 0), and 6: I, I'" — (v init sets of past and future patterns
the third part is the sum over tHature instancegfrom 1 [SPANPATTERNS(fo, #1) > store patterns i~ I'"
to k1). Hence Equation (15) becomes 8 curDBFval — dfy(t1, o) > Eq. (16)
9 if curDBFval > lastDBFval then > Eq. (17)
dfi(to,t1) =Y _ joblIn] (to, t1)C; 10: store the poin{t; — t, curDBFval)
Ti 11: else
-1 12: do nothing (dominated by previous point)
+ omax Z Zjoblnf(to,tl)ci (16) 13: end if
A Sy 14: end for
k1
+ max Z Zjoblnf(to,tl)ci Figure 6: Algorithm for computing thebf.

1 k1 +
(@50 et)er l=1 T;

) . [to, t1], i.e. the intervals such that > 0 both the demands
patterns of the past and the future instances respectivel :
) fr(to + &,t1) and dfi(to,t1 —) are strictly less than
Although Eq. (16) is apparently more complex thandf (to,t1). In Section V-A we describe the procedure
Eq. (15), it is computationally more efficient, because it kA 0: 01/ P

. STORHNTERVALS for performing this step. After sorting
has the adyantage of decoupling the dependency on pat?1te intervalsto, 1] in intervalSet by increasingt; — to
and future instances.

. . . . (at line 3), we search for the activation pattebnthat
Finally, as for the periodialbf, the sporadicdbf is maximizes the demand ifio, #:]. In Section V-B we

the maximum among aII_ the sporadic demand funCtlonsdescribe the procedurePANPATTERNS that stores all
computed on intervals with the same length:

possible activation patterns of future instance$'in and
dbfy () © max dfy(to, to +t) (17) those ones related to past instance$'in
to

whereI'™ andI't are the sets of the possible activation g

Figure 5 shows that, for the same parameters of Table [+ Enumerating the intervals

the sporadielbf computed from Eq. (17) is larger than the ~ The first stage requires to enumerate all the intervals
periodicdbf (Eq. (9)). [to,t1]. The pseudocode of this stage is reported in Fig-
ure 7. First, we claim that, must coincide with the
activation of some job. In fact, if this does not happen then
we could increase, achieving a shorter interval with the
same demand. Hence we sgtequal to the activation of
the job7?, i.e. to spans on{¢; : 7; € 71} (see line 4 of
the algorithm). Notice that, without loss of generality, we
label by0 the pipeline instance which this job belongs to.
L Regarding the possible values 4f, it is sufficient to

test only the absolute deadling$. In fact if t; = d

for some taskr; € 73 and some pipeline instande,
Fms js T T then a reduction ot; by an arbitrary small amount

will decrease the demandf by at leastC;. However, the

—__sporadicdbf
---- periodicdbf

_ — main difficulty here is that the absolute activations are not
PO ?0 l — } | fixed, hence we do not know where the deadlines are until
Pl \ I we fix the sporadic activation pattefin
P2 First, we list the values oft; associated with the
absolute deadlines of the instaritésee lines 5-9). Then
Figure 5: An example of sporaditbf. we invoke the recursive procedures TUREDEADLINE

andPASTDEADLINE that list the absolute deadlines of the
Equation (17) is a nice and compact expression of thduture and past instances, respectively.
dbf. It is however unclear how such ébf should be These two procedures explore the possible activation
practically computed. patterns® such that task activations are aligned with
We follow a strategy similar to the one used for com-t,. Specifically, the callFUTUREDEADLINE (¢, ¢, ®‘~1)
puting thedbf of periodic pipeline. The strategy consists explores all the activation patterns of instances starting
in the algorithm reported in Figure 6. First (at line 2), we from the /-th one, assuming that the absolute activation
compute the listntervalSet of all the significantintervals of the (¢ — 1)-th instance is®‘~! and the start of the

1: procedure STOREHNTERVALS

2 intervalSet «— () > initialize
3 for eachr; € 7, do > loop ontg
4 to — ¢;

5: for 7; € 7;, do

6 if Ej > to then

7 store[to, D;] in intervalSet

8 end if

9: end for

10: FUTUREDEADLINE(g, 1, 0)

11 ko «— [D;to-l —1

12: PASTDEADLINE(tg, —ko, —2ko(D + T))

13: end for

14: end procedure

15: procedure FUTUREDEADLINE (tg, £, ®/~1)

16: for all ®¢ € {®~L + TYU {to — ¢; : to — &; >
@271 + 777 T; € ﬂ} do

17: for eachr; € 75, do

18: t1 = g + Ez

19: if t1 >ty then

20: store|[to, t1] in intervalSet

21: end if

22: end for

23: if ¢ < [2£2L] then

24: FUTUREDEADLINE(to, £ + 1, ®%)

25: end if

26: end for

27: end procedure

28: procedure PASTDEADLINE (tg, £, ®/1)

29. for all ®‘ € {({T, 1 +T}U{tg—¢;: 1 +
T <ty—¢; <lT, 7 €T} do

30: for eachr; € 7, do

31: t1 = ot + Ez

32: if t1 >ty then

33: store|[to, t1] in intervalSet

34: end if

35: end for

36: if £ < —1 then

37 PASTDEADLINE (to, £ + 1, ®°)

38: end if

39: end for

40: end procedure

Figure 7: Algorithm for enumerating intervals.

[t
case 1 =
L O
‘
case 2 YEr
. P’ =10+ ¢
‘
case 3 YET
L Dll=to -1 =1t

Figure 8: Exploring the absolute activations.

sient that is long at mogD + 7", thedbf becomes periodic.
Lemma 1:For large values oft, the dbf(t) has a
periodic pattern. More formally:

Vt> D+ T dbfy(t+T) = dbfy(t) + C".

whereC* =37 Ci.

Proof: Let t, and ® be the instant and activation
pattern that give the value afbf,(¢) in Equations (17)
and (16) respectively, and let us get= t + ¢.

We identify with ¢ the first pipeline instance with
activation ®* > t,, hence®‘~! < t,. Since we are in
the worst case an®’ > ¢y, then

Vh>(dh—@h-l=1T (18)

otherwise, we could move alt" with h > ¢ early without
removing any job from the interval. On the contrary, the
deadline of a job may enter the interval, and the worst-
case activation pattern cannot Beanymore, causing a
contradiction.

From (18) and the definition of, we notice that the
instance’ of the pipeline ends earlier than. Clearly this
is also true for all instances befofe Formally

Pl <ty = B <ty+T
'+ D<to+T+D <t

From (18), it follows that any interval of lengtd
starting after®’ + D contains exactly one activation and
one deadline of each task. Hence the demand generated in
the intervallty, t1 + T increases by one job for all tasks
in 7, i.e. C*.

Suppose by absurd thabfy, (¢t + 7) > dbfy(t) + C*.

interval is ty. The key statement of the procedure is atThen, it exists an intervaiy, t,+t+7 with demand larger
line 16, where®’ is assigned the possible values. Thethan dbfy(#) + C*. Let ® be its activation pattern, and

possible choices fob’ are also illustrated in Figure 8. In
the situation depicted in the figuré’ can assume three
possible valuesd’~! + 7" when the/-th instance starts as
early as possiblety — ¢» when ®¢ 4 ¢, coincides with
to, Or to when the jobr{ is activated exactly aty. The
procedurePASTDEADLINE works similarly.

let us call/’ the first instance withb? > t,. Following
the same reasoning as above, the demangirt, + ¢]
decreases byC*. However, this is absurd because we
obtain a new interval with the same lengthbut with
demand higher than ifty, to + t]. |
Since, thanks to the lemma, the transient part ofdthfe

For each pattern the values of absolute deadlines arasts for no longer tha® +7' and the periodic part is long

recorded as candidate values for

T, it is possible to compute thébf only for lengths of

We conclude the section by showing that, after a tranintervals less or equal to thab + 27'.

Now we present an algorithm for computing the activa-
tion patterns that determines the maximum demand in a
given interval[tg, t1]. 3

B. Algorithm for enumerating the activation patterns 4:
procedure °

In this section we explain the
SPANPATTERNS(to,t1) (see line 7 of the algorithm

in Figure 6) that checks all possible sporadic activation 6:

patterns of past and future instances that may have
an impact on the intervalt,t;].
interested only in pipeline instances that may overlap 8

with the interval[to, t1]. o:
In the exploration of the activation patterns we distin- 10:
guish between future instances (with indéx> 0) and 11
12:

past instances (with indek < 0). The guideline for the
exploration of absolute activations of future instances is

to align some task activatiom! = ®* + ¢; with t,. This 13
is possible by setting 14:
15:

= t() — ¢z (19) 16:

However, this is a valid absolute activation only if it .

respects the constraints of being a sporadic pipeline with, g.

minimum interarrivall’, that is

P >4 T (20)

all the values®®, !, ®2 ... ®* . The procedureom-

PUTEFUTURE for testing future instances is reported in 23:
24:

The same rationale is applied to past instances (th&5:
ones with index¢ < 0). In this case however, we aim 26:

Figure 7.

at finding the absolute activatio®’ such that some
absolute deadline is aligned with. The full algorithm
that explores the activation patterns is reported in Fi§ure
In the example of Figure 5, if we assumg= 0 then
®! should be tested with the values ®f= T'). Instead,
if to = ¢3 = 7 then ®' is checked both when it i§
and when it isto — ¢1 = 7, meaning that we align the
activation of the instancé with the offset¢; =ty = 7.

C. Complexity analysis

We start by analyzing the complexity of procedure
STORHNTERVALS. The outer loop (line 3) is executeqd,
times. After adding the intervals for instance O, procedure
FUTUREDEADLINE and PASTDEADLINE are invoked.

ProcedureFUTUREDEADLINE explores a number of
instances at most equal t = [£2£2L] — 1. Of this,
the first |% | instances may vary their activation time, .

. . S
while for the successive ones, the worst-case correspoml[%h

to interarrival times equal t@'. The number of possible
to

combinations of activations (line 16) is th TJ. For

each combination k. deadlines are generated.
ProcedurePASTDEADLINE is very similar. The number

of instances isky (see Eg. (3)). The maximum num-

Therefore, we are 7:

19:
20:
21:
This condition introduces a recurrent dependency betweei2:

1 procedure SPANPATTERNS(tq, 1)

k= [%]-1 > see Eq. (3)
COMPUTEFUTURE(L,(0,...,0))
N——
Ky
ko = [B7e] —1 > see Eq. (3)
COMPUTEPAST(—1,(0,...,0))
ko
end procedure
procedure COMPUTEFUTURE(Y, (®!,. .., ®F1))

if £> ki then > the exit condition
store(®!,...,®*)inT+* o I't is global
else
®0 — 0

for all ®¢ € {® 1 +TYU{to—¢; : to—b; >
O+ T, 1, € T} do

COMPUTEFUTURE(! + 1, (1, ..., ®F1));
end for
end if
end procedure
procedure COMPUTEPAST(/, (&0, ... &~1))
if £ < —kq then
store(®~ko ... d71)in T~
else
0 — 0
for all ®° € {®*' —TYu{t;-D; : t1—-D; <
O T 1, € Tp} do
COMPUTEPAST({ — 1, (&~ Fo ... &~ 1Y);
end for
end if

end procedure

Figure 9: Algorithm for generatinf~ andI'™.

Each generated interval must be inserted in a ordered
list, an operation that takes logarithmic time in the size of
the list. The size of the list at the end of the procedure is:

to
5= kgn,g #]+1 + neko(ng + 2)k°

and the complexity i€)(>";_, log(7)).

Notice that, while generating the the values tof it
is quite common to obtain many times always the same
values. In average, we expect that the final size of the list
is much smaller than its upper bound

Regarding procedursPANPATTERNS, we apply a sim-
ilar reasoning. We address separately future and past
tances. ProcedureoMPUTEFUTURE builds a tree in
which at level 1 sets the value df', at level 2 sets the
value of ®2, and so on. There will bé; levels. Each
node has at most;, + 1 children. Hence, the number of
leafs of such a tree ién;, + 1)*1. Each leaf corresponds
to a different value of(®!,...,
can be built for past instances. Thus the complexity of

®F1). A similar tree

ber of elements generated for each combination of pasginumerating all activation patterns is

activations isnyikq. Finally, the maximum number of
combinations (line 29) igny + 2)*o.

O((ny, + 1)* + (ny, + 1)*).

Finally, the complexity of computing the whotbf is

S
O <Z log () + snu, ((nk + 1) + (g + 1)k1)> .
=1

We are aware that the proposed algorithm is very
complex, although it runs in acceptable time for very
realistic settings as it will be shown in the experiments.
Most of the complexity lies in the sporadic nature of the
pipeline that requires to check all possible scenarios. In
this paper, we focused on the exact analysis regardless
of its complexity. We leave to future investigations the
development of simplified algorithms as well as some
approximation schemes.

CPU n D/T min average max|
4 20 5 0.0038 0.0089 0.0197
4 40 5 0.1497 0.2002 0.2950
4 60 5 0.6551 1.0892 1.4681
4 100 5 9.8498 16.5764 22.8148
4 20 10 0.0148 0.0390 0.0731
4 40 10 3.1423 6.7326 12.0010
4 60 10 47.0424 106.5302 138.9140
4 20 15 0.0907 0.18023 0.3284
4 40 15 7.8494 20.0923 36.6787
4 60 15 | 264.5299 399.1137 597.4694
8 20 15 0.0074 0.0166 0.0348
8 60 15 2.7329 7.6004 12.6663
8 80 15 24.3439 45.6743 68.7062
8 20 20 0.01183 0.03168 0.05448
8 60 20 16.9809 27.7639 41.7258
8 80 20 | 127.4887 233.0104 330.9758

Table 1I: Execution time for computing thébf on 4 and

VI. EXPERIMENTAL RESULTS
A. Computation of thelbf

In order to test the run-time of our algorithm, we
conducted several runs on synthetic chains of tasks. In
each experiment we varied the number of tasks, CPU
and deadline/period ratio, measuring the time needed to
compute the sporadidbf according to the procedures
described in Section V.

The simulation platform is based on a Linux distribution
(Ubuntu) with kernel 2.6.24-16-generic. The HW is a
notebook with an Intel T2400 (a Centrino duo at 1.8GHz)
and 2GByte of RAM. To get the time for each test, we
use the Linux call

int clock gettine(clockid t clock id,
struct tinmespec *tp)

with value CLOCK_THREAD CPUTI ME_I D, in order to
get the CPU-time given to our thread. The algorithm if
Figures 6, 7 and 9 is implemented in a single thread, with-
out any code optimization (some possible improvements
are discussed in Section VI-B).

The numerical results are reported in Table Il. In
Figure 10 we plot the case withCPUs, while in Figure 11
the case with 8. The pipeline has a number of tasks
n = {20,40,...,120}, which are uniformly distributed
over the available CPUs, i.e. if we havé tasks andi
CPUs then there ar#) tasks on each CPU. We vary the
value of% from 5 to 20. Computation timeC;, relative
deadlinesD; and mappinge; are randomly generated.

In spite of the exponential nature of the problem, the
algorithm is usable for systems with a reasonable size.
The most important parameters are the ratio between EE
deadline and period/T, and the number of tasks on
each CPU. For ratio larger tha?b the time required to
compute thedbf starts to become too large, whereas for
values Of% of 10 or less, it is possible to put 20 tasks
on each CPU and still receive an answer in a reasonable
time.

B. Improving the computation of the sporadibf

Despite the fact that the algorithm computes dbé in
a reasonable time for small and medium dimension of the

100000

8 processors (times in seconds).

100,00

S

—e—DIT=5
= D/T=10
—=-D=15

10,00

7
#

/

0.0

oot

/

Figure 10: Execution times on 4 CPUs.

100000

100,00

e

—=— D=5

—&—DIT=10
—e—DT=15
——Dm=20

10,00

o

100

e

0,

Zn /ﬂ/ ’ - "

120 140

00

7,
-

Figure 11: Execution times on 8 CPUs.

CPU n D/T min average max|
4 20 5 0,0148 0,0177 0, 0227
4 40 5 0,1237 0, 1546 0,2048
4 60 5 0, 5075 0,6577 0, 7730
4 100 5 5, 7577 8,0756 11,5889
4 20 10 0,0323 0,0397 0,0514
4 40 10 0, 3420 0,5943 0, 8360
4 60 10 3,7987 5,5338 7,6891
4 100 10 | 105,1929 142,2384 192,2207
4 20 15 0,0431 0, 0654 0, 0895
4 40 15 1,5671 2,3917 4,0547
4 60 15 22,4993 28,9635 36,5755
4 80 15 | 109,9120 158,1644 203, 6692

problem, the execution time can be further reduced withTable li:

some code optimization that we highlight here.

Execution time for computing thebf on 4
processors (times in seconds) with a small optimization.

1000,00

= with classic holistic analysis [4], [7]. In this experiment
=t we evaluate this loss.
10000 S We assumed to have 2 or 4 computational nodes. On
//// these nodes we distributed 6 pipelines, each one with
10 a number of tasks between 6 and 12 and a period in
//// {100, 200, . ..,900,1000}. For each setting we generated
g 200 sets of distributed pipelines. We plot the percentage
s » ® © (I of accepted sets as a function of the deadline-period ratio
D/T of three schedulability tests: MDO proposed by
" W Pellizzoni and Lipari [7], WCDO proposed by Palencia
and Gonzalez Harbor [4], and our proposed test based on

the computation of the sporadic demand bound function.

: L In Figure 13 we report the experiments, when the number
Figure 12: Fast execution times on 4 CPUs. g P P

100 ---- ;;';;;'—A’—'-’*-”—*-—
90 B Tl
Parallelism: A simple technique is based on exploit- & 80|
ing the inherent parallelism exposed by the algorithm. We g [l ™
highlight two places where the introduction of parallel S gg 777777777777777777777777777777777777 VDO
threads can be fruitfully used. o] SRR [P WCDO
1) Each iteration of the for loop of line 5 in Figure 6 § BO o DBF
is independent of each other, hence parallel threads 20 [

=
o

could take fully advantage of this.

2) Each iteration of the for loop at line 3 in Figure 7 0,
is independent of each other. More than one thread
can be used to compute independently the set of
intervals that derives for eadly = ¢;.

[y
© O
o O

. L _ Seo

3) To reduce wait-states, it is possible to start comput- < 4
ing the demand of intervals before procedamr- § 60
EINTERVALS ends. Clearly there are some shared @ 50
structure, like the list of intervals and thibf. %40
Branch and bound:A second technique that we & 23

suggest is based on branch and bound. In the procedures 10
COMPUTEFUTURE and COMPUTEPAST, while we are ol ‘ ‘ ‘ ‘ ‘ ‘
computing the demand in the intervibh,], we have 11125 125 1375 15 1625 1.75 1875 2
to explore all possible sporadic activation patterns to find ratio D/T

the one that maximizes Eq. (16). This operation is therigure 13: Performance of schedulability tests (2 CPUs).
exploration of a tree, where the depth corresponds to the

the index? of an instance of the pipeline, and at each ¢ cpus is 2. In the upper part of the figure we set the

node we assign a value ®°. Hence, if we are able 10 (15| yilization of each node equal to4, while in the
upper bound the contribution of a sub-tree, we can prunggitom part we set it equal t6.8 (condition of heavy
it without continuing the exploration. node utilization).

For example, the contribution of an instance in an |, Figure 13 we report the experiments, when the
interval of lengtht could be upper bounded by the demand,mber of CPUs is 4. In the upper part of the figure we

bound function of only one instance considered in isola~et the total utilization of each node equabto, while in

tion, and the contribution of all the remaining instances ofia pottom part we set it equal @8 (condition of heavy
the subtree can be set equal to the sum of each individug)yqe utilization).

contribution. As expected the test based on the sporatti€ is

We add branch and bound to our algorithm, reducing thgngre pessimistic than the others. The source of pessimism
required time. We report the numerical results in Table lll omes from the assumption of releasing the tasks at the
and plot them in Figure 12. deadline of the preceding one, rather than at the comple-
tion. Even considering the pessimism of the analysis we

) still believe that the gain in terms of compositionality doe
As we discussed throughout all the paper, our proposegominate the incurred loss of schedulability.
approach provides substantial benefit for software engi-

neers by allowing the composition of pipelines that are VII. CONCLUSIONS AND FUTURE WORK
developed and guaranteed independently of each other. In this paper we addressed the problem of analyzing the
However we incur in a loss ID schedulability comparedschedulability of sporadic pipelines on a distributed eyst

C. Comparison against holistic analysis

~
o

o

o

w b O oD
o o

acceptance (%)

N
o

10

acceptance (%)
BN WD oo
O O O O o o o

o

2.75 3.25
ratio D/T

(7]

(8]

(9]

[10]

[11]

[12]

Figure 14: Performance of schedulability tests (4 CPUSs).

scheduled by EDF, and how to support our methodolog;&lg]
at run time. We proposed an algorithm to compute the
sporadicdbf offline on each node.

As a future work, we plan to extend the methodology
to task graphs. Also, we would like to study the effect
of combining different scheduling strategies on different
nodes, and the effects of network scheduling. Finally,

we

plan to study the possibility to schedule a pipeline

[14]

[15]

in a time partition on each node, and study the effect
of misbehaviors on the pipeline schedule, such as tasks

exceeding their WCET, or events that do not respect thet©!
minimum interarrival time.

REFERENCES

[1] K. Richter, R. Racu, and R. Ernst, “Scheduling analy- [17]

sis integration for heterogeneous multiprocessor soc,” in
Proceedings of the25™ Real-Time Systems Symposium
Cancun, Mexico, Dec. 2003, pp. 236—245.

[2] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni- [18]

(3]

(4]

(5]

(6]

Vincentelli, “Definition of task allocation and priority as
signment in hard real-time distributed systems,” Rro-
ceedings of th@s" |IEEE Real-Time Systems Symposium
Tucson, AZ, Dec. 2007, pp. 161-170.

K. W. Tindell, A. Burns, and A. Wellings, “An extendible
approach for analysing fixed priority hard real-time tasks,
Journal of Real Time Systemsl. 6, no. 2, pp. 133-152,
Mar. 1994.

J. C. Palencia and M. Gonzalez Harbour, “Schedulabilit
analysis for tasks with static and dynamic offsets, Piro-
ceedings of tha9™" |IEEE Real-Time Systems Symposium
Madrid, Spain, Dec. 1998, pp. 26-37.

M. Spuri, “Holistic analysis for deadline scheduled Irea
time distributed systems,” INRIA, France, Tech. Rep. RR-
2873, Apr. 1996.

J. Palencia and M. G. Harbour, “Offset-based respomse ti
analysis of distributed systems scheduled under EDF,” in
15th Euromicro Conference on Real-Time SysteRsto,
Portugal, July 2003.

[19]

[20]

[21]

R. Pellizzoni and G. Lipari, “Holistic analysis of asyn-
chronous real-time transactions with earliest deadline
scheduling,” Journal of Computer and System Sciences
vol. 73, no. 2, pp. 186-206, Mar. 2007.

A. Rahni, E. Grolleau, and M. Richard, “Feasibility aysis

of non-concrete real-time transactions with edf assignmen
priority,” in Proceedings of the 6" conference on Real-
Time and Network SystepfRennes, France, Oct. 2008, pp.
109-117.

M. Di Natale and J. A. Stankovic, “Dynamic end-to-end
guarantees in distributed real time systemsPimceedings
of the15™ IEEE Real-Time Systems Symposi&an Juan,
Puerto Rico, Dec. 1994, pp. 215-227.

S. K. Baruah, R. Howell, and L. Rosier, “Algorithms and
complexity concerning the preemptive scheduling of peri-
odic, real-time tasks on one processétgal-Time Systems
vol. 2, pp. 301-324, 1990.

K. Albers, F. Bodmann, and F. Slomka, “Advanced hierar-
chical event-stream model,” iRroceedings of theo" Eu-
romicro Conference on Real-Time Systefrague, Czech
Republic, Jul. 2008, pp. 211-220.

K. Gresser, “An event model for deadline verification of
hard real-time systems,” iRroceedings of thé" Euromi-
cro Workshop on Real-Time Syster@ulu, Finland, Jun.
1993, pp. 118-123.

S. Chakraborty and L. Thiele, “A new task model for
streaming applications and its schedulability analysis,”
Design, Automation and Test in Europe Conference and
Exposition Munich, Germany, Mar. 2005, pp. 486-491.

G. C. ButtazzoHard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applicatiornd ed.
Springer Verlag, 2004, iSBN: 0-387-23137-4.

S. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Gener-
alized multiframe tasksReal-Time Systemsol. 17, no. 1,
pp. 5-22, 1999.

F. Zhang and A. Burns, “Schedulability analysis forlrea
time systems with edf scheduling,” Real-Time Systems
Group, University of York, techreport YCS-2008-426,
February 2008.

S. Jiang, “A decoupled scheduling approach for disted
real-time embedded automotive systems,”|EEE Real
Time Technology and Applications SymposiumIEEE
Computer Society, 2006, pp. 191-198.

N. Serreli, G. Lipari, and E. Bini, “Deadline assignnien
for component-based analysis of real-time transactians,”
2nd Workshop on Compositional Theory and Technology
for Real-Time Embedded SysteM&shington, DC, U.S.A.,
Dec. 20009.

J. L. Lorente, G. Lipari, and E. Bini, “A hierarchical
scheduling model for component-based real-time systems,”
in Proceedings of the0" International Parallel and Dis-
tributed Processing SymposiunRhodes Island, Greece,
Apr. 2006.

P. Jayachandran and T. Abdelzaher, “Delay composition
algebra: A reduction-based schedulability algebra for dis
tributed real-time systems,” iProceedings of the29!"
IEEE Real-Time Systems SymposiuBarcelona, Spain,
Dec. 2008, pp. 259-269.

S. Baruah and K. Pruhs, “Open problems in real-time
scheduling,”Journal of Scheduling2009.

