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Abstract— Multi-core processors are anticipated to become a
major development platform for real-time systems. However,
existing power management algorithms are not designed to
sufficiently utilize the features available in many multi-core
processors, such as shared L2 caches and per-core DVFS, to
effectively minimize processor energy consumption while pro-
viding real-time guarantees. In this paper, we propose a two-
level utilization control solution for energy efficiency in multi-
core real-time systems. At the core level, our solution addresses
two optimization objectives: controlling the CPU utilization of
each core to its desired schedulable bound and minimizing
the core energy consumption by adopting per-core DVFS and
dynamic L2 cache partitioning to adapt both the CPU frequency-
dependent and independent portions of the task execution times
of the core. Since traditional control theory cannot handle
multiple optimization objectives, a novel utilization controller
is designed based on advanced multi-objective model predictive
control theory. At the processor level, a cache demand arbitrator
is proposed to coordinate the cache size demand from each core
and conduct dynamic cache resizing to minimize the leakage
power consumption of the shared L2 caches. The energy and
time overheads of the proposed control solution are analyzed
and addressed in the experiments with well-known benchmarks.
Our extensive results demonstrate that our solution outperforms
two state-of-the-art power management algorithms that do not
consider L2 caches or per-core DVFS, by having more accurate
utilization control and less energy consumption.

I. INTRODUCTION

In recent years, more and more real-time systems are
developed based on multi-core processors. However, despite a
significant amount of existing work on power management for
traditional multi-processor real-time systems, existing power
management algorithms are not designed to sufficiently utilize
the new features available in many multi-core processors, such
as shared L2 caches and per-core DVFS (Dynamic Voltage
and Frequency Scaling), to effectively minimize processor
energy consumption while providing real-time guarantees. For
example, most current power/energy management algorithms
assume that all the cores of a processor can only have a
uniform DVFS level while per-core DVES is already avail-
able (e.g., AMD’s Independent Dynamic Core Technology)
to allow better power/energy efficiency. Intel’s new 48-core
processor also features per-tile DVFS with two cores within
each tile. In addition, the current algorithms are not designed
to dynamically partition the shared L2 caches among the
different cores for better real-time performance and to conduct
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dynamic cache resizing to place rarely accessed cache units
into low-power modes for minimized cache leakage power
consumption. Therefore, novel power management algorithms
are needed to utilize the shared L2 caches and per-core DVES
for maximized energy savings.

In the meantime, many of today’s real-time applications
commonly execute in open and unpredictable environments in
which both workloads and system conditions are unknown and
may vary significantly at runtime. Traditional task scheduling
approaches cannot be directly adopted to provide real-time
guarantees for those systems as they rely on Worst-Case
Execution Times (WCETs) for schedulability analysis in an
open-loop manner. As a result, these approaches may violate
the desired timing constraints or severely under-utilize the
system when task execution times are highly unpredictable.
Likewise, existing power management solutions also focus
heavily on open-loop solutions such as static speed scheduling
and offline DVFS configurations. For example, many existing
speed scheduling algorithms optimize energy/power based on
WCETs and thus may fail the optimization goal at runtime
because the actual execution times can be much smaller
than the WCETs. Therefore, self-adaptive solutions must be
developed to dynamically achieve both real-time guarantees
and energy efficiency for multi-core real-time systems.

In recent years, feedback-based CPU utilization control
[19] has been shown to be an effective method of providing
soft real-time guarantees by adapting to workload variations
based on dynamic feedback. The goal of utilization control
is to enforce appropriate schedulable utilization bounds (e.g.,
Liu and Layland bound) on all the processors in a real-time
system, despite significant uncertainties in system workloads.
As a result, utilization control can meet all the real-time
deadlines without accurate knowledge of the workload such as
task execution times. Power-aware utilization control has also
been recently proposed to achieve both real-time guarantees
and reduced power consumption [29]. However, the existing
research on power-aware utilization control primarily relies
on DVEFS by assuming that the task execution times can be
adapted linearly with the CPU frequency. While this assump-
tion is valid for real-time tasks that are computation intensive,
memory-intensive tasks can have approximately 75% of their
instructions that are load or store [23], [11]. Consequently,
when a processor core is running memory-intensive tasks and
the CPU frequency is set to the highest level, the utilization
can still be above the desired schedulable bound, resulting
in undesired deadline misses. In this case, the cache size



partitioned to the core can be increased to reduce the cache
miss rate and cache access latency due to reduced main
memory access delay. As a result, the CPU utilization can
be lowered for better real-time performance. Similarly, if the
utilization is lower than the bound, even when the frequency
is already throttled to the lowest level, the active cache size
can be reduced and rarely accessed cache units can be put into
low-power modes to minimize cache leakage power.

In this paper, we propose a two-level utilization control
solution for energy efficiency in multi-core real-time systems.
At the core level, our solution utilizes both per-core DVFS
and dynamic L2 cache partitioning to address two (often
conflicting) optimization objectives: controlling the CPU uti-
lization of each core to its desired schedulable bound and
minimizing the core energy consumption. Since the utilization
contributed by a periodic real-time task is determined by
both its CPU frequency-dependent and frequency-independent
execution times [5], per-core DVFS and cache partitioning can
be used to adapt the frequency-dependent and independent
portions, respectively. A key challenge in our design is that
traditional control theory, such as PID (Proportional-Integral-
Derivative) and MPC (Model Predictive Control), cannot ef-
fectively handle multiple optimization objectives. Therefore,
we propose a novel utilization controller, based on advanced
Multi-Objective MPC control theory [20][3], to achieve both
optimization objectives. At the processor level, a cache de-
mand arbitrator is proposed to coordinate the cache size
demand from each core and conduct dynamic cache resizing
to minimize the leakage power consumption of the shared L2
caches.

Specifically, this paper makes four major contributions:

e We derive an analytic model that captures the system
dynamics of the new cache-aware multi-core utilization
control problem.

o« We propose a two-level utilization control solution for
energy efficiency that includes a core-level utilization
controller and a processor-level cache demand arbitrator.

o We apply the recent advance in control theory, Multi-
Objective MPC (MOMPC) theory, to design the utiliza-
tion controller for achieving the two (often conflicting)
optimization objectives.

e We present extensive experimental results (using the
well-known Mibench [11] benchmarks) to demonstrate
that our solution outperforms two state-of-the-art power
management algorithms that do not consider L2 caches
or per-core DVFS by having more accurate utilization
control and less energy consumption.

The remainder of this paper is organized as follows. We
formulate the new cache-aware multi-core utilization control
problem in Section II. Section III presents the system model
and control architecture. Section IV provides the detailed
design and analysis of the MOMPC controller. Section V
introduces our simulation environment. Section VI presents
our experimental results. Section VII reviews the related work.
Finally, Section VIII summarizes the paper.

II. PROBLEM FORMULATION
In this section, we formulate the cache-aware utilization
control problem for multi-core real-time systems.

A. Task Model

A multi-core real-time system is comprised of n cores
{Ci|1 < i < n} and m; periodic tasks {T3;|1 < j < m;}
executing on C;. Each task T;; has a soft deadline related
to its period. We use partitioned scheduling to assign tasks
to the cores in a multi-core processor. The tasks on each
core are scheduled with rate-monotonic scheduling (RMS).
Partitioning-based RMS transforms the multi-core real-time
scheduling problem into the uniprocessor scheduling problem.
A well-known approach to meeting task deadlines on a core
is to keep the core utilization below its schedulable utilization
bound (e.g., Liu and Layland bound for RMS) [18]. A more
precise schedulability test (e.g., the hyperbolic bound [4])
can be used to improve schedulability. Previous studies [1]
also show that the Liu and Layland bound can be replaced
with the corresponding schedulable utilization bound to ensure
timeliness for systems with aperiodic tasks.

Our task model has three important properties. First, while
each task Tj; has an estimated execution time c¢;; available at
design time, its actual execution time may be different from
the estimation and vary at runtime for several reasons, such as
workload variations and intra-core and inter-core interference.
Modeling such uncertainties is important to real-time sys-
tems operating in unpredictable environments. Second, the L.2
caches can be partitioned among the cores. The partition size
for each core C; may be dynamically adjusted. Implementation
issues related to cache partitioning and resizing are discussed
in Section V. Third, the CPU frequency of each core C;
may be dynamically adjusted within a range [Finin,i, Frmas,i]
as many of today’s processors support the DVFS technique.
Processors that do not support DVFS can use clock modulation
to change the frequency at runtime.

B. Problem Formulation

Cache-aware power management for multi-core real-time
systems can be formulated as a dynamic constrained optimiza-
tion problem. We first introduce some notation. 7%, the control
period, is selected so that multiple instances of each task are
released during a control period. u;(k) is the utilization of
core C; in the k" control period, i.e., the fraction of time that
C; is not idle during time interval [(k — 1)T, kT5). u, (k) is
calculated according to the statistics generated by the operating
systems. U; is the desired utilization set point of C;. p(k)
is the power consumption of the processor and related to
both the core frequencies and active L2 cache size. E(k) is
the energy consumption of the processor in the k' control
period. Since the core frequencies, active L2 cache size, and
workload of the processor are all not changed during a control
period, p(k) can be approximated as a constant within each
control period. Consequently, E(k) = p(k)T;. We assume
that the processor has homogeneous cores with two levels of
caches and the L2 caches are shared among the cores since
mainstream multi-core processors adopt this architecture. We



also assume that the processor supports per-core DVFS as
per-core DVES leads to a better processor energy efficiency
than a chip-wide DVFS [13]. We further assume the cache
can be partitioned among tasks. The details of dynamic cache
partitioning is beyond the scope of this paper because various
ways (e.g., software or hardware) have already been designed
to implement cache partitioning among tasks. Examples can
be found in [17][24][14]1[10][8]. s;(k) is the L2 cache partition
size of core C;. f;(k) is the relative core frequency (i.e., the
core frequency relative to the highest level F},,,; ;) of core C;.

Given a utilization set-point vector, U = [U;...U,]T, a
frequency constraint [Fiyin i, Fmas,i] for each core C;, and
the total L2 cache size S for the processor, the control goal
at the k" sampling point (time kT5) is to dynamically choose
the cache partition size {s;(k)|1 < i < n} and core frequency
{fi(k)]1 <i < n} to minimize the difference between U; and
u; (k) for all the cores and to minimize the energy consumption
E(k) for the processor.

n
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Note that the objective (2) is actually equivalent to the mini-
mization of power consumption because the power consump-
tion during a control period can be approximated as a constant
and thus E(k) = p(k)Ts. Constraint (3) guarantees that the
CPU frequency of each core remains within its acceptable
range. The frequency range depends on specific processors.
The above formulation can be extended to add equality
constraints among cores that have the same frequency (and
voltage). Constraint (4) ensures that the summed size of all the
cache partitions does not exceed the total available cache size
on the processor. For each core, the optimization formulation
minimizes the difference between the core utilization and
corresponding set point by manipulating both partition size
and core frequency while satisfying the constraints. Control
goal (1) actually may conflict with control goal (2) because
core frequencies throttled to the lowest levels and cache lines
turned off are desired to minimize the total power consumption
p(k). In that case, memory accesses would be very slow
because most accesses will face cache misses and non-memory
access instructions would be executed at the lowest speed.
Consequently, the task execution times would be too long and
core utilizations might exceed set points, leading to deadline
misses. Therefore, the two conflicting goals require resolution
with advanced control and optimization techniques.

ITI. CACHE-AWARE UTILIZATION CONTROL
In this section, we model the cache-aware utilization control
problem for energy efficiency in multi-core real-time system
and present our two-level control architecture.

A. System Modeling

Following a control-theoretic methodology, we establish a
dynamic model that characterizes the relationship between the
controlled variable u;(k) and manipulated variables s;(k), and
fi(k) in the k" control period, by system identification. First,
we model the relationship between c¢;;(k), the execution time
of task 7T;; running on core C;, and the two manipulated
variables, f;(k) and s;(k). According to previous research
[5], cij(k) normally consists of frequency-dependent and
frequency-independent portions

T
cii(k) = *J +myi(k 5)
where % is the frequency-dependent portion and m;; (k)

is the frequency-independent portion of 7j;’s execution time.
The former scales with the core frequency but the latter does
not because some instructions deal with memory or other
I/O devices and their access speeds do not depend on core
frequency. For processors whose FSB (front-side bus) speed
varies with DVFS, memory accesses delay can be modeled as
the frequency-dependent portion of the task execution time.
We assume that the data and program of real-time tasks are
loaded into main memory. Disk or I/O device accesses are
not required during the execution. The assumption is valid for
the majority of embedded real-time systems as the memory
footprints of those applications are typically small. Intuitively,
m;; (k) is related to the cache size reserved for T;; because of
the strong correlation between the cache size of an application
and the number of cache misses it has. According to [8],
the relationship between m;;(k) and s;;(k), the cache size
allocated to T;; on C;, is modeled as

_J Aigsij(k) + Bij 0 <sij(k) < Wy

MMij (k) o { Constant Sij (k) > Wij ©)
where W;; is the working set size (WSS) of task T;;. A;; and
B;; are task-specific parameters. All the parameters can be
estimated using existing task profiling techniques. Example
parameters for the benchmarks used in our experiments are
listed in Table I in Section V. When s;;(k) is smaller than
the WSS W;;, increasing the cache size of a task may lead to
a reduced execution time [8]. When the allocated cache size
is greater than the WSS, allocating additional cache to a task
does not further decrease its cache miss rate. Although model
(6) is an approximation of the real system, our experiments
show that the linear relationship is sufficiently accurate for
the benchmarks. When a workload is different from the
benchmarks, it can be proved that the proposed solution still
achieves the control goal if the execution time varies within a
specific range.

For preemptive real-time task systems, we can estab-
lish the following relationship between the total frequency-
independent execution time of all the tasks on core C; and
the total cache size s;(k) assigned to C;

(m_{24w®+z&jogm@§m
" - ’ ’ Si(/{) > Wl

)

Constant



where A;j = A%{é)(k) and W; = ZW” (7) is derived by
a sum of (6) across all the tasks on Jcore C;. We assume that
each task has its own cache partition. Note that we do not need
to reserve caches for every task on each core and divide s; (k)
proportionally. In that case, the overhead that occurs because
the cache content can be invalidated by preempting tasks is
taken into consideration. It depends on the maximum number
of times the task is preempted and the cache size the task is
using. So, we use the WCET model from [8] and derive a

model similar to (7).

In multi-core systems, tasks on different cores may compete
and interfere with each other for shared resource (e.g., shared
bus or caches) access. To avoid these interferences, we adopt
the cache partitioning method proposed in multiple studies
(e.g., [17]). The multi-core cache architecture in [17] simplifies
the WCET analysis of a real-time multi-core system. Without
cache partitioning, unpredictable inter-core interferences may
occur and invalidate model (7). Based on this architecture, a
multi-core processor with shared L2 caches can be regarded as
a multiprocessor system with each processor having adjustable
private L2 caches. Considering (5), (6), and (7), we derive the
following model for our system

Znijrij )
bz(/{) = W + Z A”szsz(k) =+ Z BijTij (8)
! J J

where b;(k) is the estimated utilization of core C; and 7;;
is the task rate of T;; running on that core. An important
observation is that system model (8) needs to be transformed
as b;(k) to be inversely related to the core frequency f;(k).
From system model (8), the estimated change of utilization,
Ab;(k), for core C; is modeled as

Abz(k) = dl(k) Z N5 + Asl(k) Z A;jT‘ij )
j J

J

where d; (k) = 75— 75—y and As;(k) = si(k)—si(k—1).
Now Ab;(k) is a linear function of d;(k) and As;(k), which
allows us to use d;(k) as the manipulated variable instead
of using f;(k) directly. Note that Ab;(k) depends on the
estimated values of n;; and A;j. Their actual values may be
different from the estimations due to workload variations. A
major contribution of our work is to propose a control solution

to handle this uncertainty.

The system model (9) represents a Multi-Input-Single-
Output (MISO) system because it has two manipulated vari-
ables, d; (k) and As;(k), and one controlled variable. Two ma-
nipulated variables can provide extra flexibility for controlling
both CPU-intensive and memory-bound tasks when compared
with controlling the same tasks with only one manipulated
variable. The additional input variable has a significant impli-
cation on the control solution design. We can achieve a certain
output with an infinite number of combinations of these two
inputs, but not all of them can satisfy the utilization control
and power optimization goals. Therefore, we need to determine
which combination to use to fulfill our goals. The details are
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Two-level utilization control architecture.

discussed in Section IV.

From the system perspective, in multi-core environments
that allow both DVFS and cache partitioning/resizing, relying
solely on one adaptation strategy may unnecessarily reduce
the system’s adaptation capability. Adapting one of them can
only adjust either the frequency-dependent or independent
portion of the task execution time within a range, but not both.
Therefore, a novel control architecture needs to be designed
for utilization control and power management in multi-core
real-time systems by utilizing both adaptation strategies.

B. Control Architecture

In this paper, we propose a novel two-level utilization con-
trol and power management architecture. As shown in Figure
1, our control architecture features a core-level utilization
controller and processor-level cache demand arbitrator. As
described in Section II, constraint (4) enforces that the sum-
mation of s;(k) should not exceed the total processor cache
size. Therefore, if the partition size of a core is increased, the
cache sizes of other cores may need to be reduced. Moreover,
the utilization of a core is related to its cache partition size
according to system model (9). The coupling between the
cache size and core frequency for utilization control raises new
design challenges. Instead of designing a single processor-level
utilization controller, we adopt the two-level utilization control
architecture based on the following considerations.

First, a processor-level utilization controller may not scale
well in future many-core systems (i.e., systems with tens
or hundreds of cores), because the number of variables in
the system model of the processor-level utilization controller
increases proportionally with the number of cores. As a
result, the computational complexity of the controller can
increase significantly and thus be too expensive to control
real-time systems. In addition, whenever the number of cores
changes, the system model changes and the controller needs
to be redesigned. Core-level controllers have better scalability
because the number of controlled and manipulated variables
does not increase with the number of cores. However, as a
core-level controller determines its own cache partition size
locally and is unaware of other core’s cache demands, it
can not guarantee constraint (4). Therefore, a processor-level
cache demand arbitrator is needed to enforce the constraint by



assigning a cache quota Sgyotq,; to €ach core. The core-level
local controller maintains its cache partition size below the
cache quota Sgyotq,; assigned by the arbitrator.

Second, as the feature size is shrinking to the nanometer
scale, leakage power becomes the dominant portion of the
total power consumption of the entire processor. The leakage
power of a processor contains leakage power for both the
cores and caches. In this paper, we reduce the cache leakage
power by resizing L2 caches at runtime to turn off unused
portions. Our solution can also be integrated with existing task
migration policies to migrate real-time tasks among the cores
and turn off idle cores to reduce the core leakage power. Note
that task migration is complementary to our solution and that
detailed integration is beyond the scope of this paper. Task
migration for power efficiency can be better supported with
a core-level utilization controller than with a processor-level
utilization controller. The reason is that the number of active
cores may change at runtime and the system model of the
processor-level MPC controller needs to be rebuilt whenever
the number of the active cores changes. This may incur a large
overhead to the system.

Our two-level utilization control architecture works as
follows. First, the processor-level cache demand arbitrator
dynamically calculates a cache quota for every core based
on the real-time workloads running on them. It monitors the
task arrival, termination, and migration events, periodically,
to collect the cache demand of every core. The core-level
utilization controller uses this cache quota to enforce the
constraint (4). Second, each core-level controller controls the
utilization of the corresponding core by scaling its frequency
and resizing its cache partition. It is a MISO controller that
adopts advanced MPC theory to serve this multi-objectivity:
utilization control and power optimization. The core-level
controller executes the following steps at the end of every
control period: (1) It collects the core utilization from the
utilization monitor on core C;; (2) The controller then com-
putes a new core frequency f;(k) and a new cache partition
size s;(k), then sends the values to the frequency modulator
and cache actuator on C;, respectively; and (3) The frequency
modulator and cache actuator change the core frequency and
cache partition size accordingly. In a real system, similar to
the power management unit implemented in POWER7, our
control architecture can be implemented in service processor
firmware that manages the controlled multi-core processor.

IV. MOMPC CONTROLLER DESIGN
In this section, we present the formulation of the MOMPC
controller and discuss the controller design in detail.

A. MOMPC Control

Based on system model (9), a novel MISO controller needs
to be designed to enforce the utilization set points on all
the cores and minimize power consumption of the proces-
sor simultaneously. Traditional MPC control theory applied
in earlier studies on feedback control real-time scheduling
(e.g., [19]) is not suitable for the problem we formulate in
Section II. The reason is that traditional MPC theory can not

handle multiple control goals like the two we have in our
problem. To solve our control problem, we adopt a recent
advance in control theory, Multi-Objective Model Predictive
Control (MOMPC) [20], which is being actively studied in the
control community [3]. One of the advantages of MOMPC is
its capability of dealing with multi-objective MIMO control
problems with constraints on the plant and actuators. This
characteristic makes MOMPC suitable for our problem.

The basic idea of MOMPC control is to solve a hierarchy
of optimization problems. Specifically, multiple objectives are
ranked according to their priorities since they may conflict
with each other and cannot be met simultaneously. In MOMPC
control, the most important objective is solved first. The
solution is then used to impose equality constraints when
addressing the second optimization objective, and so on. Since
meeting the real-time constraints is always the first priority
in real-time systems, we select objective (1) as our primary
control goal and objective (2) as our secondary goal. To meet
the two control goals, we have a primary optimizer and a
secondary optimizer. The primary optimizer is essentially a
dynamic least square optimizer designed to meet the control
goal (1), just like the optimizer in traditional MPC theory. Its
control objective is to select a combination of core frequency
fi(k) and cache partition size s;(k) that achieves only the
control goal (1). When the system is controlled into the
stable state, the secondary optimizer adjusts the core frequency
fi(k) and cache size s;(k) to achieve the control goal (2),
i.e., minimizing the power consumption of the processor. To
avoid conflicting with the primary optimizer, the secondary
optimizer enforces an equality constraint to adjust the core
frequency f;(k) and cache size s;(k), without impacting the
core utilization w; (k).

B. Primary Optimizer

Following MOMPC control theory, we first design a con-
troller for the primary optimizer to achieve the control goal (1).
The controller employs system model (9) to minimize a cost
function with constraints. The cost function to be minimized
by the controller for core C; is

Vi(k) = 5204 lua(k +1 = 1{k) = refi(k +1 = 1[k)|)
+Ixi(klk) — xi(k — L[k
(10)
subject to:
Fmin,i S fl(k) S Fmax,i
Sz(k) S Squota,i (11)

where x;(k) = } P is the prediction horizon

used to predict the system behavior over P control periods,
P =2 in our system. ref;(k +1|k) is the reference trajectory
along which the utilization vector u;(k + I|k) should change
from the current utilization u;(k) to the utilization set point
U;. Note that the cache size s;(k) for C; is bounded by
Squota,i tO ensure constraint (4). We can easily transform
the above optimization problem into a standard constrained
least-square problem that can be solved by the controller



using any standard least square solver. The transformation is
not presented due to space limitations, but the detailed steps
can be found in [20]. Although the outputs of the primary
optimizer are unique, the outputs may not be optimal in terms
of energy efficiency. As explained in Section III-A, multiple
combinations of core frequencies and cache sizes including
the outputs of the primary optimizer can satisfy the utilization
set point.

C. Secondary Optimizer

The secondary optimizer uses a power model to achieve the
desired control goal (2), i.e., minimizing the power consump-
tion of the processor. The power optimization function that we
have designed for our secondary optimizer is

pi(k) = M, f;(k)*> + Nisi(k) + L; (12)

subject to
Fmin,i S fz(k) S Fmax,i
Sz(k) S Squota,i

where M;, N;, and L; are the power model parameters of the
processor. The power consumption of the processor includes
the power consumed by the cores and caches. The former
has a dynamic power component M, f;(k)? that varies with
core frequency and a leakage power component L;, but for
the latter, the dynamic power component is negligible when
compared with the leakage power component [21]. Thus, the
cache power consumption is approximated by N;s;(k) which
varies with the cache partition size of C;. The power model
parameters in (12) can be a function of processor temperature,
which can significantly impact the leakage power.

The secondary optimizer finds a combination of f;(k) and
s;(k) that minimizes (12) while satisfying the constraints
of (13). As previously discussed, the equality constraint is
imposed so that adjusting core frequency f;(k) and cache size
s;(k) does not change core utilization u;(k) achieved by the
primary optimizer. As both w;(k) and p;(k) are functions of
fi(k) and s;(k), we can establish a relationship between them
and easily impose the equality constraints. We can transform
the above formulation into a standard nonlinear optimization
problem with constraints and solve it using any standard
solver. The detailed transformation is not presented due to page
limitations. In our simulator, we implemented the secondary
optimizer based on a Matlab solver (introduced in Section
V). The solver can find the optimal solution with a time
complexity of O(n?).

We configure the control period of the secondary optimizer
to be 50 times the control period of the primary optimizer.
We have proven that the configuration guarantees the stability
of the proposed control solution. The detailed proof is not
included due to space limitations.

13)

V. SIMULATION ENVIRONMENT
Our simulation environment integrates the event-driven EU-
CON simulator (for real-time task scheduling) used in previ-
ous studies [19] and a multi-core cache partitioning system
implemented by following the cache implementation of the

cycle-accurate SESC simulator [26], which is widely used
in computer architecture research. The multi-core processor
simulated in our work is an Intel Xeon X5365 Quad Core
processor with an 8MB on-die shared L2 cache and 1333
MHz FSB. The processor supports four DVFES levels: 3GHz,
2.67GHz, 2.33GHz, and 2GHz. All the parameters in our
power and utilization models are based on the data sheet from
Intel or profiling experiments conducted on the real processor.
We have validated our models under different DVFES levels
and cache partition sizes with the real Intel processor and
original SESC simulator, respectively. The validations show
that our models are sufficiently accurate (with R? > 0.93)
for the well-known Mibench [11] benchmark suites designed
for embedded systems. We only list the result of the first
category benchmarks of MiBench suite among all the six
categories because other categories are not designed to test
real-time systems. [23]. Table I lists the benchmarks used in
our experiments and the corresponding parameters used in
model (6). The unit for the working set size (WSS) is the
number of cache lines.

TABLE I
SYSTEM MODEL PARAMETERS IN (6) FOR TYPICAL BENCHMARKS.
Benchmark | WSS ni1 A11 Bll R2
basicmath 2026 | 4.4e+7 -3.8e+7 | 3.8e+7 | 0.93
susan 886 4.05e+7 | -9673 7.0e+6 | 0.99
bitcnts 445 7.64e+7 | -1.7e+5 | 9.0e+7 | 0.99

The simulation environment implements a multi-core real-
time system based on the simulated processor and the cache-
aware power management and utilization control architecture,
which includes the utilization monitors, core frequency modu-
lators, cache partitioning/resizing actuators, and the processor-
level cache arbitrator. The periodic tasks on each core are
scheduled by RMS. Similar to previous studies based on
the EUCON simulator, the multi-objective MPC controllers
are implemented in Matlab. Specifically, the primary opti-
mizer of an MOMPC controller is implemented based on the
1sglin least squares solver and the secondary optimizer is
implemented based on the fmincon constrained nonlinear
multi-variable optimizer. In each simulation, the simulator
first opens a Matlab process and initializes the parameters.
At the end of each control period, the simulator collects
the utilization of each core from the utilization monitors,
and calls the MOMPC controllers in Matlab. The MOMPC
controllers compute the control inputs, f;(k) and s;(k), and
return them to the simulator. The simulator calls the frequency
modulators and cache partitioning/resizing actuators to enforce
the control inputs. Note that the overhead of the MOMPC
controllers is sufficiently small because we adopt the core-
level controller design (discussed in Section III). As a result,
each MOMPC controller only has one controlled variable
and two manipulated variables. Note also that the controllers
can be implemented in service processor firmware in a real
system and thus its computation and power overheads will not
significantly affect the main multi-core processor. An MOMPC
controller can also tolerate a considerable communication
delay, as long as the delay is short when compared with the



control period [20].

Cache partitioning divides a shared cache into non-
overlapping partitions for independent use by real-time tasks.
The benefit is that it eliminates the inter-core interferences
among real-time tasks caused by the shared cache and thus
leads to improved real-time performance [2], because the
interferences may introduce difficulties to the estimation of
WCETs of real-time tasks. It is well known that the WCET
estimation for shared-cache multicores is still an open problem
because interferences exist. Given a k-associative cache (not
necessarily a fully-associative cache) with [ cache sets, the
cache can be divided based on associativity or based on cache
sets. Associativity-based partitioning assigns a certain number
of ways (0 to k) within each cache set to a partition while
set-based partitioning assigns a certain number of sets (0
to ) to a partition. The difference of the two approaches
is the partitioning granularity. In this work, we design the
proposed control solution on set-based partitioning because
its granularity is fine-grained (I >> k).

Overhead Analysis: Our simulations take into considera-
tion both time and energy overheads of the proposed MOMPC
controller, DVFS and cache partitioning. We measure the exe-
cution times and energy consumption of both the primary op-
timizer and the secondary optimizer of the proposed MOMPC
controller by running it on the simulated multi-core processor.
The time overhead of the primary optimizer is 0.8ms and its
energy overhead is approximately 0.088J. The time overhead
of the secondary optimizer is 2.2ms and its its energy overhead
is approximately 0.242]. Although overheads of the secondary
optimizer are higher than those of the primary optimizer, the
secondary optimizer is only invoked every 50 control periods.
The total time overhead of the proposed MOMPC controller
is less than 2% of a control period. Park et al. [25] presents an
accurate modeling of the time and energy overheads of DVES
techniques such as Intel’s SpeedStep Technology and AMD
equivalent PowerNow. The transition time is between 15.2 us
to 82.6 us and its energy overhead is from 0.1 mJ to 0.52 mJ.
Therefore, the time overhead of DVES is less than 0.6% of
the control period. To implement the cache partitioning in a
chip, additional circuits have to be added which will consume
additional energy compared with the processors without cache
partitioning support. Studies on computer architeture [17][14]
have shown that the time overhead is 2% on average. The
area for the circuits implementating some cache partitioning
technique is only 1.5% of the total area of caches. Thus, the
energy overhead of the cache partitioning is estimated to be
1.5% of the energy consumption of caches. In our simulations,
we deduct all the estimated energy overheads related to the
proposed control solution from the energy results.

VI. EXPERIMENTAL RESULTS
In this section, we first introduce two state-of-the-art base-
lines. We then evaluate our proposed control architecture using

the Mibench benchmarks and compare it with the baselines.
A. Baselines

Our first baseline, referred to as Dynamic repartitioning
[27], is a typical energy-efficient scheduling algorithm for

real-time tasks on a multi-core processor without consider-
ing the frequency-independent component of task execution
time and cache power consumption. To achieve a low power
consumption, Dynamic repartitioning balances the dynamic
utilization of all cores by migrating tasks among the cores. It
calls a repartitioning function whenever a task is completed
or a new task period starts. The function migrates a task
T, that lowers the chip-wide frequency after migration, from
the core with the highest dynamic utilization, C),4,, to the
core with the lowest dynamic utilization, C),,;,,. The migration
process continues until the chip-wide frequency level cannot
be lowered further by task migration. The key differences
between Dynamic repartitioning and our solution are that 1)
Dynamic repartitioning assumes the task execution time scales
inversely linearly with the core frequency and 2) all the cores
in a processor are assumed to have a uniform DVES level.

The second baseline, referred to as DVFS-Only, is the fre-
quency scaling loop proposed in [29]. DVFS-Only represents
existing utilization control mechanisms that assume the task
execution time scales only with the CPU frequency and applies
DVES for utilization control and power management.

We show that our proposed solution, which manipulates
both frequency and cache size, outperforms both baselines by
consuming less power consumption.

B. Cache-Aware Utilization Control

In this experiment, we first evaluate the performance of
our MOMPC controller. We adopt two different task sets to
conduct our experiments on the simulated quad-core processor.
The first task set includes two periodic tasks running basic-
math benchmarks with a total utilization of 0.6, while the
second task set contains three periodic tasks running a mix
of basicmath and bitcnts benchmarks with a total utilization
of 0.45. The workloads for the first three cores are identical
and they execute the first task set. The workload for core 4 is
different and it executes the second task set. The task period
of basicmath is 0.08 seconds while the task period of bitcnts
is 0.16 seconds. We initially assign an even cache quota to
each core. We also conduct a set of experiments to examine
randomly generated workloads.

In our experiment, we activate our MOMPC controllers on
all the cores at time 100 (i.e., the 100*" control period) and
enable the secondary optimizers at time 200. Figure 2(a) shows
that the utilizations of all cores are controlled accurately to
their RMS bounds (e.g., 0.69) after the MOMPC controllers
are activated. As a result, no deadline miss is observed. Figure
2(b) shows that the energy consumption in every control
period. The specific value of the control period is 0.16 seconds.
The energy consumption are reduced from time 100 to 200.
After the secondary optimizers are enabled on all the cores at
time 200, the energy consumption is minimized: from 6] to 4J
for cores 1-3 and from 6J to 3.5J for core 4. The small spikes
in the energy consumption at the 200th and 250th control
periods are caused by the secondary optimizer. Figures 2(c)
and 2(d) detail the behavior of the MOMPC controllers by
plotting the frequencies and cache partition sizes of the cores.
From time 100 to 200, the MOMPC controllers, without the
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A typical run of the proposed cache-aware control solution. The MOMPC controllers (primary optimizers) are activated at time 100 to control

utilizations and the secondary optimizers are enabled at time 200 for energy optimization.

secondary optimizers, does not reduce the frequencies to the
minimum level. As a result, the processor energy consumption
is not minimized. At time 200, the secondary optimizers are
enabled to achieve energy optimization by throttling the core
frequencies. As a result, the cache partition sizes are increased
for all the cores and overall energy consumption is reduced
without affecting the core utilizations. This experiment clearly
demonstrates that the MOMPC controller can achieve better
energy efficiency than a traditional MPC controller that does
not contain the secondary optimizer.

To test the robustness of the proposed MOMPC controller,
we conduct a set of experiments with different randomly
generated workloads. For each workload, the number of tasks
on each core is increased from 2 to 6 (i.e., 8 to 24 tasks in
total). Figure 3(a) plots the average CPU utilizations of all the
cores after the controllers enter the steady state. Our MOMPC
controllers successfully achieve the desired utilization set
points with zero steady state errors for all the workloads.
Figure 3(b) shows that the MOMPC controllers achieve more
energy savings than the MPC controllers.

C. Comparison with Dynamic Repartitioning

In this experiment, we compare the proposed solution with
the first baseline, Dynamic repartitioning. To have a fair com-
parison, we adopt the same workload used in Section VI-B.
Figure 4(a) shows that after Dynamic repartitioning activates at
time 150, the utilizations of all the cores increase only slightly.
None of the cores achieve the desired utilization set points
(e.g., 0.69). The reason is that Dynamic repartitioning assumes
that the execution times of tasks are inversely proportional
to the core frequencies, without considering the frequency-
independent execution times. In the workload we adopted,
the frequency-independent execution times (about 2.83e+7
CPU cycles) comparable to the frequency-dependent execution
times (about 4.4e+7 CPU cycles). As a result, Dynamic repar-
titioning fails to control utilizations accurately, which can lead
to power inefficiency, as shown later. Another fundamental
assumption of Dynamic repartitioning is chip-wide DVFS,
which holds true for certain multi-core processors. However,
as microelectronic technologies advance, per-core DVFS has
been implemented and is expected to become the main-stream
configuration. Since the workload on each core is not perfectly
balanced, the cores cannot achieve their utilization set points
simultaneously with chip-wide DVFS.

Figure 4(b) shows the energy consumption of each core.
Since Dynamic repartitioning reduces the frequencies of all

|lEMpc_mmompe ||

[ T T T T
2 3 4 5 6 2 3 4 5 6

Core energy (J)

o N A O

Core Utilizations

Number of tasks Number of tasks

(a) Core utilization

Fig. 3. The proposed cache-aware solution (i.e., MOMPC) controls core
utilization to desired set points while saving more energy than MPC.

(b) Core energy consumption

1.0 7
L P ey S
.5 0.8 S5 |
To6 P &
= - — g3 r
S04 T ]
< 2
So2 Core 1 — —Core 2 8 1 Core 1 = —Core 2
Core3 —-—-Core 4 Core3 —-—-Core 4
0.0 L L -1 ! L
0 100 200 300 0 100 200 300
Control period Control period
(a) Core utilization (b) Core energy consumption
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time 150).

the cores from the highest level to the same level (with chip-
wide DVFS) and does not manage the energy consumption
of the shared L2 caches, the energy savings of each core is
approximately identical. Even though no deadline is violated
by Dynamic repartitioning, the energy consumption of each
core is only slightly reduced from 6J to 5.5J, which leads
to unnecessarily more energy consumption as the proposed
cache-aware control can reduce energy significantly. The first
reason is that Dynamic repartitioning can not control uti-
lizations accurately. Since the proposed cache-aware control
considers frequency-independent execution times, both core
frequencies and cache partitions can be adjusted to achieve
accurate utilization controls which translate to additional en-
ergy savings. The second reason is that Dynamic repartitioning
does not take advantage of per-core DVFES, which is proven
to be more energy efficient than chip-wide DVFS [13]. This
experiment demonstrates that the cache-aware control solu-
tion outperforms Dynamic repartitioning in terms of energy
efficiency.

To stress test the energy efficiency of the proposed so-
lIution and Dynamic repartitioning, we conduct a series of
experiments with different workloads. For each workload,
the frequency-dependent execution times of the tasks are
changed by tuning a parameter called the execution-time factor



(etf). The etf is the ratio of the frequency-dependent portion
to the frequency-independent portion in the task execution
times of the workload. The number of loop iterations in the
computation-intensive benchmarks (e.g., susan or bitcnts) can
be adapted to vary the frequency-dependent execution times
of the mixed benchmark consisting of basicmath and bitcnts.
Figure 6 shows that the energy consumption of Dynamic
repartitioning is always higher than that of the proposed cache-
aware solution in a wide range of etfs. As the etf increases,
the frequency-independent portion becomes relatively smaller,
thus the gap between the two solutions narrows. The reason
is that when the the frequency-independent portion becomes
relatively smaller, the advantage of dynamic cache resizing
used by the proposed solution for reduced leakage power
becomes smaller. As a result, both solutions primarily rely
on DVES for power efficiency.

D. Comparison with DVFS-Only

In this experiment, we compare the proposed solution with
the second baseline: DVFS-Only. We activate the solutions
at time 100. The workload on each core is configured to be
identical and includes three periodic tasks. We simulate the
typical scenario of a real-time system with uncertain execution
times by increasing the frequency-dependent execution times
of the tasks on all the cores by 100% at time 250. We compare
the energy efficiency of the proposed solution and DVFS-Only
in such a scenario.

Figure 5(a) shows that under the proposed solution, after
time 100, the utilizations of all the cores are controlled to
the set points (e.g., 0.69). Due to the workload variation at
time 250, the utilizations increase significantly. The proposed
solution successfully controls the utilizations back to the set
points. The deadline miss rate is 0.5% since the utilization
bound approximately at time 250 is violated, creating deadline
misses. Figure 5(b) shows that before the proposed solution
activates at time 100, the core energy consumption is high
because the core frequencies are initially set to the highest
levels and the L2 caches are all turned on. From time 100 to
250, the energy consumption is reduced significantly by the
proposed solution. After time 250, both the core frequencies
and cache sizes are increased due to the workload increase,
resulting in an increased energy consumption.

Figure 5(c) shows a typical run of DVFS-Only in the
same scenario under the same workload. Note that although
DVFS-Only also assumes the execution times of tasks are
inversely proportional to the core frequencies as Dynamic
repartitioning, DVFS-Only can control the utilizations to the
set points accurately because DVFS-Only relies on the feed-
back of the measured utilizations. When compared with the
proposed solution, the deadline miss ratio of DVFS-Only is
zero because the peak utilization of the proposed solution is
1 while the peak utilization of DVFS-Only is only 0.9. Figure
5(d) shows that from time 100 to 250, the energy consumption
is approximately 4.3J, which is much higher than 3.7J, the
power consumption of the proposed solution (shown in Figure
5(b)). The reason is that DVFS-Only does not turn off the
caches for energy savings. Thus, the energy consumption

cannot be reduced significantly by only throttling DVFS. After
time 250, the energy consumption is approximately 5.1J while
the power consumption of the proposed solution is about
4.3J. As the frequency-dependent portion in the execution
times increases, the gap of the energy consumption of the
two solutions narrows. On average, DVFS-Only consumes
20% more energy per core than the proposed solution. This
experiment demonstrates that the proposed solution is more
energy efficient than DVFS-Only under workload variations.

To test the impact of the parameters in the power model
on energy efficiency, we define the power ratio of a core to
be the ratio of the dynamic power consumption when the
core frequency is the maximum level to the cache power
consumption of the core when all the caches are turned on.
We use the same scenario to increase the workload at time
250. Figures 7 and 8 show the energy consumption of the
two solutions before and after time 250 (workload increase),
respectively. Figure 7 shows that when the power ratio is lower,
which means the percentage of leakage power consumption
is higher in the total power consumption, the gap between
the proposed solution and DVFS-Only widens because DVFS-
Only can only adjust DVFS to manage power consumption.
The difference between the proposed solution and DVFS-Only
in Figure 7 is smaller than that in Figure 8. The reason is
that when the frequency-independent execution times become
relatively smaller, the advantage of the proposed cache-aware
solution to dynamically resize caches for reduced leakage
power becomes smaller.

VII. RELATED WORK

In recent years, scheduling for multi-core real-time systems
has received much attention. Many multiprocessor scheduling
algorithms (e.g., [9], [22]) can be applied to multi-core pro-
cessors. Bini et al. [6] proposed two abstractions to facilitate
multi-core adoption for real-time systems and the correspond-
ing schedulability analysis. Nelis et al. [22] studied slack
reclamation schemes to reduce the power of a multi-core real-
time system. Block et al. [7] proposed an adaptive framework
based on feedback which controls each task instead of the
utilization of the task system. Seo et al. [27] studied energy
efficient multi-core real-time scheduling using a chip-wide
DVFS. However, all these studies do not explicitly consider
the impact of shared L2 caches.

Several cache-aware multi-core real-time scheduling al-
gorithms have been recently proposed. Anderson’s group
proposed various open-loop cache-aware global scheduling
algorithms for multi-core real-time systems (e.g., [2]). Laksh-
manan et al. [15] studied partitioned fixed-priority preemptive
scheduling. Bui et al. [8] optimized the impact of cache
partitioning on a multi-core real-time system. Guan et al.
[10] also studied cache-aware scheduling. Yan et al. [30], Li
et al. [16] and Hardy et al. [12] analyzed the impact of a
shared L2 instruction cache on WCET estimation for shared
L2 cache multi-core systems. Paolieri et al. [24] used L2 cache
partitioning to solve the multi-core WCET problem. Suhendra
et al. [28] proposed a similar cache partitioning and locking
approach. All the aforementioned studies are different from
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when etf varies.

ours because they do not address the power consumption of a
shared L2 cache.
VIII. CONCLUSIONS

In this paper, we have presented a two-level utilization
control solution for energy efficiency in multi-core real-time
systems. At the core level, our solution addresses two opti-
mization objectives: controlling the CPU utilization of each
core to its desired schedulable bound and minimizing the core
power consumption by adopting per-core DVES and dynamic
L2 cache partitioning to adapt both the CPU frequency-
dependent and independent portions of the task execution
times of the core. Since traditional control theory cannot
handle multiple optimization objectives, a novel utilization
controller is designed based on advanced MOMPC theory. At
the processor level, a cache demand arbitrator is proposed
to coordinate the cache size demand from each core and
conduct dynamic cache resizing to minimize the leakage power
consumption of the shared L2 caches. The energy and time
overheads of the proposed control solution are analyzed and
demonstrated to be sufficiently small. Extensive experiments
using the Mibench benchmarks show that our solution outper-
forms two state-of-the-art power management algorithms that
do not consider L2 caches or per-core DVES by having more
accurate utilization control and less energy consumption.
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