
On the Tractability of Digraph-Based Task Models
Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi

Uppsala University, Sweden
Email: {martin.stigge | pontus.ekberg | nan.guan | yi}@it.uu.se

Abstract—In formal analysis of real-time systems, a major
concern is the analysis efficiency. As the expressiveness of models
grows, so grows the complexity of their analysis. A recently pro-
posed model, the digraph real-time task model (DRT), offers high
expressiveness well beyond traditional periodic task models. Still,
the associated feasibility problem on preemptive uniprocessors
remains tractable. It is an open question to what extent the
expressiveness of the model can be further increased before the
feasibility problem becomes intractable.

In this paper, we study that tractability border. We show that
system models with the need for global timing constraints make
feasibility analysis intractable. However, our second technical
result shows that it remains tractable if the number of global
constraints is bounded by a constant. Thus, this paper establishes
a precise borderline between tractability and intractability.

I. INTRODUCTION

Abstract models used in the analysis of real-time systems
aim at representing the system under analysis as precisely as
possible for the analysis objective at hand. However, more pre-
cise and expressive models tend to increase the computational
complexity of the employed methods. Thus, the model choice
imposes a critical efficiency trade-off.

A key property one would like to check efficiently is the
system’s feasibility. It states whether one can find a preemptive
uniprocessor schedule for all jobs created by the whole system,
such that all jobs can meet their associated deadline. For its
analysis, a common approach is the decomposition of the
system into processes or tasks which are modeled separately
and more or less independent. The classical task model is the
well-known Liu and Layland task model [1], which expresses
every task independently as a periodic sequence of recurring
and equal jobs. The benefit of this basic model is that many
system properties such as feasibility can be checked very
efficiently. However, since its expressiveness is rather limited,
researchers have proposed increasingly expressive task models.
The most general model to date with a tractable feasibility
problem is the Digraph Real-Time task model (DRT) [2]. For
each task, it uses an arbitrary directed graph for modeling the
release structure of different types of jobs.

An interesting challenge is to determine how close to
intractability the feasibility problem for DRT already is. How
far can the research community expect to explore further
generalizations before exact feasibility analysis can not be
solved efficiently anymore?

In this paper, we study the tractability borderline. We add an
extension to DRT which allows to express global inter-release
separation constraints between non-adjacent job releases.
These additional constraints allow modeling of general periods
for sub-structures like periodic modes, limited burstiness, and

related paradigms. Since the model extension only affects
certain release patterns of the modeled jobs, one could expect
feasibility analysis to grow only moderately in complexity.
However, we show that without further restrictions, this ex-
tension leads to intractability. Still, for a bounded version of
the extension, we present an efficient analysis.

In particular, based on a precise notion of global inter-
release separation constraints, this paper provides the follow-
ing contributions:
• We show that with a bounded number of constraints, the

feasibility problem in the DRT task model is tractable,
i.e., can be decided in pseudo-polynomial time for sys-
tems with bounded utilization.

• We prove that without a bound on the constraint number,
feasibility becomes strongly coNP-hard, i.e., intractable,
even in the restricted setting of constrained deadlines.

For the tractable case, we further suggest several optimizations
that are critical to an efficient implementation. Our prototype
based on these optimizations is able to analyze randomly
generated high-utilization task sets of 50 tasks, each with 20
job types and 2 global constraints, within a few minutes.
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Fig. 1. A hierarchy of task models. Arrows indicate the generalization
relationship. The higher the expressiveness, the more expensive the feasibility
test. The tractability borderline is identified by our two model variants.

A. Prior Work
Figure 1 gives an overview of the expressiveness of ex-

isting task models in relation to the complexity of their
feasibility problem. The classical periodic task model by
Liu and Layland [1] models each task as a periodically
released job with an implicit deadline equal to the period.
An important step in its generalization is the generalized
multiframe (GMF) model [3]. It allows deadlines to differ
from periods, sporadic job releases, and, most importantly, a
task may contain different job types (“frames”). The assumed
behavior is that the task cycles through the different job types.
Another significant generalization is the Recurring Real-Time



task model (RRT) [4]. It allows modeling of branches in the
job release structure by representing each task as a directed
acyclic graph (DAG). However, after traversing the DAG, each
task needs to start again from its initial vertex while complying
with a given task period, making all tasks recurrent. In a recent
result [2], the job release structure has been generalized to
arbitrary directed graphs in the Digraph Real-Time task model
(DRT). Here, the structure of job releases is not predetermined
in any way and can be modeled without any restrictions to the
graph topology. Further, deadlines can be arbitrary, i.e., larger
than the delay until the next job release. However, despite the
strong expressiveness, it has been shown that feasibility can
still be decided in pseudo-polynomial time for all the above
models.

Another step in expressiveness is the task automata model
[5]. It allows to express complex dependencies between job
releases and task synchronization, at the cost of a very
expensive schedulability test.

An example for related hardness results for scheduling
problems is a recent result [7] showing that feasibility is
already weakly coNP-hard for synchronous periodic task mod-
els. We however focus on pseudo-polynomial complexity as
the consensus for the notion of tractability in the real-time
community.

II. TASK MODEL

An extended digraph real-time (EDRT) task system τ =
{T1, . . . , TN} consists of N independent tasks. A task T
is represented by a graph G(T ) with both vertex and edge
labels, and a constraint set C(T ). The vertices {v1, . . . , vn}
of G(T ) represent the types of all the jobs that T can release.
Each vertex vi is labeled with an ordered pair 〈e(vi), d(vi)〉
denoting worst-case execution-time demand e(vi) and relative
deadline d(vi) of the corresponding job. Both values are
assumed to be non-negative integers. The edges of G(T )
represent the order in which jobs generated by T are re-
leased. Each edge (u, v) is labeled with a non-negative integer
p(u, v) denoting the minimum job inter-release separation
time. We do not assume a relation between job deadlines
d(u) and inter-release separation times p(u, v), i.e., the jobs
may have arbitrary deadlines. The constraint set C(T ) =
{(from1, to1, γ1), . . . , (fromk, tok, γk)} contains k additional
global minimum inter-release separation constraints. Each
constraint (fromi, toi, γi) ∈ C(T ) expresses that between the
visits of vertices fromi and toi, at least γi time units must
pass. We assume all γi to be non-negative integers. For a fixed
constant k, we call a task T with k = ‖C(T )‖ a k-EDRT task.

Note that constraints in C(T ) can involve any pair of
vertices, they can be self-loops, they can be connected or
unconnected vertices, the constraints could even be 0. (Some
of these combinations would only make very limited sense.)
Further, note that for k = 0, i.e., no additional constraints with
C(T ) being empty, this is the plain DRT model from [2].

Example II.1. Figure 2 shows an example of a 2-EDRT
task with constrained deadlines. We will use it as a running
example throughout the rest of the paper.
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Fig. 2. An example EDRT task containing five different types of jobs and
two additional constraints (v4, v2, 6) and (v3, v3, 9), denoted with dashed
arrows. Note that these dashed arrows do not represent edges that can be
taken. They only denote additional timing constraints.

Semantics: An execution of task T corresponds to a
potentially infinite path in G(T ). Each visit to a vertex along
that path triggers the release of a job with parameters specified
by the vertex labels. The job releases are constrained by inter-
release separation times specified by both the edge labels and
the constraints from C(T ).

To explicitly denote necessary waiting times at the vertices,
we extend paths in G(T ) with delay information:

Definition II.2 (Timed Path). For a path π = (π0, . . . , πl)
in G(T ), a timed path π̃ = (π0, δ0, π1, δ1, . . . , δl−1, πl) is
derived by adding waiting times δi ∈ R>0 between the
vertices. We call π̃
• legal, if the waiting times are consistent with the given

inter-release separation constraints, i.e., if for i < j 6 l:
1) δi > p(πi, πi+1), and
2) δi+δi+1+. . .+δj−1 > γ for all (πi, πj , γ) ∈ C(T ),

• urgent, if all δi are minimal for π̃ being legal, i.e., for
all prefixes (π0, δ0, . . . , δj−1, πj) of π̃ and all ε > 0, the
timed path (π0, δ0, . . . , δj−1 − ε, πj) is not legal.

This extends to infinite paths in a natural way. Note that
legal timed paths may contain non-integral delays δi, but for
urgent timed paths, all δi are necessarily integers1.

Using timed paths, we can define the semantics of an EDRT
task set τ as the set of job sequences that can be generated by
τ . A job is denoted by a 3-tuple (r, e, d) with release at (abso-
lute) time r, worst-case execution time e and deadline at (abso-
lute) time d. A job sequence σ = [(r0, e0, d0), (r1, e1, d1), . . .]
is generated by T , if and only if there is a (potentially infinite)
timed path π̃ = (π0, δ0, π1, δ1, . . .) that is legal for T and
satisfies for all i:

1) ei = e(πi),
2) di = ri + d(πi),
3) ri+1 − ri = δi.

1Otherwise, the fractional part of the first non-integral delay could be
moved to the next delay. This preserves legality of the path, but shortens
the accumulated duration of the prefix, showing that the original path was not
urgent.



For a task set τ , a job sequence σ is generated by τ , if it is
a composition of sequences {σT }T∈τ , which are individually
generated by the tasks T of τ .

Example II.3. For the example task T in Figure 2, consider
the job sequence σ = [(2.3, 1, 4.3), (5.1, 1, 7.1), (8.9, 2, 10.9)].
It is generated by T , since it corresponds to timed path π̃ =
(v4, 2.8, v5, 3.8, v2) which is legal. If we reduce the second
delay in π̃ to get π̃′ = (v4, 2.8, v5, 3, v2), the result would not
be legal: v2 is visited 5.8 time units after v4 which makes π̃′

violate the constraint (v4, v2, 6).
Note that π̃ is legal, but not urgent. An urgent timed path in-

volving the same sequence of vertices is π̃′′ = (v4, 2, v5, 4, v2).
In fact, π̃′′ is the unique urgent timed path along these vertices.

III. FEASIBILITY

The main focus of this work on the EDRT task model is to
solve the associated feasibility problem:

Definition III.1 (Feasibility). A task set τ is preemptive
uniprocessor feasible, if and only if all job sequences ge-
nerated by τ can be executed on a preemptive uniprocessor
platform such that all jobs meet their deadlines.

In particular, for a job (r, e, d) to be scheduled successfully,
there must be an accumulated duration of e time units where
the job executes exclusively on the processor within the time
interval [r, d]. It is known that Earliest Deadline First (EDF)
is an optimal scheduling algorithm for scheduling indepen-
dent jobs on a preemptive uniprocessor. Thus, the feasibility
problem is equivalent to EDF schedulability.

The two main results in this paper are that the feasibility
problem for k-EDRT is tractable (Section IV), but for the
general EDRT model, i.e., without a bound on the number
of constraints, it is strongly coNP -hard (Section VI). In
the remainder of this section, we introduce some general
concepts related to feasibility analysis which will be used for
establishing the two main results.

A. The Demand Bound Function
A common framework in schedulability theory for deciding

feasibility is the demand bound function (dbf ). Intuitively,
a dbf expresses the accumulated execution time that a task
set can demand from the processor within any time interval
of given length. In particular, it considers each execution
requirement that is both released within the interval and needs
to be finished before the end of the interval. Formally:

Definition III.2 (Demand Bound Function). For a task T and
an interval length t, dbf T (t) denotes the maximum cumulative
execution time requirement of jobs with both release time and
deadline within an interval of length t, over all job sequences
generated by T . Further, for a task set τ ,

dbf (t) :=
∑
T∈τ

dbf T (t).

By definition, dbf is tight in the sense that for each t, there
is a job sequence generated by task set τ in which some jobs
actually have an execution demand of dbf (t) within an interval

of t time units. Note that the definition of dbf (t) as a sum of
dbf T (t) of all tasks T relies on their independence of each
other. Note further that we assume time to be dense, so dbf
is defined for all t ∈ R>0.
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Fig. 3. Demand bound function for the EDRT task in Figure 2. Two depicted
dots in this diagram illustrate the connection between the dbf and timed paths
through G(T ) using π̃ and π̃′′′ from Example III.3.

Example III.3. Consider again job sequence σ =
[(2.3, 1, 4.3), (5.1, 1, 7.1), (8.9, 2, 10.9)] from Example II.3,
generated by task T from Figure 2. This sequence shows that
in a time interval t = 10.9−2.3 = 8.6, task T may generate a
demand of 1+1+2 = 4 on the processor. Thus, dbf T (8.6) > 4.
In fact, we can derive this information from the associated
timed path π̃ = (v4, 2.8, v5, 3.8, v2) by summation over the
execution demand labels and by summation over the delays
and addition of relative deadline d(v2).

Considering the urgent timed path π̃′′ = (v4, 2, v5, 4, v2),
also from Example II.3, we see that already within 8 time
units, a demand of 4 can be created along that path. However,
a third timed path π̃′′′ = (v1, 5, v2) with an accumulated
execution demand of 6 shows that within already 7 time units,
the demand can be even higher. In fact, this urgent timed path
π̃′′′ creates the maximum demand within an interval of 7 (and
also 8) time units. Thus, dbf T (7) = dbf T (8) = 6, as we can
also read from Figure 3.

We are especially interested in urgent timed paths, because
they play an important role when calculating the dbf . Knowing
only the urgent timed paths is sufficient for determining the
dbf , as follows. A timed path’s duration, i.e., the sum of all its
delays, does not increase by making it urgent (via adjustment
of its delays). Thus, for every timed path, there is an urgent
timed path which contributes just as much information to the
dbf . Consequently, even though the dbf is concerned with all
timed paths, only the urgent timed paths need to be considered.
Further, any prefix of an urgent timed path is by definition
urgent as well. This is critical for an enumeration approach
based on extending paths further and further, which is why
our definition of urgency is that strict. Note that this renders
the second of the following two timed paths through G(T ) in
Figure 2 non-urgent, even though they have the same duration:

(v4, 2, v5, 4, v2) vs. (v4, 3, v5, 3, v2)



A tight demand bound function can be used in a precise
feasibility test, thanks to the following proposition:

Proposition III.4. An EDRT task system τ is preemptive
uniprocessor feasible if and only if:

∀t > 0 : dbf (t) 6 t

A proof of this can be established in a very similar way as in
previous work, e.g. [3], and we omit it here. Intuitively, there
must be a feasible schedule for all job sequences generated by
τ if and only if, for all time interval lengths t, the execution
time demand of τ fits into that interval.

For the plain DRT model, we showed in [2] how this
proposition can be used for an efficient feasibility test, by
efficient computation of dbf for a bounded number of relevant
values for t. We will use that approach as a basis in Section IV.

B. Utilization
Another useful metric is the utilization of a task set.

Intuitively, the utilization describes the maximum execution
demand rate that the task set may create asymptotically. It is
important for applying the efficient feasibility test sketched
above for Proposition III.4. As shown in [2], the bound up to
which condition dbf (t) 6 t needs to be checked is derived
from the utilization of the given task set.

For a formal definition, we can use the demand bound
function introduced above.

Definition III.5 (Utilization). For a task T and a task set τ ,
we define their utilizations:

U(T ) := lim
t→∞

dbf T (t)

t

U(τ) :=
∑
T∈τ

U(T )

This definition is more general than the one in [2] which is
based on the “most dense” cycle through the DRT task graph.
However, it is easy to see that for plain DRT, i.e., without
constraints C(T ), both definitions are equivalent.

Clearly, a task set with a utilization above 1 can not be
schedulable, since for a sufficiently large interval t, its demand
bound function must exceed t. Thus, we can restrict our
attention to task systems with a utilization bounded by a
constant c < 1, similar to [2].

IV. k−BOUNDED CASE: EFFICIENT ANALYSIS

As a first step in presenting our method for efficiently
deciding feasibility for a k-EDRT task system, we give a short
overview of the method described in [2] for plain DRT. We
focus on the calculation of the demand bound function for a
given DRT task T . It is calculated up to a certain bound which
depends on the task set’s utilization.
• The first observation (cf. Figure 3) is that the demand

bound function changes only at certain points (“steps”),
and thus it is sufficient to determine these points.

• Each point corresponds to a path through G(T ). More
precisely, it corresponds to an urgent timed path; such

paths in the plain DRT model have the property that all
delays correspond exactly to the edge labels. Thus, it is
sufficient to just consider ordinary paths through G(T ),
since all delays can be directly read from the edges. From
each path π, one can derive its accumulated execution
demand e(π) and deadline d(π), both via summation over
parameters of its vertices and edges. In particular, for
π = (π0, . . . , πl), one defines:

Execution demand: e(π) :=

l∑
i=0

e(πi)

Deadline: d(π) :=

l−1∑
i=0

p(πi, πi+1) + d(πl)

The pair 〈e(π), d(π)〉 is called a demand pair. Determin-
ing all demand pairs is sufficient because of the following
correspondence:

dbf T (t) = max {e | 〈e, d〉 demand pair with d 6 t} .

• In order to determine the set of all demand pairs up
to t, all paths through G(T ) up to a certain length
need to be considered. Since the number of such paths
is exponential, a path abstraction called demand triples
is introduced. A demand triple 〈e, d, v〉 consists of a
demand pair 〈e, d〉 and a vertex v from G(T ), and is an
abstraction of all paths π = (π0, . . . , πl) with e = e(π),
d = d(π) and v = πl. The total number of possible
demand triples up to a given t is pseudo-polynomially
bounded, preventing exponential explosion of the method.

• Finally, calculation of dbf T (t) is done2 by an iterative
procedure that generates all demand triples, starting from
0-paths, i.e., with the set {〈e(vi), d(vi), vi〉 | vi ∈ G(T )}.
In each step, a previously generated demand triple
〈e, d, v〉 is extended by considering all outgoing edges
from v, one by one, to obtain potentially new demand
triples. Thus, longer and longer paths up to t are explored
and eventually all relevant demand pairs (as part of the
demand triple abstraction) are computed.

This concludes the overview of the method from [2]. With-
out additional timing constraints C(T ), it provides a feasibility
test that runs in pseudo-polynomial time for systems with
bounded utilization. However, if k > 0, it is not directly
applicable anymore. The reason is that an urgent timed path
π̃ = (π0, δ0, . . . , δl−1, πl) in the k-EDRT model can not as
easily be extended with a new vertex v. In the plain DRT
model, in order to derive the new delay δl to extend π̃ with
v for obtaining (π0, δ0, . . . , πl, δl, v), it is sufficient to just
consider the previously last vertex πl, since the delay δl will
just be p(πl, v). This is why the demand triple abstraction
works, since it only needs to record the last vertex of the

2The sketched method is directly applicable for tasks with constrained
deadlines, i.e., where for all vertices u and their outgoing edges (u, v) it
is required that d(u) 6 p(u, v). A slight modification of the method, also
presented in [2], makes it suitable for use in the general setting of arbitrary
deadlines, which we assume for the EDRT model in this paper.



abstracted paths. However, in the presence of additional con-
straints from C(T ), v may be the toi vertex of some constraint,
imposing additional waiting time. We call such a constraint
active. Therefore, earlier vertices visited in π̃ (and their delays)
also need to be considered. In other words, since the demand
triple abstraction only records the last vertex, it “forgets”
information about the active constraints.

Example IV.1. To illustrate this problem, consider the urgent
timed path π̃′′ = (v4, 2, v5, 4, v2) from Example II.3 for the
example task in Figure 2. The sketched graph exploration
would start with a demand triple ξ(1) = 〈1, 2, v4〉 for 0-path
π̃(1) = (v4) and extend it to ξ(2) = 〈2, 4, v5〉 as an abstraction
of path π̃(2) = (v4, 2, v5). Clearly, this demand triple ξ(2)

(in contrast to the timed path π̃(2) that it abstracts) lost the
information that constraint (v4, v2, 6) is active at v5. Thus, we
can not derive from ξ(2) that a delay of at least 4 time units
is necessary before visiting v2.

A similar problem arises for determining a task’s utilization.
This is done in [2] by finding simple cycles in G(T ). Consider
cycle (v5, v2, v3, v5) in G(T ). Because of the constraint on
revisiting v3 earliest after 9 time units, the duration of this
cycle is actually 9 time units, giving it a density of 5/9.
(That is, accumulated execution time for all vertices but the
last, divided by the path’s duration.) The other simple cycle
(v5, v4, v5) has an even lower density of 1/2. However, the
real utilization of T is in fact 7/12, demonstrated via cycle
(v5, v2, v3, v5, v4, v5) with a density of 7/12. Note that this
cycle is not simple.

In summary, we are facing two challenges when adapting
the feasibility test to the k-EDRT setting:

1) While traversing G(T ) using the demand triple abstrac-
tion, we must keep information about the state of all k
constraints, i.e., to what extent they are active.

2) The utilization of a task can not be determined easily by
just considering simple cycles in G(T ) as done in [2].
Also here, the additional constraints must be honored
and a “most dense” timed cycle may not be simple.

We solve both by translating each given k-EDRT task T
into an equivalent plain DRT task T ′. The key idea is to
store information about the constraints of the original task
in the vertices of the new task while adjusting the edges
accordingly. For each constraint (fromi, toi, γi), we keep a
countdown starting at γi in all vertices. It records how many
time units at least passed since fromi has been visited the last
time. Consequently, vertex toi is only allowed to be visited
when the corresponding countdown is 0, potentially imposing
an additional waiting penalty. These additional delays are
considered when labeling the edges of T ′, making them
potentially larger than the corresponding edge labels of T .
After the translation of all tasks in the k-EDRT model τ , we
can run the analysis method from [2] on the newly created
DRT model τ ′ in order to solve the feasibility problem. Thus,
the task transformation is the main focus for the rest of this
section.

Note that the countdowns can be restricted to integer values,
since we are only interested in urgent timed paths through
G(T ), which in turn only contain integer delays. However,
even with integers, the set of vertices of G(T ′) may grow
rapidly in size compared to G(T ), although this growth is
polynomially bounded in the constraint values γi. Further, we
introduce some optimizations in Section V that greatly reduce
the number of vertices in T ′ and the actual overhead during
graph traversal.

A. Task Transformation Details

We start by illustrating the task transformation using a very
basic example.
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(a) EDRT task T
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Fig. 4. A basic example of a 1-EDRT task T being transformed into an
equivalent DRT task T ′. Only a subset of the vertices of T ′ is shown.

Example IV.2. Consider the example in Figure 4. The shown
task T has three vertices with the constraint (v1, v3, 5). Since
there is one constraint, we extend each vertex with one
countdown:

• Vertex v1 is extended to (v1, 5) in T ′ since it is the
starting vector of the constraint. The constraint value is
5, so the countdown gets the value 5.

• From (v1, 5), we create an edge to (v2, 3) since there
is an edge (v1, v2) in T with label p(v1, v2) = 2. The
constraint does not involve v2, so the countdown is just
decreased by 2, which is also the edge label.

• From (v2, 3), we want to create an edge to a vertex in-
volving v3, since there is an edge (v2, v3) in T . However,
v3 is the target vertex of the given constraint. Thus, the
countdown needs to decrease to 0, to ensure constraint
satisfaction. Consequently, the edge goes to vertex (v3, 0)
in T ′. The edge label is 3 which is the required waiting
time.

• Finally, if one starts at v2, the constraint is not active,
which we model by another vertex (v2, 0) in T ′. Its
countdown is 0 and thus allows visiting (v3, 0) after just
p(v2, v3) = 2 time units.

Note that the actual transformation T ′ contains more vertices
for v2 and v3 with other countdown values. They are however
not essential and therefore left out for this example.



We now give the full details of how to construct an
equivalent plain DRT model T ′ from a k-EDRT model T . We
need to describe the set of vertices, their labels, the set of edges
and their labels. Note that this is a theoretical description of
the transformation and sufficient for the theoretical complexity
result. We introduce some powerful optimizations in Section V
for efficient implementations.

Vertices: For each vertex v ∈ G(T ), we create vertices
(v, t) for G(T ′), where t = (t1, . . . , tk) is a count-
down vector. A priori, we do not know which of the
possible values will actually be used, so we need to
create vertices for all possible combinations of values
for countdowns ti. A countdown ti is associated with
constraint (fromi, toi, γi). It has value γi if v is
the starting vertex of the associated constraint, i.e.,
v = fromi. This expresses that we want to record
that T just visited fromi and at least γi time units
must pass before toi may be visited. Otherwise,
ti can have any integer value between 0 and γi,
since we do not know beforehand how long ago
fromi has been visited last when visiting v in T .
All possible (v, t) consistent with this description
are being created. Formally, for each v ∈ G(T ), we
create as vertices for T ′ all (v, t) such that:

∀i :

{
ti = γi, if v = fromi

ti ∈ {0, . . . , γi} , otherwise

Vertex labels: Each new vertex (v, t) in G(T ′) has the same
label as vertex v in G(T ), since it represents the
release of jobs of the same type. Formally:

∀(v, t) ∈ G(T ′) :

{
e
(
(v, t)

)
:= e(v)

d
(
(v, t)

)
:= d(v)

Edges: Given two vertices (u, s) and (v, t) in G(T ′) we
need to decide whether there should be an edge
between them in G(T ′). For each combination of u,
s and v, there will be exactly one countdown vector
t for which we create such an edge:

1) ti = γi for all i such that v = fromi, expressing
that v is resetting a countdown since it is the
starting vertex of the associated constraint.

2) Otherwise, ti is si decremented by some wait-
ing time. For all i, the countdowns are decre-
mented by the same amount of time δ. Count-
downs below 0 are set to 0.

3) The waiting time δ is at least p(u, v) and also
not smaller than any si for all i such that v =
toi. This expresses that all constraints involving
v as target vertex need to be satisfied and the
waiting time sufficiently large to guarantee that.

Formally, we first calculate the waiting time δ:

δ(u, s, v) := max
(
p(u, v), {si | v = toi}ki=1

)

Second, the following must hold for the new count-
down vector t:

∀i : ti =

{
γi, if v = fromi

max
(
0, si − δ(u, s, v)

)
, otherwise.

Edge labels: For an edge from (u, s) to (v, t), the delay is
just the δ we computed above.

p
(
(u, s), (v, t)

)
:= δ(u, s, v)

It’s important to note that the countdown vector does not
represent dynamic information during “run-time”, but is a
rather static property of the vertices in T ′. To illustrate this,
consider again the task from Figure 4. In the transformed task
in Figure 4(b), assume a timed path starts in (v1, 5). Assume
further that the system now waits for more than the minimum
time, e.g., 3 instead of 2 time units. When moving to the
successor vertex representing v2, we still arrive at (v2, 3).
This is because the edge represents only the minimal possible
waiting time. Therefore, the countdowns as a static part of
the vertices only record the effect of the edges, not of the
actual “run-time behavior”. Consequently, the system in this
example is required to wait again for 3 time units (not just 2)
before the next step, which would be to (v3, 0). In other words,
the timed path (v1, 3, v2, 2, v3) which is legal in T does not
have a corresponding timed path in T ′, i.e., with the same
delays. However, this is not a problem, since it is not an urgent
path. The objective of our presented task transformation is to
preserve urgent paths of T (which indeed all have a counterpart
in T ′) since only these define the dbf .

Example IV.3. Consider again the running example task T
from Figure 2. After applying the described transformation
to T , we get an equivalent plain DRT task T ′ of which the
most essential parts are shown in Figure 5. In fact, after the
vertex removal optimization discussed below in Section V, the
vertices from Figure 5 are the only remaining ones.

Note that the cycle (v5, v2, v3, v5, v4, v5) in G(T ) that we
identified in Example IV.1 as the one with the highest density
translates to a simple cycle in T ′.

B. Correctness
For the task transformation method from above, we show

now its correctness and summarize the whole k-EDRT analysis
method in order to establish our first main technical result.

We use a central correctness lemma to prove that the
demand bound functions of the given k-EDRT task T and the
transformed DRT task T ′ coincide. Intuitively, every urgent
timed path in T has a legal corresponding path through T ′

by extending the vertices with appropriate countdown vectors.
Further, all urgent timed paths in T ′ are legal in T (after
removing countdown vectors from the vertices) since the
countdowns ensure satisfaction of all inter-release separation
constraints. A formal proof is given in Appendix A.

Lemma IV.4. For a k-EDRT task T and its transformation
T ′, their demand bound functions coincide, i.e.,

∀t > 0 : dbf T (t) = dbf T ′(t).



v1, (0, 0)〈4, 5〉

v2, (0, 0)

〈2, 2〉

v2, (0, 4)

〈2, 2〉
v3, (0, 9)

〈2, 2〉

v4, (6, 0)〈1, 2〉

v4, (6, 1)〈1, 2〉

v4, (6, 5)〈1, 2〉

v5, (0, 0)

〈1, 2〉

v5, (4, 0)

〈1, 2〉
v5, (4, 3)

〈1, 2〉

v5, (0, 7) 〈1, 2〉
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Fig. 5. Plain DRT task T ′ after applying the transformation to the example EDRT T task from Figure 2. Encircled edge labels are larger than labels of
corresponding edges in G(T ) since extra waiting time is required by the additional constraints from C(T ), detected via countdowns. Note that only the most
essential vertices are shown, i.e., those necessary for the dbf . All 216 vertices removed by the vertex removal optimization in Section V-B are hidden.

Given this lemma, the main theorem follows directly, since
the result from [2] can be applied to the set of transformed
tasks.

Theorem IV.5. For constants k ∈ N and c < 1, feasibility
for all k-EDRT task sets τ with U(τ) 6 c can be decided in
pseudo-polynomial time.

Proof: Given τ , we apply the described transformation
to all tasks in order to obtain τ ′. Lemma IV.4 guarantees that
their demand bound functions coincide, which implies that
their utilizations are also the same (Definition III.5). Thus, we
can apply the main result from [2], guaranteeing feasibility
to be decidable for τ ′ (and therefore τ ) in pseudo-polynomial
time, if the following two conditions hold:

1) The number of vertices in τ ′ as well as the values
in τ ′ (vertex and edge labels) are pseudo-polynomially
bounded in the description of τ .

2) The transformation itself runs in pseudo-polynomial
time.

For the first property, all labels are bounded by the old labels
and the constraint values. Further, the number of new vertices
per old vertex is bounded by γ1 · γ2 · · · γk, since this is the
number of possible countdown vectors. With k being (bounded
by a) constant, this is a polynomial in the values from τ .
The second property is trivially satisfied since creating each
of these vertices and edges (and their labels) is inexpensive.

Note that we didn’t assume any property resulting from
assuming constrained deadlines. Thus, the result holds for task
sets with arbitrary deadlines, since Lemma IV.4 only relies on
the property that urgent timed paths are defining the demand
bound function. This is true for the case of arbitrary deadlines
as well. Further, the result in [2] also holds for arbitrary
deadlines and thus can be transferred to the k-EDRT case.

V. OPTIMIZATIONS

While the described method is sufficient to show the
theoretical pseudo-polynomial complexity bound, there are a
few ways to optimize implementations for higher efficiency.
First, all optimizations discussed in [2] are applicable when
analyzing the transformed task set. Further, we discuss three
optimizations that are specific to the task transformation
and may have drastic impact on analysis runtime: A refined
domination relation, removal of unnecessary vertices and a
countdown compression method.

A. Refined Domination Relation

In [2], a domination relation between demand triples is
introduced. A demand triple 〈e, d, v〉 dominates 〈e′, d′, v′〉,
if the abstracted paths can create a higher demand (e > e′)
within a shorter interval (d 6 d′) and end in the same vertex
(v = v′). The motivation is that in this case, 〈e′, d′, v′〉 does
not contribute new information to the dbf calculation. Further,
the same is true for all future extensions of 〈e′, d′, v′〉, since
〈e, d, v〉 ends in the same vertex and can thus be extended in
the exact same way. Consequently, 〈e′, d′, v′〉 does not need
to be considered further and can be discarded.

This concept can be refined for the analysis of a translated
T ′. We have domain specific information about the involved
vertices: they represent countdown vectors. A countdown
vector constrains future behavior of the path, since it may
impose additional waiting times. Thus, if we have two vertices
(v, s) and (v, t) in T ′ with ∀i : si 6 ti, all path extensions
possible from (v, t) are also possible from (v, s), in potentially
shorter time. This relation can be added to the domination
relation in order to implement further discarding opportunities.

Example V.1. Consider the following two paths through
G(T ′) in Figure 5, together with their demand triple abstrac-



tions: (
(v5, (4, 3)), (v4, (6, 1))

)
 〈2, 4, (v4, (6, 1))〉(

(v5, (0, 7)), (v4, (6, 5))
)
 〈2, 4, (v4, (6, 5))〉

Strictly speaking, both demand triples are involving different
vertices from T ′, so no optimization from [2] could be applied
for discarding one of them. However, we know that they repre-
sent the same vertex in the original EDRT task T (Figure 2).
Further, comparing the countdown vector (6, 1) to (6, 5), we
notice that the first one is less restrictive than the second one,
since all countdowns are smaller or equal. Consequently, the
second demand triple can be discarded.

B. Vertex Removal
For a second optimization, we note that the first optimization

described above applies particularly to the initial demand
triples. In our running example from Figure 2, the transforma-
tion will produce, among others, the two vertices (v4, (6, 0))
and (v4, (6, 8)). (Only the first one is shown in Figure 5.)
They only differ in the countdown for the second constraint,
and whatever timed path is possible from (v4, (6, 8)) has a
corresponding timed path starting in (v4, (6, 0)), which is
less restrictive, as discussed above in Section V-A. Thus,
with the above optimization, already the initial demand triple
containing (v4, (6, 8)) can be discarded. We additionally notice
that the vertex (v4, (6, 8)) does not have any incoming edges,
since these would reduce the second countdown by at least
2 (and it has a maximum of 9). This means that the graph
exploration of the transformed task T ′ does not start at that
vertex and actually will never visit it. Thus, we can remove that
vertex from T ′ altogether without influencing the represented
timed paths through T and thus the dbf .

In general, we can remove from T ′ all vertices (v, t) which
do not have any incoming edges and for which t does not have
the following shape:

∀i : ti =

{
γi, if v = fromi

0, otherwise.

We also remove their outgoing edges. This removal procedure
can be repeated until no such vertex exists anymore. (Note that
by removing vertices, other vertices may lose their incoming
edges and be thus also eligible for removal.)

The described vertex removal procedure is quite effective. In
the example from Figure 2, the EDRT task has 5 vertices which
results in 227 vertices after task transformation to a plain DRT
task. However, after applying the described optimization, only
11 vertices remain (those shown in Figure 5), resulting in an
analysis speed-up of several orders of magnitude.

A different way of realizing this optimization is to create
vertices only on the fly during analysis. This means that an
implementation would not start the analysis by first creating
all vertices and edges in memory, removing unnecessary ones
afterwards. Instead, only the vertices with countdown vectors
of the shape described above are created, i.e., one per vertex in
the original EDRT model. As graph exploration proceeds, new
vertices with updated countdowns are created. By doing so,

only the necessary vertices are actually created and memory
use may be reduced significantly. However, with this approach,
it is necessary to adjust the way the method from [2] calculates
its bound up to which the dbf must be computed.

C. Countdown Compression

For our third optimization, we note that a special situation
occurs if constraints are located “far away” from each other
in T ′. Imagine a task with a rather big directed graph, where
two vertices u and v are involved in constraints (u, u, 10)
and (v, v, 10). However, assume all timed paths between both
vertices involve accumulated delays of more than 10. Clearly,
at most one of the two constraints is active at any time. They
do not overlap. Thus, their corresponding countdowns in T ′

after the vertex removal described above are never non-zero
at the same time.

In other words, their countdown could be re-used and
thus we could compress the countdown vector. In the simple
example of the two constraints (u, u, 10) and (v, v, 10), we
would just use one countdown and an additional bit indicating
which of the two constraints is being counted. In fact, if T
contains more than k constraints, e.g., linearly many, it could
still be analyzed by the presented method for k-EDRT, by
using the sketched compression optimization. Consequently,
Theorem IV.5 can be generalized to EDRT task sets with up to
k non-overlapping constraints. Note that the non-overlapping
property can be verified by a simple graph traversal.

VI. UNBOUNDED CASE: STRONG CONP-HARDNESS

In order to show coNP -hardness in the strong sense of the
feasibility problem for general EDRT models, we provide a
reduction from the classical Hamiltonian Path Problem (or
rather its complement).

Definition VI.1. The problem of deciding whether a directed
graph G with n vertices contains a simple path with n vertices,
i.e., n unique vertices, is called the Hamiltonian Path Problem.

Proposition VI.2 ([8]). The Hamiltonian Path Problem is NP -
hard in the strong sense.

We provide a reduction from the Hamiltonian Path Problem
as follows. Given a directed graph G, we construct a task set τ
with the following properties:

1) If G contains a Hamiltonian Path, τ is infeasible.
2) If G does not contain a Hamiltonian Path, τ is feasible.
3) The number of vertices in the tasks of τ and all involved

values (labels and constraints) need to be polynomially
bounded in the size of G.

4) Given a constant c < 1, we must be able to construct τ
such that U(τ) 6 c.

The third requirement is necessary to establish coNP -
hardness in the strong sense. The fourth requirement is also
necessary since we usually restrict ourselves to a class of task
sets with a utilization bounded by a constant c < 1. We want
to show that for any choice of c, the problem stays strongly
coNP -hard.



For presentation reasons, we first assume c = 1/2. A simple
generalization to arbitrary c < 1 is given afterwards. We
construct the task set τ from graph G with n vertices as
follows. The task set contains two tasks:
• The first task T1 contains just one vertex u1 without any

edges, and the label 〈e(u1), d(u1)〉 = 〈1, n〉.
• The second task T2 uses G as underlying graph. All

vertices are labeled with 〈1, 1〉 and all edges with 1.
Further, its constraint set contains self-loops with label
2n, i.e., C(T2) := {(v, v, 2n) | v ∈ G(T2)}.

Note that all n constraints are potentially overlapping, so this
is not a case in which the countdown compression optimization
from Section V-C applies. We illustrate the construction with
the following example.

(a) Given digraph G

u1 〈1, 6〉

T1

v1

〈1, 1〉

v2
〈1, 1〉

v3

〈1, 1〉

v4

〈1, 1〉

v5

〈1, 1〉

v6 〈1, 1〉

1

1

1

1

1

1

1 1 112

12

12

12

12

12

T2

(b) Constructed task set τ

Fig. 6. Example for construction of task set τ = {T1, T2} from a given
digraph G containing 6 vertices. This example contains a Hamiltonian Path,
making τ infeasible.

Example VI.3. Consider graph G in Figure 6(a) with 6 ver-
tices. We note that G contains a Hamiltonian Path. Figure 6(b)
shows the constructed task set. We see that T2 may release
6 jobs along the timed path (v1, 1, v3, 1, v5, 1, v2, 1, v6, 1, v4)
which corresponds to the Hamiltonian Path from G. This
causes an execution demand of 6 within 6 time units (5 for
releasing all jobs, 1 for the last deadline). Together with the
job from T1, this task set is clearly infeasible.

We now check the four properties from above. First, if there
is a Hamiltonian Path in G, task T2 may release n jobs along
that path within n−1 time units. Together with T1, the system
is overloaded in an interval of length n. A formal proof is given
in Appendix B.

Lemma VI.4. If graph G contains a Hamiltonian Path, then
dbf (n) > n+ 1.

Second, if there is no Hamiltonian Path in G, then the
constraints from the constructed C(T2) prevent the system
from overloading, since within up to 2n time units, T2 can

only create a demand of at most n− 1, one per time unit. A
formal proof is given in Appendix C.

Lemma VI.5. If graph G does not contain a Hamiltonian
Path, then ∀t > 0 : dbf (t) 6 t.

Finally, we summarize our second main result in the fol-
lowing theorem.

Theorem VI.6. For any constant c < 1, the feasibility problem
for EDRT task sets τ with U(τ) 6 c is coNP -hard in the
strong sense.

Proof: We first assume c ∈ [1/2, 1). In that case, the
construction introduced above provides a task set τ with
U(τ) 6 1/2 6 c. The task set’s utilization is at most 1/2, since
U(T1) = 0 with T1 being acyclic, and U(T2) 6 1/2 because
any of the n vertices can only be re-visited after at least 2n
time units. Therefore, even in the presence of a Hamiltonian
Path, dbf T2

(t) 6 dbf T2
(t − 2n) + n for t > 2n, resulting in

the claimed utilization.
The first two properties from above for a proper reduction

are satisfied by Lemmas VI.4 and VI.5 using the exact dbf
characterization from Proposition III.4. The third property is
also clear since all numbers and values are linearly bounded
in n. Thus, for c ∈ [1/2, 1), we are done.

Finally, in order to satisfy also the last property, note that
for c < 1/2 we can change the task construction by setting
C(T2) := {(v, v, n/c) | v ∈ G(T2)} instead. This reduces
U(T2) to at most c and leaves all other properties satisfied.

We note that the presented reduction constructs a task set
with constrained deadlines. (For arbitrary deadlines, only one
task is necessary and the construction can be even simpler.)
Thus, even when restricting to constrained deadlines, the
problem remains strongly coNP -hard.

Remark VI.7. Theorem VI.6 holds even for the restricted
class of task sets with constrained deadlines.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the tractability border of the
feasibility problem for task models with digraph-based release
structures. We have introduced global inter-release separation
constraints as a natural extension of the digraph real-time
task model (DRT). Based on these, we have shown that the
feasibility problem stays pseudo-polynomial if the number of
constraints is bounded by a constant. The analysis technique
uses the basic DRT model as a back-end to which tasks
containing global constraints are transformed. The flexible
structure of the DRT model proved useful for allowing such
general transformations. This makes it possible to transfer
results for the DRT model to other settings. As a second tech-
nical result, we have shown coNP -hardness if the number of
global constraints is not bounded by a constant. This was done
via a reduction from the Hamiltonian Path Problem, showing
that graphs as a basis for modeling job releases in general add
high complexity. Consequently, we have established a precise
tractability borderline for the feasibility problem of digraph-
based task models.



With this clear picture of the expressiveness of graph-based
models, we plan to develop a tool based on our prototype
implementation incorporating the described methods. We will
do case studies to evaluate the practical applicability of the
models and their analysis, and study other extensions, e.g.
global deadlines.
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APPENDIX

A. Proof of Lemma IV.4
Proof: In order to show that the demand bound functions

of T and T ′ are identical, it suffices to show the following
two properties about urgent timed paths through their graphs:

1) An urgent timed path in T has a corresponding legal
timed path in T ′.

2) An urgent timed path in T ′ has a corresponding legal
timed path in T .

Both together imply that there can not be a t for which either
of dbf T (t) and dbf T ′(t) is larger: both values correspond to
some urgent timed path each. If each of them corresponds to
a legal timed path in the other model, the other demand bound
function must be at least as large at that point.

For the first claim, let π̃ = (π0, δ0, . . . , πl) be an urgent
timed path in T . We iteratively construct a corresponding path
π̃′ =

(
(π0, t

(0)), δ0, . . . , (πl, t
(l))
)
. All we need to do is to

define all countdown vectors t(i) appropriately, since all other
components are taken directly from π̃. We start with t(0), in
which we set all countdowns as small as possible:

∀m : t(0)m =

{
γm, if π0 = fromm

0, otherwise.

All succeeding t(i) are constructed by applying the rules
presented in Section IV for edge construction. Since π̃ is
urgent in T , all δi correspond exactly to the δ calculated in
these rules. The resulting π̃′ must be a legal path in T ′ since
all δi are equal to the edge labels, by construction.

For the second claim, let π̃′ =
(
(π0, t

(0)), δ0, . . . , (πl, t
(l))
)

be an urgent timed path in T ′. We want to show that π̃ =

(π0, δ0, . . . , πl) is legal in T . From the construction of the
waiting time δ in the transformation of T to T ′ it is clear
that δi > p(πi, πi+1) for all i. Further, for all constraints
(fromm, tom, γm) ∈ C(T ), any visit of tom in π̃′ can not
occur before the corresponding countdown is 0. Since the
countdown is reset to γm whenever fromm is visited, the
accumulated waiting time between fromm and tom must be at
least γm. Consequently, for any two constrained vertices in π̃′,
i.e., πi = fromm and πj = tom, we have δi+. . .+δj−1 > γm.
In summary, π̃ must be legal in T .

B. Proof of Lemma VI.4
Proof: Let G be a digraph with n vertices containing a

Hamiltonian Path π = (π0, . . . , πn−1) and let τ = {T1, T2}
be the constructed task set. We already have dbf T1

(n) = 1
since the only job that can be released by T1 has an execution
demand of 1 and a deadline of n.

For dbf T2
(n), we consider the timed path π̃ =

(π0, 1, π1, . . . , 1, πn−1) that is constructed from π by inserting
delays of 1. Since π is simple, all vertices are unique in π̃,
making π̃ a legal timed path in G(T2), because all edge labels
are 1 and all additional timing constraints only concern re-
visiting of vertices. Now we have with l = n− 1:

e(π̃) :=

l∑
i=0

e(πi) = n

d(π̃) :=

l−1∑
i=0

δi + d(πl) = (n− 1) + 1 = n

Thus, dbf T2
(n) > n since π̃ shows that T2 can create an

execution demand of n within a time interval of n.
Together, dbf (n) = dbf T1

(n) + dbf T2
(n) > n+ 1.

C. Proof of Lemma VI.5
Proof: Assume G does not contain a Hamiltonian Path.

We want to show dbf (t) 6 t for all t > 0 and do a case
distinction for t. Recall that dbf (t) includes only jobs that can
be both released and have their deadlines within an interval
of size t.
t ∈ [0, n): The job of T1 does not count into such an

interval since its deadline is n. Further, T2 can only
release up to btc jobs within an interval of length
t < n which also have their deadlines within the
interval. Thus, dbf (t) 6 btc 6 t.

t ∈ [n, 2n): Task T1 can release its job and contributes 1 to
the dbf . Further, task T2 can only release up to n−1
jobs within an interval of that size, since vertices can
not be revisited (recall constraints from C(T2)) and
there is no simple path that visits all vertices, by
assumption. Consequently, dbf (t) 6 n 6 t.

t > 2n: Within every additional 2n time units, T2 can only
release up to n − 1 more jobs. Together with the
previous insight, we derive also in this case that
dbf (t) 6 t.


