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Abstract

It is challenging to support the timeliness of real-
time data service requests in data-intensive real-time
applications such as online auction or stock trad-
ing, while maintaining the freshness of temporal data
that capture the current real-world status. Although
deadline-aware real-time scheduling would significantly
enhance the timeliness of data services, it is not clear
how to assign explicit feasible deadlines to data ser-
vice requests in an open environment. To address the
problem, we design a new deadline assignment scheme
to derive feasible deadlines for real-time data service
requests considering their individual data needs. Fur-
ther, we develop a systematic closed-loop approach to
supporting the desired tardiness−the actual service de-
lay to deadline ratio−of real-time data services even in
the presence of dynamic workloads. We choose the tar-
diness metric due to its expressiveness compared to the
deadline miss ratio and utilization that saturate at 0
and 1 when the system is underutilized or overloaded,
respectively. The performance evaluation results ac-
quired in our real-time stock trading testbed show that
the desired average/transient tardiness is closely sup-
ported. Consequently, the deadline miss ratio is sig-
nificantly reduced compared to a state-of-art database
system with a real-time scheduling extension.

1 Introduction

In a number of data-intensive real-time applications,
such as stock trading, online auction, or traffic con-
trol, it is critical to process service requests within their
deadlines using fresh temporal data that represent the
current real-world status. However, it is challenging
to support the desired timeliness in real-time data ser-
vices, since database workloads may vary significantly,

for example, due to the varying market status. At the
same time, the database system has to continuously
update temporal data.

It is known that deadline-aware real-time schedul-
ing, such as the earliest deadline first (EDF) scheduling
algorithm [14], has significant impacts on the perfor-
mance of real-time data management [21]. Therefore,
assigning feasible deadlines to data service requests is
essential. If the assigned deadlines are too tight, a large
number of deadline violations may occur, incurring po-
tential instability of the system. On the other hand,
too loose deadlines may not be able to support tim-
ing constraints specific to the application of interest
such as e-commerce. Despite the importance, deadline
assignment for real-time data service requests has re-
ceived relatively little attention. Most existing work
on real-time data management assumes that deadlines
are given [13, 20]. Transactions in certain real-time
database (RTDB) applications, such as traffic moni-
toring and target tracking, may have deadlines deter-
mined by the nature of the application. However, in an
open system such as an e-commerce system, users may
simply assign arbitrarily short deadlines to their data
service requests, if they are allowed to do it. Thus, an
effective approach for a RTDB system to assign feasi-
ble deadlines to incoming data service requests is highly
desired.

To address the problem, we develop a fine-

grained deadline assignment scheme that takes
the database schema and estimated transaction sizes
into account to derive feasible deadlines for real-time
data service requests in an open environment. Essen-
tially, shorter deadlines are assigned to smaller trans-
actions expected to access a smaller number of data
items and vice versa. After assigning deadlines to
data service requests by considering estimated transac-
tion sizes, we apply the preemptive EDF algorithm to
schedule them. As a result, a small request that arrived
early will be served in a preferable manner in terms of
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scheduling. Thus, our approach is aware of timing con-
straints and fairer than most of existing non-real-time
databases that do not apply real-time scheduling tech-
niques. For example, if transactions are associated with
no deadlines and scheduled in a FIFO manner in a non-
real-time database, a short transaction can be blocked
for a long time due to long transactions that simply
arrived at the system earlier. It is essential to assign
feasible deadlines to real-time data service requests by
considering their individual data needs. However, re-
lated work is scarce [13, 20].

To support timing constraints for real-time data ser-
vices even in the presence of dynamic workloads, we
apply control theoretic techniques [8]. Especially, via
feedback control, we aim to support the desired tardi-

ness that is expressed as the ratio of the actual service
delays to the transaction deadlines. We take this ap-
proach due to the expressiveness of the tardiness metric
especially for soft real-time systems; it increases as the
load increases and vice versa. It is known that feed-
back control of the deadline miss ratio is very hard [17].
The miss ratio is 0 when the system is not overloaded,
but it abruptly increases under overload. As a re-
sult, feedback-based miss ratio controller could become
unstable. Due to the reason, a number of the exist-
ing feedback-based methods for real-time performance
management, including [23, 3, 2], intend to indirectly
meet deadlines by keeping the CPU utilization below
the schedulable CPU utilization bound, e.g., 0.69 in
the rate monotonic algorithm [14], even given dynamic
workloads. However, the utilization also saturates at 1.
In summary, the the utilization and miss ratio saturate
at 1 and 0 when the system is overloaded and underuti-
lized, incurring an asymmetry problem and instability
[5].

In contrast, the tardiness indicates how close to the
deadlines data service requests are completed in a fine-
grained manner, rather than simply stating how many
of the transaction deadlines are met or indirectly in-
dicating the utilization. Thus, the tardiness metric is
more suitable to design a robust closed-loop approach
for real-time data services. Despite the importance, re-
lated work on feedback control of the tardiness of real-
time data services is relatively scarce. Recent work on
QoS-aware data services [10, 9] supports a system-wide
single response time bound for all transactions via feed-
back control. Although this approach can effectively
manage the overall response time in a database system,
it is gross-grained and only provides limited real-time
support, as all transactions receive the same response
time bound regardless of their individual data access
needs.

For performance evaluation, we have conducted ex-

tensive experiments in our stock-trading testbed that
consists of the BerkeleyDB [6]−a popular open-source
state-of-art database−plus a stock quote server and
client threads running on Linux machines. Especially,
in this paper, we extend the BerkeleyDB to support
fine-grained deadline assignment and EDF scheduling.
In the experiments, our closed-loop approach closely
supports the desired average and transient tardiness
for dynamic workloads. Moreover, compared to the
BerkeleyDB extended with EDF support, our approach
significantly reduces the average/transient service de-
lay and deadline miss ratio by effectively controlling
the tardiness in the closed-loop, while considerably im-
proving the timely throughput, i.e., the total number of
data accessed within the data service deadlines. Note
that our deadline assignment scheme and tardiness con-
trol approach are lightweight; they only take approxi-
mately 2% CPU utilization and less than 5KB of mem-
ory in total.

The remainder of this paper is organized as follows.
The overall structure of our database system is de-
scribed in Section 2. Our deadline assignment method
is discussed in Section 3. A description of feedback-
based tardiness control is given in Section 4. Perfor-
mance evaluation results are described in Section 5.
Section 6 discusses related work. Finally, Section 7
concludes the paper and discusses future work.

2 Real-Time Data Service Objectives

and System Overview

In this section, the objective of our QoS-aware data
services and the overall system architecture are dis-
cussed.

2.1 QoS-Aware Data Service Objectives

In this paper, the tardiness ti of the ith data service
request is defined as:

ti =
si

ri

(1)

where si is the actual delay for servicing the ith data
service request and ri is the relative deadline of the
request. The service delay si is the sum of the TCP
connection delay, queuing delay in the ready queue in
Figure 1, and processing delay inside the database. In
Table 1, an exemplar service level agreement (SLA)
considered in this paper is shown. In this SLA, the
tardiness set-point St is set to 0.8 or 0.9. In our per-
formance evaluation presented in Section 5, we use the
two tardiness set-points to observe potential trade-offs
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Table 1. Desired Performance
Notation Description Desired Value

St Tardiness Set-point 0.8 or 0.9
Sv Tardiness Overshoot 1.02St

Tv Settling Time 12s

between the different set-points in terms of the ser-
vice delay, deadline miss ratio, and timely database
throughput.

In Table 1, we also specify the transient performance
requirements. An overshoot Sv, if any, is a transient
tardiness larger than St. In this paper, it is desired
that Sv ≤ 1.02St. Also, it is desired for an overshoot
to become equal to or less than St within the settling
time Tv = 12s.

For feedback control, the kth(≥ 1) sampling period
is the time interval [(k−1)P, kP ) and the kth sampling
point is equal to time kP . In this paper, we set the
sampling period P = 1s. As hundreds of (or more)
transactions finish in 1s in our stock trading testbed,
performance measurement for P = 1s is reliable.

2.2 System Architecture
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Figure 1. System Architecture

Figure 1 shows the architecture of our real-time data
service testbed, called Chronos, built on top of Berke-
ley DB [6]. The database server processes data service
requests and periodically updates stock prices received
from the stock quote server to support the freshness
of stock prices. 3000 stock prices are periodically up-
dated. The update period is in a range of [0.2s, 5s]
for each stock. In this paper, the relative deadline of a
temporal data update is equal to its update period. We
consider periodic temporal data updates, since periodic
updates are common in RTDBs to support data tem-
poral consistency [20, 24]. In Chronos, we reserve ded-
icated threads to update stock prices. These threads
for periodic updates are always executed to support

the data freshness. Admission control is only applied
to user requests, if necessary, to avoid overload.

We derive explicit deadlines for service requests
based on the individual transaction size estimated by
the backlog estimator. (A more detailed discussion
is given in Section 3.) The database server sched-
ules the accepted requests via the preemptive EDF
scheduling algorithm implemented using the POSIX
SCHED FIFO scheduling class. For concurrency con-
trol, we currently apply 2PL (two phase locking). Im-
plementing a real-time concurrency control protocol
such as 2PL-HP [1] is reserved for future work. As
most existing databases support 2PL and the POSIX
standard is widely supported, our approach is easy to
deploy.

When a new service request arrives at the system,
it has to pass an admission test based on the control
signal computed by the feedback-based tardiness con-
troller (discussed in Section 4). Let c(k) be the num-
ber of the data service requests, i.e., transactions and
queries, processed in the kth sampling period. Our
feedback-based tardiness controller works as follows:

1. At the kth sampling point, the performance mon-
itor in Figure 1 computes the tardiness t(k) =∑c(k)

i=1 ti/c(k) and tardiness error e(k) = St −
t(k). Based on e(k), the tardiness controller com-
putes the required database load bound adjust-
ment δℓ(k).

2. Using δℓ(k) derived by the tardiness controller at
the kth sampling point, the admission controller
updates the database load bound to be used in
the (k + 1)th sampling period:

ℓ(k) = ℓ(k − 1) + δℓ(k) (2)

where the initial control signal ℓ(0) is a small pos-
itive integer at the system start.

3. In the (k + 1)th sampling period, an incoming
transaction is accepted, if the estimated backlog
in the ready queue in Figure 1 does not exceed
ℓ(k) after accepting the new request. Otherwise,
the database drops the request and returns a busy
message to the corresponding client.

3 Deadline Assignment for Real-Time

Data Services

To derive individual deadlines for real-time data ser-
vices, we first measure the average delay for accessing
a single data item, u. The average delay for accessing
a single data item is estimated by measuring the delay
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for accessing a large number N (> 60000 in this paper)
of service requests:

u =

∑N

i=1 si∑N

i=1 ni

(3)

where si and ni are the processing delay and size of
transaction i, respectively. In this paper, u is derived
during system identification discussed in Section 4.

For the ith data service request, we estimate the
number of data accesses, ni, needed to process the re-
quest by parsing the data service request. Using ni

and the average delay for single data access, we com-
pute the estimated delay for processing the ith data
service request, σi, as follows:

σi = u × ni. (4)

Chronos provides four types of transactions: view-
stock, view-portfolio, purchase, and sale for seven ta-
bles [10], similar to the TPC-W database benchmark
for e-commerce [22]. In addition, we support periodic
temporal data updates for real-time data services un-
like TPC-W. Note that we do not estimate the number
of data accessed by temporal data updates, because
each temporal data is always updated at its update pe-
riod via resource reservation as discussed in Section 2.
To estimate the size of a service request, we leverage
the database schema information usually available in
a database system and semantics of transactions and
queries as follows.

• View-Stock: To process this query, Chronos needs
to access stocks and quotes tables that hold
<stock symbol, full company name, company
ID>1. By parsing the query, Chronos finds the
number of companies nc specified in the query.
Chronos then calculates the number of data to ac-
cess for Ti: ni = nc · {r(stocks) + r(quotes)}
where r(x) is the average size of a row (i.e., the
average number of bytes in a row) in table x.

• View-Portfolio: A client issues this query to see
certain stock prices in its portfolio. For each
stock item in the portfolio, Chronos looks up the
portfolios table that holds <client ID, company
ID, purchase price, shares> to find the company
IDs used to look up the quotes table. Thus,
the estimated amount of data accessed by this
query is: ni = |portfolio(id)| · {r(portfolios)

1In fact, the schema of Chronos is more complex with more
attributes needed for online stock trades. In this paper, we only
focus on the key attributes of the schema for the clarity of pre-
sentation.

+ r(quotes)} where |portfolio(id)| is the num-
ber of stock items in the portfolio owned by the
client whose ID is id.

• Purchase: If a client places a purchase order for
a stock item, Chronos first retrieves the current
stock price from the quotes table. If the pur-
chased stock item was not in the portfolio be-
fore the purchase, the stock item and its pur-
chase price are appended to the portfolio. If
it is already in the portfolio, Chronos updates
the corresponding shares. Hence, the estimated
amount of data accessed by a purchase transac-
tion is: ni = r(quotes) + (|portfolio(id)| + 1) ·
r(portfolios).

• Sale: To process a sale transaction, Chronos scans
the portfolios table to look up the stock items
belonging to this client’s portfolio. Using the
stock IDs found in the portfolios table, Chronos
searches the quotes table to find the correspond-
ing stock prices. After that, Chronos updates the
client’s portfolio in the portfolios table to in-
dicate the sale. Thus, the estimated amount of
data accessed by a sale transaction is: ni =
|portfolio(id)|·r(portfolios) + nsell ·r(quotes)
+ nsell· r(portfolios) where nsell is the number
of stock items to sell.

The effectiveness of the transaction size estimation
technique is shown in our previous work [10]. In this
paper, we consider the problems of assigning deadlines
to individual transactions based on their data needs
and closed-loop tardiness control for real-time data ser-
vices that have not been considered in [10].

Each incoming service request is associated with a
slack factor that the database system uses to control
the tightness of the deadline with respect to the es-
timated processing time σi. The relative deadline of
service request, ri, is calculated as follows:

ri = fi × σi (5)

where fi (≥ 1) is the slack factor and the estimated
processing delay σi is calculated in Eq 4. The abso-
lute deadline used in EDF scheduling is calculated by
adding the request arrival time to the relative deadline
ri.

4 Design of the Tardiness Controller

We apply feedback control theory [8] to support the
desired tardiness bound in the presence of dynamic
workloads. To model the relation between the database
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backlog and tardiness, we model the tardiness of ser-
vice requests at the kth sampling point via the tardiness
and database backlogs measured at the previous p sam-
pling instants. We express the relation by a difference
equation in the discrete time domain:

t(k) =

p∑

i=1

{ait(k − i) + biℓ(k − i)} (6)

where p(≥ 1) is the system order [8]. Using this dif-
ference equation, we model database dynamics by con-
sidering individual transactions, potentially accessing
different numbers of data.

The unknown model coefficients ai’s and bi’s in
Eq 6 are derived via system identification (SYSID)
[8] to minimize the sum of the squared errors of tar-
diness estimations based on database backlogs. As
SYSID aims to identify the behavior of the controlled
database system, Chronos accepts all incoming data
service requests without applying admission control
during SYSID. Stock prices are periodically updated as
discussed before. In our SYSID procedure, 1200 client
threads concurrently send data service requests to the
BerkeleyDB, which is extended by deadline assignment
and EDF scheduling, for one hour. Each client sends
a service request and waits for the response from the
database server. After receiving the transaction or
query result, it waits for an inter-request time (IRT)
randomly selected in a certain range before sending the
next data service request. A data service request ac-
cesses 60-100 data. In this paper, a fixed slack factor of
1.5 is used to derive transaction deadlines. For SYSID,
we choose the IRT range [2s, 4.5s], since the data ser-
vice tardiness shows a near linear pattern in this range
as shown in Figure 2. Due to our system modeling
and controller tuning, the feedback controller can sup-
port the desired tardiness bound within this operating
range.

To analyze the accuracy of SYSID, we use the R2

metric [8]. A control model is acceptable, if its R2 ≥
0.8 [8]. We choose the second order model that achieves
a high value of R2 = 0.982:

t(k) = 1.031t(k − 1) − 0.1602t(k − 2)

+0.0037ℓ(k − 1) − 0.0029ℓ(k − 2) (7)

Although our model is only second order, our R2 value
is near 1, which is the maximum possible R2 value, due
to the expressiveness of the tardiness metric.

We derive the transfer function of the open-loop
database, i.e., Berkeley DB [6] with real-time schedul-
ing extension, by taking the z-transform [8] of Eq 7:

α(z) =
T (z)

L(z)
=

0.0037z − 0.0029

z2 − 1.031z + 0.1602
(8)
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where T (z) is the z-transform of t(k) and L(z) is the
z-transform of ℓ(k) in Eq 7.

Figure 3 shows the structure of the closed-loop tar-
diness controller. We design a PI (proportional and
integral) controller to manage the tardiness. We do
not use a D (derivative) controller since it is sensitive
to noise. At the kth sampling point, the PI controller
computes the control signal δℓ(k), i.e., the database
load adjustment required to support St:

δℓ(k) = δℓ(k − 1) + KP [(KI + 1)e(k) − e(k − 1)] (9)

where the error e(k) = St − t(k) at the kth sampling
point and KP and KI are proportional and integral
control gains tunable to support the desired average
and transient tardiness. The z-transform of Eq 9 is:

β(z) =
∆L(z)

E(z)
=

KP (KI + 1)[z − 1/(KI + 1)]

z − 1
(10)

where ∆L(z) and E(z) are the z-transform of δℓ(k) and
e(k), respectively.

Given the open loop transfer function in Eq 8 and
the transfer function of the PI controller in Eq 10,
the transfer function of the closed loop in Figure 3 is:

γ(z) = α(z)β(z)
1+α(z)β(z) [8]. To support the stability of the

closed-loop system and the desired performance spec-
ified in Table 1, we locate the closed loop poles−the
roots of the denominator of γ(z)−inside the unit circle
via the Root Locus method [8].
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5 Performance Evaluation

In this section, we evaluate our approach and the
baseline approach to observe whether or not they can
support the desired performance specified in Table 1.
We describe our experimental settings followed by the
average and transient performance results.

5.1 Experimental Settings

The objective of our performance evaluation is to
observe whether or not the SLA specified in Table 1
can be closely supported even in the presence of dy-
namic workloads. The Chronos database server runs
on a desktop PC that has the dual core 3.8GHz CPU
and 3GB memory. The quotes update server has the
dual core 3.0GHz CPU and 2GB memory. The clients
run in a machine that has the 2.5GHz CPU and 512M
memory. Every machine runs the 2.6.28 Linux kernel.

For 80% of time, a client thread issues a query about
stock prices. For the remaining 20% of time, a client
requests a portfolio browsing, purchase, or sale trans-
action at a time. In fact, most service requests in e-
commerce are queries. Thus, this setting is realistic.
One experiment runs for 600s. For experimental pur-
poses, we model dynamic workloads. At the beginning
of one experiment, the IRT is randomly distributed in
[4s, 4.5s]. At 200s, the range of the IRT is suddenly re-
duced to [1.5s, 2s] to model bursty workload changes,
and stays in the new range until the end of the exper-
iment. Therefore, at 200s, we abruptly increase the
load by 2 − 3 times to model bursty request arrivals
that may create overload conditions.

For performance comparisons, we consider the fol-
lowing approaches:

• RT-BDB is the Berkeley DB [6] extended with
basic real-time support. Individual transaction
deadlines are derived according to our deadline as-
signment scheme presented in Section 3. We apply
the preemptive EDF algorithm to schedule incom-
ing service requests. However, RT-BDB does not
have the closed-loop tardiness control system and
accepts all incoming requests. Hence, it provides
basic real-time features similar to the ones pro-
vided by state-of-art (proprietary) RTDBs, such
as [15, 19].

• TC is the closed-loop tardiness control system de-
signed in this paper to support real-time data ser-
vice requirements. It also applies the deadline as-
signment scheme and preemptive EDF scheduling.
To thoroughly evaluate the effectiveness of our ap-
proach, we use two different tardiness set-points to
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observe their impacts on the performance and po-
tential trade-offs. Our closed-loop approach with
different set-points, 0.9 and 0.8, are denoted as
TC-SP1 and TC-SP2, respectively.

Note that we only compare the performance of
our approach to RT-BDB, because most of the pre-
vious work on feedback-based real-time data services,
including [4, 12, 11], assumes transaction deadlines
are already given without considering database-specific
deadline assignment issues. Neither do they consider
tardiness control. On the other hand, more recent work
on feedback control of data service delays including
[10, 9] does not consider individual transaction dead-
lines but a single response time bound. Therefore, it
is impossible for us to directly compare our approach
to them. Also, it is well known that feedback-based
systematic admission control significantly outperforms
static or ad-hoc heuristic-based approaches for admis-
sion control [17, 10].

Each performance data is the average of 10 runs us-
ing different random seeds. We show the performance
results observed between 100s and 600s to exclude
the database initialization phase, which involves ini-
tial housekeeping chores such as database schema and
data structure initialization.

5.2 Average Performance Analysis

Figure 4 shows the average tardiness for tested ap-
proaches. RT-BDB shows the average tardiness value
of 2.87; that is, the service delay is 2.87 times the trans-
action deadline in average. In contrast, TC-SP1 and
TC-SP2 are able to support the corresponding average
tardiness bound, 0.9 and 0.8, respectively.

Figure 5 depicts the average deadline miss ratio.
RT-BDB shows the approximately 86% (deadline) miss
ratio. However, TC-SP1 and TC-SP2 support the 4.3%
and 1.9% miss ratios by systematically controlling the
tardiness of service requests in the closed-loop.
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Figure 6 shows that TC-SP1 and TC-SP2 support
the substantially shorter average service delay com-
pared to RT-BDB. As shown in Figure 7, TC-SP1 and
TC-SP2 increase the total number of data processed
per second by timely transactions that finish within
their deadlines by up to an order of magnitude com-
pared to RT-BDB.

Using Figures 4-7, we also compare the relative per-
formance of TC-SP1 and TC-SP2. We observe that
TC-SP2’s miss ratio is smaller than TC-SP1’s miss ra-
tio, because TC-SP2 supports a smaller tardiness set-
point, which demands more stringent timing require-
ments, at the cost of the reduced timely throughput
compared to TC-SP1. Hence, an application adminis-
trator can choose a smaller tardiness set-point, if time-
liness is more important than the timely throughput
and vice versa.

5.3 Transient Performance Analysis

Figures 8, 9 and 10 show the transient performance
of tested approaches at every 1s sampling period. As
shown in Figure 8, RT-BDB largely fails to support
the transient performance goals specified in Table 1. It
shows excessive tardiness overshoots when the work-
load increases at 200s and the tardiness overshoots
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Figure 7. Average Timely Throughput

range between 2 and 4.5. As a result, it suffers signifi-
cant performance degradation in terms of the transient
miss ratio, service delay and timely throughput after
200s as shown in Figure 8.

In contrast, our tardiness control approach closely
supports the transient tardiness bound. As shown in
Figures 8 and 9, TC-SP1 and TC-SP2 only show small
magnitudes of overshoots after the abrupt workload
change at 200s and all the overshoots reduce to be be-
low the set-point within 12s, i.e., the desired settling
time specified in Table 1. These results show the ef-
fectiveness of tardiness control. From Figures 8, 9 and
10, we also observe that our approach significantly re-
duces the transient deadline miss ratio and service de-
lay, while substantially improving the transient timely
throughput compared to RT-BDB.

6 Related Work

Various aspects of real-time data management has
been studied [13, 20]. However, relatively little work
has been done to investigate the problem of deadline
assignment to user transactions in an open environ-
ment. Xiong et al. [25, 24] investigate the problem
of deadline assignment to update transactions sched-
uled by the deadline monotonic and EDF scheduling
algorithms in RTDBs. They design novel approaches
to judicially assign periods and deadlines to temporal
data updates to reduce the update workload. How-
ever, they do not consider the problem of assigning
deadlines to user data service requests, which is the
focus of our work. Also, feedback-based tardiness con-
trol is not considered in their work. Thus, our work is
complementary to their work.

Feedback control theory has been applied to sup-
port real-time data services in the presence of dynamic
workloads [3, 4, 11]. However, they do not consider
the deadline assignment problem or tardiness metric
for feedback control of real-time data service perfor-
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Figure 8. Transient Performance of RT-BDB
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Figure 9. Transient Performance of TC-SP1
(Set-point = 0.9)
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Figure 10. Transient Performance of TC-SP2
(Set-point = 0.8)

mance. Neither are these approaches implemented and
evaluated in a real database system unlike our work
presented in this paper. Our recent work on QoS-aware
data services [10, 9] aims to support the average re-
sponse time bound in a real database system. However,
individual transaction deadlines and tardiness control
are not considered. QeDB [12] aims to support the
QoS in terms of the average tardiness of the transac-
tions in a real-time embedded database. The key idea
is to divide the transaction deadline into CPU dead-
line and I/O deadline and dynamically adjust the I/O
and CPU deadlines at run-time based on the system
resource usage. In QeDB, transactions are classified
into three classes and they are scheduled in a FIFO
manner in each class rather than applying real-time
scheduling techniques. Also, it does not consider the
problem of deadline assignment based on individual
transaction needs in an open environment. Thus, our
deadline assignment and tardiness control scheme are
different from theirs. Control theory has been applied
to manage the performance of computer systems such
as a web server [16, 18]. However, they do not consider
RTDB-specific issues such as transaction deadline as-
signment and tardiness control based on the derived
transaction deadlines.

In [17], the authors apply feedback control tech-
niques to support the target deadline miss ratio by
manipulating the system load. However, the miss ra-
tio controller shows relatively unstable performance,
since the miss ratio is saturated at 0 when the sys-
tem is not overloaded and it abruptly increases under
overload as discussed before. Other feedback-based ap-
proaches, including [23, 3, 2], aim to indirectly control
the CPU utilization to meet deadlines. Bertini et al.
[5] show that only counting the number of missed dead-
lines per sampling period results in poor accuracy and
large confidence intervals in terms of measuring and
controlling the performance of web services. They de-
fine a novel QoS metric, named tardiness quantile met-
ric, and design a feedback control scheme to support
the user specified tardiness quantile. However, these
approaches do not consider the data needs of individual
real-time transactions to assign feasible deadlines and
accordingly design a closed-loop system to support the
desired average/transient tardiness of real-time data
services. Block et al. [7] developed a feedback-based
scheduling framework for adapting the processor shares
of tasks on real-time multiprocessor platforms. In the
future, we will investigate the performance of real-time
data services on multiprocessor platforms.
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7 Conclusions and Future Work

It is challenging to support real-time data services in
data-intensive real-time applications, e.g., e-commerce,
due to dynamic workloads. This paper tackles the chal-
lenge as follows: 1) We develop a fine-grained dead-
line assignment method to derive individual deadlines
of real-time data service requests based on their data
needs; 2) We design a tardiness control model for real-
time data services and develop the tardiness controller;
3) Performance is thoroughly evaluated in a stock trad-
ing testbed. Our approach supports the desired aver-
age/transient tardiness, while significantly outperform-
ing the BerkeleyDB with real-time extensions in terms
of the miss ratio and timely throughput. Despite the
importance, relatively little work has been done for
deadline assignment and tardiness control to support
real-time data services. In the future, we will continue
to investigate more efficient approaches for real-time
data services.
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