
The Demand Bound Function Interface of Distributed Sporadic Pipelines of Tasks
Scheduled by EDF

Nicola Serreli, Giuseppe Lipari, Enrico Bini
Scuola Superiore Sant’Anna, Pisa, Italy

Email: {n.serreli,g.lipari,e.bini}@sssup.it

Abstract—In distributed real-time embedded systems
(DRE), it is common to model an application as a set of task
chains. Each chain is activated cyclically and must complete
before an end-to-end deadline. Each task of the chain is
bound to execute on a particular processing element.

The complexity of designing and analyzing a DRE can
be reduced by applying a component-based methodology:
each pipeline can be seen as a component with its temporal
characteristic summarized in its interface. Analysis can be
carried out in two different steps: 1) derivation of the
temporal interface of a component pipeline; 2) analysis of
the whole system by integrating the temporal interfaces of
the components.

In this paper, we propose to describe the temporal inter-
face of a task pipeline by a set ofdemand bound functions
(dbf), one per each node on which the pipeline executes, and
we describe an algorithm for computing the dbfs. First, we
show that the scenario of strictly periodic activations is not
the worst when the pipelines are sporadically activated. Then,
we propose an exact algorithm for computing the dbfs. We
show by experimental analysis that the computation time of
the algorithm on pipelines with reasonable size is below one
second on common PCs. Finally, we estimate the pessimism
introduced by our analysis with respect to holistic analysis
by an extensive set of simulations.

I. I NTRODUCTION

Today’s applications are often developed by different
vendors, each one providing separate components. As the
application is distributed over several processing elements,
components are of distributed nature as well. For example,
this is the typical scenario in the automotive context [1],
[2].

In the analysis of such a system it is of key importance
to preserve the following properties:

1) each vendor provides only a synthetic information
on the developed component (called component in-
terface);

2) the integration of the components is made only on
the information contained in the interface.

In real-time systems, a component is equipped also with
a temporal interfacethat contains information related to
the amount of computational resource required by the
component over time. The analysis is then performed in
two steps: in the first step, each component is analyzed
in isolation, summarizing its temporal behavior with a
(possibly small) set of temporal parameters. Such tem-
poral parameters will be part of the component interface
along with the functional and behavioral parameters. In
the second step (integration), we must verify that the
overall system is schedulable by integrating the temporal
interfaces derived in the previous step.

In distributed real-time embedded (DRE) systems, a
component is often modeled as a chain of tasks (also called
transaction or pipeline) [3]. Each task of the pipeline is
allocated on a (possibly different) processing node. The
first task in the pipeline is activated periodically, or by
external events characterized by a minimum interarrival
time. The other tasks must respect the pipeline precedence
order, i.e. start executing after the completion of the
previous task. Finally, the last task in the pipeline must
complete within anend-to-end(EE) deadline relative to
the activation time of first task. In general, the end-to-end
deadline can be smaller, equal or larger than the period (or
minimum interarrival time). Large EE deadlines are quite
common in real applications. For example, in multimedia
streaming the period at which video frames are generated
and processed may be much lower than the EE deadline
for delivering the frames to the user.

When integrating the components (that we assume to
be modeled by pipelines) it is important to check the
schedulability of entire system, i.e. to test if all pipelines
will complete before their EE deadline under worst-case
conditions. In fixed priority systems, theholistic analy-
sis [3], [4] consists in reducing the overall distributed
schedulability problem intop single-node problems that
can be solved using classical schedulability analysis. Each
task is assigned a priority, and task parameters like offsets,
jitters and response times are calculated so that the prece-
dence constraints are automatically guaranteed. Since all
schedulability problems depend on one another (i.e. the
activation of an intermediate task, and hence its jitter,
depends on the response time of the preceding task),
the analysis is iterated until either a fixed-point solution
is found or the set is deemed not schedulable. Similar
techniques have been applied to EDF scheduling [5]–[8].
In this case, each task must be assigned an intermediate
deadline instead of a fixed priority. Holistic analysis also
allows to mix different schedulers on different nodes, as
long as the designer is able to compute the worst-case
response time of every task.

Unfortunately, the holistic analysis is unfit for
component-based analysis, since it requires to know the
parameters of the tasks of all pipelines (of the other
components as well). In fact, at each step it is not possible
to calculate the response times of the tasks, because they
depend on the presence of all other pipelines, so we cannot
set the offsets and the jitters of intermediate tasks. In
other words, following the holistic model we cannot easily
compute the temporal interface of the component.



A different approach consists in fixing the offset and
the relative deadline of intermediate tasks to appropriate
values, so that precedence constraints are respected. In this
way, each task can be treated independently of the others.
This approach is calledslicing in [9]. In practice, the EE
deadline is sliced into non-overlappingexecution windows
for the task.

Following the slicing method, under EDF the temporal
characteristics of the pipelines are abstracted by a set of
demand bound functions(dbfs) [10], one for each node.
Then, the first step consists in computing thedbf of
every pipeline on every processor. This set ofdbf (or
an approximation of them) form of the temporal interface
of the pipeline. Then, the integration analysis consists in
summing all thedbfs for every node, and check that the
resulting function never exceeds the computational power
of the node.

This method is pessimistic with respect to the holistic
analysis. In fact, fixing a-priori the offset of every task
to the deadline of the preceding one adds additional
constraints to the problem, reducing the chance of a
system to result schedulable. However, in our opinion,
the advantages of a component-based design methodology
overcomes the loss of schedulability (that is however
experimentally evaluated in this paper).

In this paper, we propose an algorithm to exactly
compute thedbf of periodic and sporadic pipelines. We
first show that, when the EE deadline is larger than
the period, the worst case arrival pattern for a sporadic
pipeline is not necessarily the periodic one. Then, we
describe our algorithm, and compute its complexity, which
is exponential in the number of tasks and in the ratio
between the end-to-end deadline and the period. However,
we show by experimental analysis that the computation
time of the algorithm on pipelines with reasonable size is
below one second on common PCs, which is acceptable
for all practical uses. Finally, we estimate the pessimism
introduced by our analysis with respect to the state of the
art holistic algorithm in the literature.

II. RELATED WORK

The classic method for guaranteeing the EE deadline of
chains of distributed tasks is the holistic analysis [3], [4],
[6], [7]. In these approaches the run-time behavior of the
tasks is iteratively simulated until it converges to a fixed
point. As widely discussed earlier this approach is not well
quited for component-based analysis.

Other approaches [1], [11] are based on the propaga-
tion of sequences of events [12] and analyze the sys-
tem through the real-time calculus [13]. To best of our
knowledge, however, the correlation between activation
of consecutive activation of the same pipeline is lost
introducing some pessimism in the analysis.

The use of the demand bound function was initially
proposed by Baruah et al., for testing the schedulability
of set of tasks scheduled by EDF on single processors
[10]. This methodology is also known as “Processor
Demand Criterion” [14]. The computation of thedbf was

later extended to more complex task models, such as the
generalized multiframe tasks [15]. Recently, Zhang and
Burns [16] proposed a technique to reduce the number of
points to check during analysis based on demand bound
function.

The processor demand criterion has been extended to
the analysis of distributed real-time pipelines by Rahni et
al. [8]. However, their methodology is still based on the
holistic analysis: the activation time of a task is set equal
to the finishing time of the previous task in the pipeline.

In [9] authors proposed a methodology to analyze
the schedulability of task graphs. The methodology also
computes intermediate deadlines by using an heuristic
approach, and it is based on theslicing approach: each
task is assigned a slice that does not overlap with the slices
of other tasks. Later [17] uses time slices to decouple
the schedulability analysis of each node, reducing the
complexity of the analysis. Such an approach improves
the robustness of the schedule, and allows to analyze each
pipeline in isolation. We recently proposed a heuristic
algorithm for assigning intermediate task deadlines based
on the slicing approach [18]. Our methods enables a
component-based analysis.

In the context of component-based analysis, Lorente et
al. [19] proposed the holistic analysis onto a set of virtual
processors, rather than fully available ones. However the
component interface was not specified.

A notable alternate analysis was proposed by Jay-
achandran and Abdelzaher [20], who developed several
transformations to reduce the analysis of a distributed
system to the single processor case. However, in their
analysis, the isolation between transactions is not ensured.

III. SYSTEM MODEL AND NOTATION

A distributed real-time application is modeled by a set
of pipelines{T1, . . . , Tm}. To simplify the presentation,
since our work investigates each pipeline in isolation,
throughout the paper we drop the index of the pipelines.

PipelineT is composed by a set ofn tasks{τ1, . . . , τn}.
Task τi has a computation timeCi.

The first taskτ1 of the ℓth instance of the pipeline is
activated atΦℓ, that is calledabsolute activation, while
tasksτi, with i > 1, are activated upon the completion of
the preceding oneτi−1.

We denote byτ ℓ
i the ℓth instance of the taskτi, that we

often call job in accordance with a commonly adopted ter-
minology. We consider sporadic pipelines with minimum
iterarrival timeT . Hence we have

Φℓ − Φℓ−1 ≥ T. (1)

To describe a possible scenario of activations for the
sporadic pipeline under analysis, we need to list the
possible values of absolute activationsΦℓ. We label the
instance of the pipeline under analysis by0. Moreover,
we operate a time translation, so to set the activation of
this pipeline at time reference0. Therefore, we setΦ0 = 0.

The future instances(w.r.t. the0-the one under analysis)
will be denoted by positive indexesℓ > 0, and their



absolute activations byΦ1, Φ2, . . . Similarly, the past
instanceswill be denoted by negative indexesℓ < 0, and
their absolute activations byΦ−1, Φ−2, . . .

A sequence{Φℓ}ℓ∈Z represents a possible scenario
of absolute activations of all the instances. However,
when we are investigating the demand on a finite interval
[t0, t1], only a finite number of instances may overlap with
the interval. Hence we represent thesporadic activation
patternas follows

Φ = (Φ−k0 , . . . , Φk1) (2)

where indexes of the instances are taken from−k0 to k1,

k0 =

⌈
D − t0

T

⌉

− 1 k1 =

⌈
t1
T

⌉

− 1. (3)

In Figure 1 we show the interpretation if the instance
indexes−k0 andk1 compared with an interval[t0, t1].

t0 t1

instance−k0

instancek1

Figure 1: Example of calculation ofk0 andk1.

We remark that, similarly to what it happens in multi-
processor scheduling [21], activating the pipelines as early
as possible (i.e. periodically)is not the worst-casefor
the activation pattern. In Section V we show this by an
example.

Each pipelineT has anend-to-end deadlineD that
is the maximum tolerable time from the activation of
the first taskτ1 to the completion of the last taskτn.
Since the analysis of the constrained deadline (D ≤ T )
is a straightforward extension of the classic analysis,
throughout the paper we always assumeD > T . In such
a case, it may happen that a task is activated before its
previous instance has completed. In this paper, we assume
that the activations of each task are served in a FIFO order.

The application is distributed acrossp processing nodes,
and each taskτi of the pipeline T is mapped onto
computational nodexi ∈ {1, . . . , p}. Hence, we define
Tk = {τi ∈ T : xi = k} as the subset of tasks inT
mapped onto nodek andnk as the cardinality ofTk.

The delay due to network communication can be eas-
ily taken into account by considering the network as
a special processing node, and messages as tasks. The
methodology presented in this paper is valid also when
different scheduling policies are used on the processing
nodes. However, to simplify the presentation, in this paper
we make two assumptions: we neglect the delay due
to network communication (for example, restricting to
a multiprocessor system with shared memory); and we
assume EDF as the only scheduling algorithm in the
system.

Each task is assigned anintermediate deadlineDi, that
is the interval of time between the activation of the pipeline
and the absolute deadline of the task. Hence, using the

notation introduced so far, the absolute deadline of theℓth

instance ofτi, is

dℓ
i = Φℓ + Di. (4)

We enforce the precedence relationship between tasks
by the slicing technique [9]: for each task we set the
activation offsetφi, relative to the activation of the pipeline
Φℓ, equal to the intermediate deadline of the preceding
one:

φ1 = 0, φi = Di−1 i = 2, . . . , n (5)

Clearly, the task absolute activation is

aℓ
i = Φℓ + φi. (6)

Moreover, we define the taskrelative deadlineDi as

Di
def
= Di − φi.

The relationship between activation offsets and relative

φ2

φ3=D2

φn =Dn−1

T

D1=D1 D2 Dn

D = Dn

C1 C2 Cn

Figure 2: Notation for tasks.

deadlines is depicted in Figure 2. Clearly,
n∑

i=1

Di = D (7)

The values ofT, Φℓ, D, Ci, Di, Di, φi are all real num-
bers. Finally, we use the notation(·)0

def
= max{0, ·}.

IV. PERIODIC DEMAND BOUND FUNCTION

First, we recall the concept of demand bound function
for a pipeline that is strictly periodic (i.e.∀ℓ, Φℓ = ℓT ).
Then, in the next section we extend the demand bound
function to the sporadic case.

The computational requirement of the subsetTk of tasks
allocated on nodek is modeled by itsdemand bound
function (dbf).

Definition 1: The demand functionon nodek, denoted
by dfk(t0, t1), is the total computation time of all the
instances of the tasks inTk, having activation time and
deadline within[t0, t1].

For periodic pipeline, the demand function can be
computed as follows [10]:

dfk(t0, t1)
def
=
∑

τi∈Tk

(⌊
t1 −Di

T

⌋

−

⌈
t0 − φi

T

⌉

+ 1

)

0

Ci

(8)
As suggested by Rahni et al. [8], the overalldemand

bound functionof Tk in an interval of lengtht, is defined
as:

dbfk(t)
def
= max

t0
dfk(t0, t0 + t) (9)



0 2 8

5 7 13

10 12 18

t

df1(0, t)
df1(2, 2 + t)
dbf1(t)

p1

p2

p3

p4

p5

Figure 3: Example of demand bound function.

A necessary and sufficient schedulability test for non-
concrete pipelines (i.e. periodic pipelines with free initial
offset), scheduled by EDF consists in checking that the
demand never exceeds the length of the interval on every
processor

∀k = 1, . . . , p ∀t > 0
∑

T

dbfk(T , t) ≤ t (10)

where the sum is made over all the pipelines in the system,
anddbfk(T , t) denotes the demand bound function ofT
on nodek. In this case, first thedbf is computed for each
pipeline and for each node (applying the max operator),
and then we sum all thedbf together to compute the
overall computational requirementdbf on nodek.

In Figure 3 we illustrate the definitions introduced in
this section by an example. Consider a pipeline whose
parameters are: periodT = 5, end-to-end deadlineD = 8,
task deadlinesD1 = 2 and D2 = 6, computation time
C1 = 1 and C2 = 3. Both tasks are assigned to a
single node. In the lower part of Figure 3, we show three
consecutive instances of the pipeline on three different
lines. In the upper part, we show the values of 3 functions:
the demand in[0, t]; the demand in[2, 2 + t]; and the
demand bound function. We represent the points where
the dbf has a step by a thick dot. The steps are tightly
related to task deadlines. For example in the figure, the
pointsp1, p2, p3 depend on the deadlines of taskτ1, while
the pointsp4, p5 depend on the deadlines ofτ2.

To compute thedbf of a periodic pipeline, it is sufficient
to consider the value of the demand functions obtained
on the intervals that start with the activation of a task,
as shown in [8]. Also, thedbf has a periodic pattern: its
value for a generic large intervalt can be computed as
dbf(t′) + jC, whereC =

∑

τi∈Tk
Ci, j ≥ 0 and t′ =

t− jT (see Section 4.1 in [8]).

V. DEMAND BOUND FUNCTION OF SPORADIC

PIPELINES

Unfortunately, for sporadic pipelines, the worst case
does not occur with periodic activations. Consider the
following pipeline with 3 tasks on 2 processors. The

0

181053 87 12

Cpu 1

Cpu 2

Sporadic

Periodic

5

7

T = 5

Figure 4: Example of sporadic pipeline.

pipeline has periodT = 5 and end-to-end deadline
D = 12. The task parameters are reported in Table I.

Task Ci proc. Di

τ1 1 0 3
τ2 3 1 4
τ3 3 0 5

Table I: Parameters for the example

In Figure 4, we show two possible activation patterns.
The first one corresponds to a periodic activation (Φ1 =
T ): in this case, it is easy to see that the maximum demand
on processor0 in any interval of length5 is at most3 units
of computation.

In the second activation pattern, the activation of the
second instance is delayed by 2 units of time (Φ1 = T +2).
As a consequence, the demand in interval[7, 12] becomes
4 units of time, because one extra instance ofτ1 enters
the interval. Thus, delaying an instance can increase the
demand.

Hence, the analysis based on the classic periodic de-
mand bound function is not applicable if pipelines are
sporadic. One of the contributions of this paper is to extend
the demand bound function to sporadic pipelines.

A job τ ℓ
i in Tk, runs inside interval[t0, t1] if its absolute

deadlinedℓ
i is not later thant1

t1 ≥ dℓ
i = Di + Φℓ (11)

and its activation is not earlier thant0

t0 ≤ aℓ
i = φi + Φℓ (12)

By introducing the function

step(x) =

{

0 if x < 0

1 if x ≥ 0
(13)

we can define the following binary-valued function

jobInℓ
i(t0, t1)

def
= step(t1 −Di − Φℓ) · step(φi + Φℓ − t0)

(14)
that returns1 if the job τ ℓ

i has both activation and deadline
in [t0, t1], and it returns0 otherwise.

Hence, the demand of all the tasks belonging to the
pipelineTk can be expressed as:

dfk(t0, t1)
def
= max

Φ∈Γ

k1∑

ℓ=−k0

∑

τi∈Tk

jobInℓ
i(t0, t1)Ci (15)



wherek0 andk1 are indexes of pipeline instances, defined
in Eq. (3), that may have an effect on the demand in
[t0, t1].

The sum on all the pipeline instancesℓ can be split
in three parts: the first part is the sum over the indexes
corresponding to thepast instances(from −k0 to −1);
the second part is thecurrent instance(with ℓ = 0), and
the third part is the sum over thefuture instances(from 1
to k1). Hence Equation (15) becomes

dfk(t0, t1)=
∑

τi

jobIn0
i (t0, t1)Ci

+ max
(Φ−k0 ,...,Φ−1)∈Γ−

−1∑

ℓ=−k0

∑

τi

jobInℓ
i(t0, t1)Ci

+ max
(Φ1,...,Φk1 )∈Γ+

k1∑

ℓ=1

∑

τi

jobInℓ
i(t0, t1)Ci

(16)

whereΓ− and Γ+ are the sets of the possible activation
patterns of the past and the future instances respectively.
Although Eq. (16) is apparently more complex than
Eq. (15), it is computationally more efficient, because it
has the advantage of decoupling the dependency on past
and future instances.

Finally, as for the periodicdbf, the sporadicdbf is
the maximum among all the sporadic demand functions
computed on intervals with the same length:

dbfk(t)
def
= max

t0
dfk(t0, t0 + t) (17)

Figure 5 shows that, for the same parameters of Table I,
the sporadicdbf computed from Eq. (17) is larger than the
periodicdbf (Eq. (9)).

105 87 1230 1 2 4 6 9 11 13 14 15 16

sporadicdbf
periodicdbf

Φ0 = 0
Φ1

Φ2

Figure 5: An example of sporadicdbf.

Equation (17) is a nice and compact expression of the
dbf. It is however unclear how such adbf should be
practically computed.

We follow a strategy similar to the one used for com-
puting thedbf of periodic pipeline. The strategy consists
in the algorithm reported in Figure 6. First (at line 2), we
compute the listintervalSet of all the significantintervals

1: intervalSet← ∅ ⊲ initialize the set of intervals
2: STOREINTERVALS ⊲ store intervals inintervalSet

3: sort intervalSet by increasingt1 − t0
4: lastDBFval← 0
5: for each[t0, t1] ∈ intervalSet do ⊲ loop on all

intervals
6: Γ−, Γ+ ← ∅ ⊲ init sets of past and future patterns
7: SPANPATTERNS(t0, t1) ⊲ store patterns inΓ−, Γ+

8: curDBFval← dfk(t1, t0) ⊲ Eq. (16)
9: if curDBFval > lastDBFval then ⊲ Eq. (17)

10: store the point(t1 − t0, curDBFval)
11: else
12: do nothing (dominated by previous point)
13: end if
14: end for

Figure 6: Algorithm for computing thedbf.

[t0, t1], i.e. the intervals such that∀ε > 0 both the demands
dfk(t0 + ε, t1) and dfk(t0, t1 − ε) are strictly less than
dfk(t0, t1). In Section V-A we describe the procedure
STOREINTERVALS for performing this step. After sorting
the intervals[t0, t1] in intervalSet by increasingt1 − t0
(at line 3), we search for the activation patternΦ that
maximizes the demand in[t0, t1]. In Section V-B we
describe the procedureSPANPATTERNS that stores all
possible activation patterns of future instances inΓ+ and
those ones related to past instances inΓ−.

A. Enumerating the intervals

The first stage requires to enumerate all the intervals
[t0, t1]. The pseudocode of this stage is reported in Fig-
ure 7. First, we claim thatt0 must coincide with the
activation of some job. In fact, if this does not happen then
we could increaset0 achieving a shorter interval with the
same demand. Hence we sett0 equal to the activation of
the job τ0

i , i.e. t0 spans on{φi : τi ∈ Tk} (see line 4 of
the algorithm). Notice that, without loss of generality, we
label by0 the pipeline instance which this job belongs to.

Regarding the possible values oft1, it is sufficient to
test only the absolute deadlinesdh

j . In fact if t1 = dh
j

for some taskτj ∈ Tk and some pipeline instanceh,
then a reduction oft1 by an arbitrary small amountε
will decrease the demanddf by at leastCj . However, the
main difficulty here is that the absolute activations are not
fixed, hence we do not know where the deadlines are until
we fix the sporadic activation patternΦ.

First, we list the values oft1 associated with the
absolute deadlines of the instance0 (see lines 5–9). Then
we invoke the recursive proceduresFUTUREDEADLINE

andPASTDEADLINE that list the absolute deadlines of the
future and past instances, respectively.

These two procedures explore the possible activation
patternsΦ such that task activations are aligned with
t0. Specifically, the callFUTUREDEADLINE(t0, ℓ, Φ

ℓ−1)
explores all the activation patterns of instances starting
from the ℓ-th one, assuming that the absolute activation
of the (ℓ − 1)-th instance isΦℓ−1 and the start of the



1: procedure STOREINTERVALS

2: intervalSet← ∅ ⊲ initialize
3: for eachτi ∈ Tk do ⊲ loop on t0
4: t0 ← φi

5: for τj ∈ Tk do
6: if Dj > t0 then
7: store[t0, Dj ] in intervalSet

8: end if
9: end for

10: FUTUREDEADLINE(t0, 1, 0)
11: k0 ←

⌈
D−t0

T

⌉
− 1

12: PASTDEADLINE(t0, −k0, −2k0(D + T ))
13: end for
14: end procedure

15: procedure FUTUREDEADLINE(t0, ℓ, Φℓ−1)
16: for all Φℓ ∈ {Φℓ−1 + T } ∪ {t0 − φi : t0 − φi >

Φℓ−1 + T, τi ∈ Tk} do
17: for eachτi ∈ Tk do
18: t1 = Φℓ + Di

19: if t1 > t0 then
20: store[t0, t1] in intervalSet

21: end if
22: end for
23: if ℓ <

⌈
D+2T

T

⌉
then

24: FUTUREDEADLINE(t0, ℓ + 1, Φℓ)
25: end if
26: end for
27: end procedure

28: procedure PASTDEADLINE(t0, ℓ, Φℓ−1)
29: for all Φℓ ∈ {ℓT, Φℓ−1 + T } ∪ {t0 − φi : Φℓ−1 +

T < t0 − φi < ℓT, τi ∈ Tk} do
30: for eachτi ∈ Tk do
31: t1 = Φℓ + Di

32: if t1 > t0 then
33: store[t0, t1] in intervalSet

34: end if
35: end for
36: if ℓ < −1 then
37: PASTDEADLINE(t0, ℓ + 1, Φℓ)
38: end if
39: end for
40: end procedure

Figure 7: Algorithm for enumerating intervals.

interval is t0. The key statement of the procedure is at
line 16, whereΦℓ is assigned the possible values. The
possible choices forΦℓ are also illustrated in Figure 8. In
the situation depicted in the figure,Φℓ can assume three
possible values:Φℓ−1 +T when theℓ-th instance starts as
early as possible,t0 − φ2 when Φℓ + φ2 coincides with
t0, or t0 when the jobτ ℓ

1 is activated exactly att0. The
procedurePASTDEADLINE works similarly.

For each pattern the values of absolute deadlines are
recorded as candidate values fort1.

We conclude the section by showing that, after a tran-

case 1

case 2

case 3

t0

Φ
ℓ−1

Φ
ℓ−1

Φ
ℓ−1

Φ
ℓ
= Φ

ℓ−1
+ T

Φ
ℓ

= t0 − φ2

Φ
ℓ
= t0 − φ1 = t0

Figure 8: Exploring the absolute activations.

sient that is long at mostD+T , thedbf becomes periodic.
Lemma 1:For large values oft, the dbf(t) has a

periodic pattern. More formally:

∀t > D + T dbfk(t + T ) = dbfk(t) + Ck.

whereCk =
∑

τi∈Tk
Ci.

Proof: Let t0 and Φ be the instant and activation
pattern that give the value ofdbfk(t) in Equations (17)
and (16) respectively, and let us sett1 = t0 + t.

We identify with ℓ the first pipeline instance with
activation Φℓ > t0, henceΦℓ−1 ≤ t0. Since we are in
the worst case andΦℓ > t0, then

∀h ≥ ℓ Φh − Φh−1 = T (18)

otherwise, we could move allΦh with h ≥ ℓ early without
removing any job from the interval. On the contrary, the
deadline of a job may enter the interval, and the worst-
case activation pattern cannot beΦ anymore, causing a
contradiction.

From (18) and the definition ofℓ, we notice that the
instanceℓ of the pipeline ends earlier thant1. Clearly this
is also true for all instances beforeℓ. Formally

Φℓ−1 ≤ t0 ⇒ Φℓ ≤ t0 + T

Φℓ + D ≤ t0 + T + D < t1.

From (18), it follows that any interval of lengthT
starting afterΦℓ + D contains exactly one activation and
one deadline of each task. Hence the demand generated in
the interval[t0, t1 + T ] increases by one job for all tasks
in Tk, i.e. Ck.

Suppose by absurd thatdbfk(t + T ) > dbfk(t) + Ck.
Then, it exists an interval[t′0, t

′
0+t+T ] with demand larger

than dbfk(t) + Ck. Let Φ
′

be its activation pattern, and
let us call ℓ′ the first instance withΦℓ′ > t′0. Following
the same reasoning as above, the demand in[t′0, t

′
0 + t]

decreases byCk. However, this is absurd because we
obtain a new interval with the same lengtht but with
demand higher than in[t0, t0 + t].

Since, thanks to the lemma, the transient part of thedbf

lasts for no longer thanD+T and the periodic part is long
T , it is possible to compute thedbf only for lengths of
intervals less or equal to thanD + 2T .



Now we present an algorithm for computing the activa-
tion patterns that determines the maximum demand in a
given interval[t0, t1].

B. Algorithm for enumerating the activation patterns

In this section we explain the procedure
SPANPATTERNS(t0, t1) (see line 7 of the algorithm
in Figure 6) that checks all possible sporadic activation
patterns of past and future instances that may have
an impact on the interval[t0, t1]. Therefore, we are
interested only in pipeline instances that may overlap
with the interval[t0, t1].

In the exploration of the activation patterns we distin-
guish between future instances (with indexℓ > 0) and
past instances (with indexℓ < 0). The guideline for the
exploration of absolute activations of future instances is
to align some task activationaℓ

i = Φℓ + φi with t0. This
is possible by setting

Φℓ = t0 − φi. (19)

However, this is a valid absolute activation only if it
respects the constraints of being a sporadic pipeline with
minimum interarrivalT , that is

Φℓ ≥ Φℓ−1 + T. (20)

This condition introduces a recurrent dependency between
all the valuesΦ0, Φ1, Φ2, . . . , Φk1 . The procedureCOM-
PUTEFUTURE for testing future instances is reported in
Figure 7.

The same rationale is applied to past instances (the
ones with indexℓ < 0). In this case however, we aim
at finding the absolute activationΦℓ such that some
absolute deadline is aligned witht1. The full algorithm
that explores the activation patterns is reported in Figure9.

In the example of Figure 5, if we assumet0 = 0 then
Φ1 should be tested with the values of5(= T ). Instead,
if t0 = φ3 = 7 then Φ1 is checked both when it is5
and when it ist0 − φ1 = 7, meaning that we align the
activation of the instance1 with the offsetφ3 = t0 = 7.

C. Complexity analysis

We start by analyzing the complexity of procedure
STOREINTERVALS. The outer loop (line 3) is executednk

times. After adding the intervals for instance 0, procedures
FUTUREDEADLINE and PASTDEADLINE are invoked.

ProcedureFUTUREDEADLINE explores a number of
instances at most equal tok2 =

⌈
D+2T

T

⌉
− 1. Of this,

the first
⌊

t0
T

⌋
instances may vary their activation time,

while for the successive ones, the worst-case corresponds
to interarrival times equal toT . The number of possible

combinations of activations (line 16) is thenn
⌊ t0

T ⌋
k . For

each combination,nkk2 deadlines are generated.
ProcedurePASTDEADLINE is very similar. The number

of instances isk0 (see Eq. (3)). The maximum num-
ber of elements generated for each combination of past
activations isnkk0. Finally, the maximum number of
combinations (line 29) is(nk + 2)k0 .

1: procedure SPANPATTERNS(t0, t1)
2: k1 =

⌈
t1
T

⌉
− 1 ⊲ see Eq. (3)

3: COMPUTEFUTURE(1,(0, . . . , 0
︸ ︷︷ ︸

k1

))

4: k0 =
⌈

D−t0
T

⌉
− 1 ⊲ see Eq. (3)

5: COMPUTEPAST(−1,(0, . . . , 0
︸ ︷︷ ︸

k0

))

6: end procedure

7: procedure COMPUTEFUTURE(ℓ, (Φ1, . . . , Φk1))
8: if ℓ > k1 then ⊲ the exit condition
9: store(Φ1, . . . , Φk1) in Γ+ ⊲ Γ+ is global

10: else
11: Φ0 ← 0
12: for all Φℓ ∈ {Φℓ−1 +T }∪{t0−φi : t0−φi >

Φℓ−1 + T, τi ∈ Tk} do
13: COMPUTEFUTURE(ℓ + 1, (Φ1, . . . , Φk1));
14: end for
15: end if
16: end procedure

17: procedure COMPUTEPAST(ℓ, (Φ−k0 , . . . , Φ−1))
18: if ℓ < −k0 then
19: store(Φ−k0 , . . . , Φ−1) in Γ−

20: else
21: Φ0 ← 0
22: for all Φℓ ∈ {Φℓ+1−T }∪{t1−Di : t1−Di <

Φℓ+1 − T, τi ∈ Tk} do
23: COMPUTEPAST(ℓ− 1, (Φ−k0 , . . . , Φ−1));
24: end for
25: end if
26: end procedure

Figure 9: Algorithm for generatingΓ− andΓ+.

Each generated interval must be inserted in a ordered
list, an operation that takes logarithmic time in the size of
the list. The size of the list at the end of the procedure is:

s = k2n
⌊ t0

T ⌋+1

k + nkk0(nk + 2)k0

and the complexity isO(
∑s

i=1 log(i)).
Notice that, while generating the the values oft1, it

is quite common to obtain many times always the same
values. In average, we expect that the final size of the list
is much smaller than its upper bounds.

Regarding procedureSPANPATTERNS, we apply a sim-
ilar reasoning. We address separately future and past
instances. ProcedureCOMPUTEFUTURE builds a tree in
which at level 1 sets the value ofΦ1, at level 2 sets the
value of Φ2, and so on. There will bek1 levels. Each
node has at mostnk + 1 children. Hence, the number of
leafs of such a tree is(nk + 1)k1 . Each leaf corresponds
to a different value of(Φ1, . . . , Φk1). A similar tree
can be built for past instances. Thus the complexity of
enumerating all activation patterns is

O((nk + 1)k0 + (nk + 1)k1).



Finally, the complexity of computing the wholedbf is

O

(
s∑

i=1

log(i) + snk

(
(nk + 1)k0 + (nk + 1)k1

)

)

.

We are aware that the proposed algorithm is very
complex, although it runs in acceptable time for very
realistic settings as it will be shown in the experiments.
Most of the complexity lies in the sporadic nature of the
pipeline that requires to check all possible scenarios. In
this paper, we focused on the exact analysis regardless
of its complexity. We leave to future investigations the
development of simplified algorithms as well as some
approximation schemes.

VI. EXPERIMENTAL RESULTS

A. Computation of thedbf

In order to test the run-time of our algorithm, we
conducted several runs on synthetic chains of tasks. In
each experiment we varied the number of tasks, CPU
and deadline/period ratio, measuring the time needed to
compute the sporadicdbf according to the procedures
described in Section V.

The simulation platform is based on a Linux distribution
(Ubuntu) with kernel 2.6.24-16-generic. The HW is a
notebook with an Intel T2400 (a Centrino duo at 1.8GHz)
and 2GByte of RAM. To get the time for each test, we
use the Linux call

int clock_gettime(clockid_t clock_id,
struct timespec *tp)

with valueCLOCK_THREAD_CPUTIME_ID, in order to
get the CPU-time given to our thread. The algorithm if
Figures 6, 7 and 9 is implemented in a single thread, with-
out any code optimization (some possible improvements
are discussed in Section VI-B).

The numerical results are reported in Table II. In
Figure 10 we plot the case with4 CPUs, while in Figure 11
the case with 8. The pipeline has a number of tasks
n = {20, 40, . . . , 120}, which are uniformly distributed
over the available CPUs, i.e. if we have40 tasks and4
CPUs then there are10 tasks on each CPU. We vary the
value of D

T
from 5 to 20. Computation timeCi, relative

deadlinesDi and mappingxi are randomly generated.
In spite of the exponential nature of the problem, the

algorithm is usable for systems with a reasonable size.
The most important parameters are the ratio between EE
deadline and periodD/T , and the number of tasks on
each CPU. For ratio larger than25 the time required to
compute thedbf starts to become too large, whereas for
values of D

T
of 10 or less, it is possible to put 20 tasks

on each CPU and still receive an answer in a reasonable
time.

B. Improving the computation of the sporadicdbf

Despite the fact that the algorithm computes thedbf in
a reasonable time for small and medium dimension of the
problem, the execution time can be further reduced with
some code optimization that we highlight here.

CPU n D/T min average max
4 20 5 0.0038 0.0089 0.0197
4 40 5 0.1497 0.2002 0.2950
4 60 5 0.6551 1.0892 1.4681
4 100 5 9.8498 16.5764 22.8148
4 20 10 0.0148 0.0390 0.0731
4 40 10 3.1423 6.7326 12.0010
4 60 10 47.0424 106.5302 138.9140
4 20 15 0.0907 0.18023 0.3284
4 40 15 7.8494 20.0923 36.6787
4 60 15 264.5299 399.1137 597.4694
8 20 15 0.0074 0.0166 0.0348
8 60 15 2.7329 7.6004 12.6663
8 80 15 24.3439 45.6743 68.7062
8 20 20 0.01183 0.03168 0.05448
8 60 20 16.9809 27.7639 41.7258
8 80 20 127.4887 233.0104 330.9758

Table II: Execution time for computing thedbf on 4 and
8 processors (times in seconds).

Figure 10: Execution times on 4 CPUs.

Figure 11: Execution times on 8 CPUs.

CPU n D/T min average max
4 20 5 0, 0148 0, 0177 0, 0227
4 40 5 0, 1237 0, 1546 0, 2048
4 60 5 0, 5075 0, 6577 0, 7730
4 100 5 5, 7577 8, 0756 11, 5889
4 20 10 0, 0323 0, 0397 0, 0514
4 40 10 0, 3420 0, 5943 0, 8360
4 60 10 3, 7987 5, 5338 7, 6891
4 100 10 105, 1929 142, 2384 192, 2207
4 20 15 0, 0431 0, 0654 0, 0895
4 40 15 1, 5671 2, 3917 4, 0547
4 60 15 22, 4993 28, 9635 36, 5755
4 80 15 109, 9120 158, 1644 203, 6692

Table III: Execution time for computing thedbf on 4
processors (times in seconds) with a small optimization.



Figure 12: Fast execution times on 4 CPUs.

Parallelism: A simple technique is based on exploit-
ing the inherent parallelism exposed by the algorithm. We
highlight two places where the introduction of parallel
threads can be fruitfully used.

1) Each iteration of the for loop of line 5 in Figure 6
is independent of each other, hence parallel threads
could take fully advantage of this.

2) Each iteration of the for loop at line 3 in Figure 7
is independent of each other. More than one thread
can be used to compute independently the set of
intervals that derives for eacht0 = φi.

3) To reduce wait-states, it is possible to start comput-
ing the demand of intervals before procedureSTOR-
EINTERVALS ends. Clearly there are some shared
structure, like the list of intervals and thedbf.

Branch and bound:A second technique that we
suggest is based on branch and bound. In the procedures
COMPUTEFUTURE and COMPUTEPAST, while we are
computing the demand in the interval[t0, t1], we have
to explore all possible sporadic activation patterns to find
the one that maximizes Eq. (16). This operation is the
exploration of a tree, where the depth corresponds to the
the indexℓ of an instance of the pipeline, and at each
node we assign a value toΦℓ. Hence, if we are able to
upper bound the contribution of a sub-tree, we can prune
it without continuing the exploration.

For example, the contribution of an instance in an
interval of lengtht could be upper bounded by the demand
bound function of only one instance considered in isola-
tion, and the contribution of all the remaining instances of
the subtree can be set equal to the sum of each individual
contribution.

We add branch and bound to our algorithm, reducing the
required time. We report the numerical results in Table III
and plot them in Figure 12.

C. Comparison against holistic analysis

As we discussed throughout all the paper, our proposed
approach provides substantial benefit for software engi-
neers by allowing the composition of pipelines that are
developed and guaranteed independently of each other.
However we incur in a loss ID schedulability compared

with classic holistic analysis [4], [7]. In this experiment
we evaluate this loss.

We assumed to have 2 or 4 computational nodes. On
these nodes we distributed 6 pipelines, each one with
a number of tasks between 6 and 12 and a period in
{100, 200, . . . , 900, 1000}. For each setting we generated
200 sets of distributed pipelines. We plot the percentage
of accepted sets as a function of the deadline-period ratio
D/T of three schedulability tests: MDO proposed by
Pellizzoni and Lipari [7], WCDO proposed by Palencia
and González Harbor [4], and our proposed test based on
the computation of the sporadic demand bound function.
In Figure 13 we report the experiments, when the number

1.125 1.251 1.375 1.5 1.625 1.75 1.875 2

1.125 1.251 1.375 1.5 1.625 1.75 1.875 2

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

DBF

WCDO

MDO

ratio D/T

ac
ce

p
ta

n
ce

(%
)

ac
ce

p
ta

n
ce

(%
)

Figure 13: Performance of schedulability tests (2 CPUs).

of CPUs is 2. In the upper part of the figure we set the
total utilization of each node equal to0.4, while in the
bottom part we set it equal to0.8 (condition of heavy
node utilization).

In Figure 13 we report the experiments, when the
number of CPUs is 4. In the upper part of the figure we
set the total utilization of each node equal to0.5, while in
the bottom part we set it equal to0.8 (condition of heavy
node utilization).

As expected the test based on the sporadicdbf is
more pessimistic than the others. The source of pessimism
comes from the assumption of releasing the tasks at the
deadline of the preceding one, rather than at the comple-
tion. Even considering the pessimism of the analysis we
still believe that the gain in terms of compositionality does
dominate the incurred loss of schedulability.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of analyzing the
schedulability of sporadic pipelines on a distributed system



2.52.252 2.75 3 3.25 3.5 3.75 4

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

2.252 2.5 2.75 3 3.25 3.5 3.75 4

DBF

WCDO

MDO

ratio D/T

ac
ce

p
ta

n
ce

(%
)

ac
ce

p
ta

n
ce

(%
)

Figure 14: Performance of schedulability tests (4 CPUs).

scheduled by EDF, and how to support our methodology
at run time. We proposed an algorithm to compute the
sporadicdbf offline on each node.

As a future work, we plan to extend the methodology
to task graphs. Also, we would like to study the effect
of combining different scheduling strategies on different
nodes, and the effects of network scheduling. Finally,
we plan to study the possibility to schedule a pipeline
in a time partition on each node, and study the effect
of misbehaviors on the pipeline schedule, such as tasks
exceeding their WCET, or events that do not respect the
minimum interarrival time.

REFERENCES

[1] K. Richter, R. Racu, and R. Ernst, “Scheduling analy-
sis integration for heterogeneous multiprocessor soc,” in
Proceedings of the25th Real-Time Systems Symposium,
Cancun, Mexico, Dec. 2003, pp. 236–245.

[2] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-
Vincentelli, “Definition of task allocation and priority as-
signment in hard real-time distributed systems,” inPro-
ceedings of the28th IEEE Real-Time Systems Symposium,
Tucson, AZ, Dec. 2007, pp. 161–170.

[3] K. W. Tindell, A. Burns, and A. Wellings, “An extendible
approach for analysing fixed priority hard real-time tasks,”
Journal of Real Time Systems, vol. 6, no. 2, pp. 133–152,
Mar. 1994.

[4] J. C. Palencia and M. González Harbour, “Schedulability
analysis for tasks with static and dynamic offsets,” inPro-
ceedings of the19th IEEE Real-Time Systems Symposium,
Madrid, Spain, Dec. 1998, pp. 26–37.

[5] M. Spuri, “Holistic analysis for deadline scheduled real-
time distributed systems,” INRIA, France, Tech. Rep. RR-
2873, Apr. 1996.

[6] J. Palencia and M. G. Harbour, “Offset-based response time
analysis of distributed systems scheduled under EDF,” in
15th Euromicro Conference on Real-Time Systems, Porto,
Portugal, July 2003.

[7] R. Pellizzoni and G. Lipari, “Holistic analysis of asyn-
chronous real-time transactions with earliest deadline
scheduling,” Journal of Computer and System Sciences,
vol. 73, no. 2, pp. 186–206, Mar. 2007.

[8] A. Rahni, E. Grolleau, and M. Richard, “Feasibility analysis
of non-concrete real-time transactions with edf assignment
priority,” in Proceedings of the16th conference on Real-
Time and Network Systems, Rennes, France, Oct. 2008, pp.
109–117.

[9] M. Di Natale and J. A. Stankovic, “Dynamic end-to-end
guarantees in distributed real time systems,” inProceedings
of the15

th IEEE Real-Time Systems Symposium, San Juan,
Puerto Rico, Dec. 1994, pp. 215–227.

[10] S. K. Baruah, R. Howell, and L. Rosier, “Algorithms and
complexity concerning the preemptive scheduling of peri-
odic, real-time tasks on one processor,”Real-Time Systems,
vol. 2, pp. 301–324, 1990.

[11] K. Albers, F. Bodmann, and F. Slomka, “Advanced hierar-
chical event-stream model,” inProceedings of the20th Eu-
romicro Conference on Real-Time Systems, Prague, Czech
Republic, Jul. 2008, pp. 211–220.

[12] K. Gresser, “An event model for deadline verification of
hard real-time systems,” inProceedings of the5th Euromi-
cro Workshop on Real-Time Systems, Oulu, Finland, Jun.
1993, pp. 118–123.

[13] S. Chakraborty and L. Thiele, “A new task model for
streaming applications and its schedulability analysis,”in
Design, Automation and Test in Europe Conference and
Exposition, Munich, Germany, Mar. 2005, pp. 486–491.

[14] G. C. Buttazzo,Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications, 2nd ed.
Springer Verlag, 2004, iSBN: 0-387-23137-4.

[15] S. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Gener-
alized multiframe tasks,”Real-Time Systems, vol. 17, no. 1,
pp. 5–22, 1999.

[16] F. Zhang and A. Burns, “Schedulability analysis for real-
time systems with edf scheduling,” Real-Time Systems
Group, University of York, techreport YCS-2008-426,
February 2008.

[17] S. Jiang, “A decoupled scheduling approach for distributed
real-time embedded automotive systems,” inIEEE Real
Time Technology and Applications Symposium. IEEE
Computer Society, 2006, pp. 191–198.

[18] N. Serreli, G. Lipari, and E. Bini, “Deadline assignment
for component-based analysis of real-time transactions,”in
2nd Workshop on Compositional Theory and Technology
for Real-Time Embedded Systems, Washington, DC, U.S.A.,
Dec. 2009.

[19] J. L. Lorente, G. Lipari, and E. Bini, “A hierarchical
scheduling model for component-based real-time systems,”
in Proceedings of the20th International Parallel and Dis-
tributed Processing Symposium, Rhodes Island, Greece,
Apr. 2006.

[20] P. Jayachandran and T. Abdelzaher, “Delay composition
algebra: A reduction-based schedulability algebra for dis-
tributed real-time systems,” inProceedings of the29th

IEEE Real-Time Systems Symposium, Barcelona, Spain,
Dec. 2008, pp. 259–269.

[21] S. Baruah and K. Pruhs, “Open problems in real-time
scheduling,”Journal of Scheduling, 2009.


