
Resource Sharing Protocols for Real-Time
Task Graph Systems

Nan Guan∗†, Pontus Ekberg∗, Martin Stigge∗, Wang Yi∗†
∗Uppsala University, Sweden
†Northeastern University, China

Abstract—Previous works on real-time task graph models have
ignored the crucial resource sharing problem. Due to the non-
deterministic branching behavior, resource sharing in graph-
based task models is significantly more difficult than in the
simple periodic or sporadic task models. In this work we address
this problem with several different scheduling strategies, and
quantitatively evaluate their performance. We first show that
a direct application of the well-known EDF+SRP strategy to
graph-based task models leads to an unbounded speedup factor.
By slightly modifying EDF+SRP, we obtain a new scheduling
strategy, called EDF+saSRP, which has a speedup factor of 2.
Then we propose a novel resource sharing protocol, called ACP,
to better manage resource sharing in the presence of branching
structures. The scheduling strategy EDF+ACP, which applies
ACP to EDF, can achieve a speedup factor of

√
5+1
2
≈ 1.618,

the golden ratio.

I. INTRODUCTION

Embedded real-time processes are typically implemented as
event-driven code within an infinite loop. In many cases, a
process may contain conditional code, where the branch to
be taken is determined by external events at runtime, and
the timing requirement along each branch is different. These
systems can not be precisely modeled by the simple periodic
or sporadic task models. Instead, a natural representation of
these processes is a task graph: a directed graph in which
each vertex represents a code block and each edge represents
a possible control flow. Over the years, there have been many
efforts to study more and more general graph-based real-time
task models to precisely represent complex embedded real-
time systems [3], [1], [9], [5], [12].

A common restriction in all these graph-based real-time
task models is that the processes coexisting in the system
are assumed to be completely independent from each other.
However, this assumption rarely holds in actual embedded
systems. Usually a process needs to use shared resources (e.g.,
some peripheral devices or global data structures) to perform
functions like sampling, control and communication, or to
coordinate with other processes. The practical significance
of these graph-based models would be considerably limited
without the capability of modeling shared resources.

The shared resource problem has been intensively studied
in the context of the simple periodic and sporadic task models.
Many protocols have been designed to systematically manage
resource contention in scheduling, in order to improve system
predictability and resource utilization. Priority Inheritance Pro-

tocol [10], Priority Ceiling Protocol [10] and Stack Resource
Policy (SRP) [2] are three well-known examples. The main
idea behind these protocols is to predict, and to some extent
prevent, the potential resource blocking that could happen to
important or urgent processes.

To our best knowledge, there has been no previous work
addressing the resource sharing problem in graph-based real-
time task models. This problem is fundamentally different
from, and significantly more difficult than, the resource sharing
problem for periodic or sporadic task models. This is mainly
because of the “branching” behavior of the graph-based mod-
els: a process generally has different resource requirements
along different branches, and it only becomes revealed during
run-time which branch will be taken. Therefore, it can be very
difficult, or even impossible, to make scheduling decisions
such that the potentially “bad” behaviors due to resource
contention are avoided.

In this paper we study the resource sharing problem for
real-time task graph systems. We first study the application
of the well-known SRP protocol to task graph systems, and
quantitatively evaluate its performance. Then we propose a
novel resource sharing protocol, called ACP, to better handle
the complex issues arising due to the “branching” in task graph
systems. The main results of this paper can be summarized as:
• We show that directly applying EDF+SRP (EDF schedul-

ing extended with the SRP rules) to task graph systems
leads to an unbounded speedup factor1.

• By slightly modifying SRP we obtain a new protocol,
called saSRP. We show that the EDF+saSRP scheduling
strategy has a speedup factor of 2.

• We propose a novel protocol, called ACP, and show that
EDF+ACP can achieve a speedup factor of 1+

√
5

2 , which
is the well-known constant known as the golden ratio.

This work is presented in the context of the Digraph Real-
Time (DRT) task model [12], which is the most general
among all the real-time task graph models that are known
to be tractable (that can be efficiently analyzed). Since DRT
generalizes other models such as RRT [3], non-cyclic GMF [9]
and non-cyclic RRT [5] (they can be viewed as special cases
of DRT), all the results in this paper are directly applicable
also to these models. Further, we assume the shared resources
are non-nested, i.e., each task can not hold more than one

1Speedup factor is formally defined in Section III-C. We use it to quanti-
tatively evaluate the “quality” of a scheduling strategy: the smaller the better.



resource at the same time. Nested resource accesses can be
handled by, for example, group locks [6].

II. RELATED WORK

A naive way of handling resource sharing is, as proposed
by Mok [8], to non-preemptively execute the critical sections.
However, this approach has the drawback that even the jobs
that do not require shared resources suffer the extra blocking.
The Priority Inheritance Protocol (PIP) [10] designed by Sha,
Rajkumar and Lehoczky can avoid the so-called “priority in-
version”, in order to guarantee the responsiveness of important
tasks in fixed priority scheduling. Under PIP, the worst-case
number of blocking suffered by a task is bounded by both the
number of lower-priority tasks and resource types used by this
task. Priority Ceiling Protocol (PCP) [10] is a deadlock free
protocol which also works with fixed-priority scheduling, can
limit the blocking to be at most the duration of one outer-most
critical section. Baker’s Stack Resource Policy (SRP) [2] is a
more general protocol that can be used for not only fixed-
priority, but also dynamic-priority scheduling algorithms like
EDF. The same as PCP, SRP is also deadlock free, and the
blocking under SRP is also at most the duration of one outer-
most critical section. Under certain conditions, EDF+SRP is
the optimal scheduling strategy for sporadic task models. The
Deadline Dynamic Modification strategy (DDM) by Jeffay [7]
is designed to work with EDF for the sporadic task model with
a slight extension that each task may have multiple sequential
execution-phases with different resource requirements in each
period. Spuri and Stankovic [11] considered the scheduling
of task systems with both shared resources and precedence
constraints. They identify that EDF+SRP/PCP strategies are
“quasi-normal”, and work correctly even for task systems with
precedence constraints.

III. MODEL AND BACKGROUND

A. The Digraph Real-Time Task Model

We first introduce the Digraph Real-Time (DRT) task model.
A DRT task system τ consists of N DRT tasks {τ1, · · · , τN}.
A DRT task τi is characterized by a directed graph G(τi). The
set {J1

i , · · · , J
Ni
i } of vertices in G(τi) represents the different

types of jobs that can be released by task τi, where Ni is the
number of job types in task τi (the number of vertices in
G(τi)). Each job type Jui is labeled a pair 〈Cui , Du

i 〉, where
Cui is the worst-case execution time (WCET) and Du

i is the
relative deadline of jobs of this type. Each edge (Jui , J

v
i ) is

labeled with a non-negative integer p(Jui , J
v
i ) for the minimum

job inter-released separation time. Further, we assume in this
paper that the task system satisfies the frame separation
property, by which all jobs’ deadlines do not exceed the inter-
release separation times: for all vertices Jui and their outgoing
edges (Jui , J

v
i ) we require dui ≤ p(Jui , J

v
i ). By the frame

separation property we know that at any time instant each
job type has at most one active job instance. For simplicity
of presentation, the term job means either a job type or an
instance of a job type, depending on the context. For example,
Figure 1 shows a DRT task consisting of 4 jobs (the resource

J1
i

〈2, 5〉
E(R1) = 2

J2
i

〈4, 9〉

J3
i 〈5, 8〉

J4
i

〈3, 5〉
E(R2) = 1

10 9

22

20

13

10

Fig. 1. A DRT task which uses shared resources.

access parameters, E(R1) and E(R2), in the figure will be
introduced in Section III-B).

The semantics of a DRT task system is as follows. Each
DRT task releases a potentially infinite sequence of jobs,
by “walking” through the graph and releasing a job of the
specified job type every time a vertex is visited. Before a new
vertex is visited, it must wait for at least as long as the inter-
release separation time labeled on the corresponding edge.

Feasibility analysis of DRT: Although the DRT task model
offers very high expressiveness, the preemptive uniprocessor
feasibility problem2 for DRT is still tractable (of pseudo-
polynomial complexity) [12]. Now we will very briefly review
the key idea of the feasibility analysis of DRT and some
meaningful concepts that will be used in this paper.

A crucial concept in the feasibility analysis of DRT task
systems is the demand bound function DBF(τi, l), which gives
the maximum workload of jobs with both release time and
deadline within any interval of length l , over all job sequences
potentially generated by task τi. Intuitively, the demand bound
function represents the worst-case workload that “must be
executed” within the time interval to meet all deadlines. A
sufficient and necessary condition for a DRT task system to
be preemptive uniprocessor feasible is [12]:

∀l > 0 :
∑
τi∈τ

DBF(τi, l) ≤ l (1)

There are two main questions to be answered when us-
ing condition (1) to check feasibility: (i) How to compute
DBF(τi, l) for a given l? (ii) For which l do we need to
compute DBF(τi, l)? In [12], techniques are presented for
computing DBF(τi, l) in pseudo-polynomial time. Also, a
method to compute an upper bound Lmax on the values of l
that need to be checked is presented. For bounded-utilization
task systems (i.e., with a utilization bounded by a constant
smaller than 1), Lmax is polynomial in the values of the
task system representation. For these task systems, condition
(1) can therefore be used to decide feasibility in pseudo-
polynomial time. We use these facts for the schedulability tests
later in this paper. Whenever DBF or Lmax is referred to, they
can be computed exactly as in [12].

2Determining the feasibility of a DRT task system equals to determining
its schedulability under EDF scheduling.



B. Shared Resources

We extend the DRT model by adding non-preemptable,
serially-reusable resources. A system can contain several such
shared resources R1, R2, ..., RM . To use a resource Rr, a job
Jui first locks Rr, and then holds it for a certain amount of
time, during which no other job can lock Rr. After having
finished using Rr, the job will unlock it, and afterwards other
jobs can lock and hold this resource. A job Jui could request
resource Rr for multiple occasions during its execution. We
use Eui (Rr) to denote the maximal resource access duration
of Jui to Rr, which means that for each time Jui requests Rr,
the maximal execution time during which Jui is holding Rr
is at most Eui (Rr). In the example task system in Figure 1,
J1
i may need resource R1 and may execute for at most 2

time units while holding it; J4
i may need another resource R2

and execute for at most 1 time unit while holding it (the task
and job indices of Eui (Rr) are omitted in the figure as they
are clearly indicated by the positions). A job Jui could use
more than one resource during its execution. We use Rui to
denote the set of resources used by Jui . We do not assume any
precise information about at what time a resource is requested,
neither any particular order of the requests to these resources.
We assume that the resource accesses are non-nested, i.e., a
job can not lock a resource while holding another. Nested
resource accesses can be handled using group locks [6].

C. The Problem with Branching: an Example

We use the example task system in Figure 2 to illustrate the
new challenge that we face in the resource sharing problem
for task graph systems.

This task system is a simple special case of DRT: each job
only executes once. In τ3, either J2

3 or J3
3 is released after the

dummy job J1
3 . If we would know a priori which one of the

two jobs will be released in the system, i.e., if the scheduler
is clairvoyant, then all deadlines can be met:
• If we know that J2

3 will be released, then we schedule
the system by EDF scheduling. There are no resource
conflicts in this case, and all deadlines can be met.

• If we know that J3
3 will be released, then we schedule

the system by non-preemptive EDF scheduling. This then
makes sure that J3

3 can be blocked by at most one of R1

and R2, and all deadlines can be met.
However, the information about which job will be released

in the system is only revealed when the branching is actually
taken at run-time, and a realistic scheduler does not have this
knowledge beforehand. As we will show in the following,
without the “clairvoyant” capability, no scheduler can success-
fully schedule this task set in all situations.

We focus on a particular scenario: all jobs will execute
for their WCET and all resource accesses will last for their
worst-case durations (both J1

1 and J1
2 will immediately lock

the needed resource as soon as they start execution). J1
1 is

released first. J1
2 is released immediately after J1

1 locked R1,
and without loss of generality we let this time point be 0. Let
the dummy job J1

3 be released at time 6 and let it take the

τ1

J1
1

〈9, 100〉
E(R1) = 9

τ2

J1
2

〈9, 20〉
E(R2) = 9

τ3

J1
3 〈0, 0〉

J2
3

〈6, 12〉

J3
3

〈2, 12〉

E(R1) = 1
E(R2) = 1

0 0

Fig. 2. A task system illustrating the new challenge due to ”branching”.

minimal inter-release separation 0 to release the next job, i.e.,
at time 6 either J2

3 or J3
3 will be released in the system. Now

we look into the scheduling:
During the time interval [0, 6), both J1

1 and J1
2 are active,

the scheduler may let either of them to execute at any time
instant in [0, 6). We categorize all possibilities into two cases:
• J1

2 has started execution in [0, 6). In this case, the system
will fail if J3

3 is actually released: both R1 and R2 have
been locked, so J3

3 needs to wait until both of them are
unlocked. The total workload that needs to be finished
in the time interval [0, 18] is 9 + 9 + 2 = 20 which is
larger than the interval length 18. A deadline miss in
unavoidable.

• J1
2 has not started execution in [0, 6). In this case, the

system will fail if J2
3 is actually released: both J1

2 and
J2

3 need to be finished before J1
2 ’s deadline at time 20, so

the total work that needs to be done in the time interval
[6, 20] is 9 + 6 = 15, which is larger than the interval
length 14. Again a deadline miss is unavoidable.

In summary, there can be a deadline miss no matter how the
scheduler behaves during [0, 6).

As seen in this example, when scheduling DRT systems
with shared resources, it indeed makes a difference whether
the scheduler is clairvoyant or not. Recall that this difference
does not exist for periodic or sporadic task systems with the
same resource model: EDF+SRP is as powerful as clairvoyant
scheduling there. Also for plain DRT systems (without shared
resources) EDF is as powerful as any clairvoyant scheduling
algorithm.

D. On-line feasibility and speedup factor

Clairvoyant schedulers are unrealistic. We are only inter-
ested in on-line (i.e., non-clairvoyant) scheduling strategies,
which make scheduling decisions only based on task param-
eters and run-time information revealed in the past. In the
remainder of this paper, when we refer to a scheduling strategy,
we always mean an on-line scheduling strategy. We say that a
task set τ is feasible if and only if τ is schedulable by some
on-line algorithm.

Different metrics can be used to evaluate the worst-case
performance guarantee of a real-time scheduling algorithm.
The most widely used ones are utilization bound and speedup
factor. It is easy to see that due to the non-preemptive resource
access, any on-line algorithm may fail to schedule a task set



with utilization arbitrarily close to 0, so utilization bound is
not an appropriate metric for our problem.

In this paper we use speedup factor to quantitatively eval-
uate the “quality” of a scheduling algorithm. A scheduling
algorithm A has a speedup factor of s if any task set that
is feasible on a 1-speed machine, is also schedulable by A
on an s-speed machine. Note that if the task system runs on
a machine with speed s, then the total computation capacity
provided by this machine in a time interval of length l is s · l .
So a job Jui can finish its worst-case execution requirement in
time Cui /s, and its maximal resource usage time to resource
Rr is Eui (Rr)/s.

IV. EDF+SRP FOR DRT TASK SYSTEMS

In this section, we study the performance of the well-
known EDF+SRP scheduling strategy for the DRT task model
extended with shared resources. In Section IV-A we first
show that directly applying EDF+SRP to DRT leads to an
unbounded speedup factor. Then in Section IV-B, by slightly
revising EDF+SRP, we get a new scheduling strategy called
EDF+saSRP, which has a tight speedup factor of 2.

A. EDF+SRP

It is easy to see that EDF+SRP can be directly applied to
DRT task systems (only with a notation change that job types
that may use a resource instead of tasks that may do so). Now
we present the EDF+SRP scheduling rules3:

1) Each resource Rr is statically assigned a level ψr, which
is set equal to the minimum relative deadline of any job
in the system that may use it:

ψr = min{Du
i |Rr ∈ Rui }

2) At runtime, each resource Rr has a ceiling:

Ψr =

{
ψr if Rr is currently held by some job

+∞ if Rr is currently free

3) The system ceiling at each time instant is the minimum
among all the current resource ceilings.

4) The system is scheduled by EDF (with some determin-
istic priority order for two jobs with the same absolute
deadline). In addition, a job is allowed to initially start
execution only if its relative deadline is strictly smaller
than the current system ceiling.

The speedup factor is unbounded: Unfortunately, directly
applying the EDF+SRP strategy will lead to an unbounded
speedup factor, as witnessed by the task set in Figure 3.

Clearly this task system is feasible: there is no resource
conflict and each job can meet its deadline under EDF.

Now we schedule it by EDF+SRP, and consider a particular
scenario: J2

2 is released and starts execution at time 0, and
immediately locks R1. J1

1 is released at time 1. By the
EDF+SRP strategy, when J2

2 locked R1, the system ceiling
was set to 1, so J1

1 can not start execution until J2
2 unlocks R1.

3The rules are presented in a slightly different way from [2], [4], to keep the
notation consistent with later algorithms in this paper. However, the scheduling
behavior defined by the rules presented here is exactly the same as in [2], [4].

τ1

J1
1

〈1, 2〉

τ2

J1
2 〈0, 0〉

J2
2

〈x− 1, x〉
E(R1) = x− 1

J3
2

〈1, 1〉
E(R1) = 1

0 0

Fig. 3. A task system with the speedup factor of EDF+SRP is unbounded.

In the worst case, the total workload that needs to be executed
between time 0 and J1

1 ’s deadline at time 3 is x− 1 + 1 = x.
In order to make sure that J1

1 meets its deadline, the machine
speed should be at least x/3. As x approaches infinity, an
infinitely fast machine is required for the task set to meet all
deadlines under EDF+SRP.

B. EDF+saSRP

The reason for the unbounded speedup factor in the above
example is that EDF+SRP ignores the knowledge that J2

2 and
J3

2 are from the same task, so J3
2 will never be released while

J2
2 is holding R1 (remember that the tasks are assumed to

have the frame separation property, so the same is true also
for more complex tasks). This problem can easily be fixed by
revising the first and second rules of EDF+SRP as follows:

1) Each resource-task pair (Rr, τi) has a static self-
exclusive level ψr,i, which equals the minimum relative
deadline of any job that may use it but is not in task τi.

ψr,i = min{Du
j |Rr ∈ Ruj ∧ j 6= i} (2)

Note that there must be at least one job in the system
satisfying Rr ∈ Ruj ∧ j 6= i. Otherwise there is no
conflict on Rr, and Rr can be excluded from our
consideration.

2) At runtime, each resource Rr has a ceiling:

Ψr =

{
ψr,i if Rr is currently held by a job from τi
+∞ if Rr is currently free

The third and fourth rules are unchanged. We call this revised
strategy self-aware EDF+SRP (EDF+saSRP for short). Intu-
itively, while a resource Rr is held by some job from task
τi, EDF+saSRP will recognize that it is not possible for other
jobs in τi to be released, and only get ceiling information from
other tasks. EDF+SRP’s properties, e.g., deadlock avoidance
and multiple-blocking prevention, still hold for EDF+saSRP,
since EDF+saSRP only safely excludes impossible system
behaviors comparing with EDF+SRP.

Schedulability Analysis: We now present a sufficient
schedulability test for EDF+saSRP on an s-speed machine.

Theorem 1. A DRT task system τ with resources is schedu-
lable by EDF+saSRP on an s-speed machine if both of the
following two conditions are satisfied for all l ∈ (0,Lmax ]:∑

τj∈τ
DBF(τj , l) ≤ s · l (3)



∀τi ∈ τ :

B(τi, l) +
∑
i 6=j

DBF(τj , l) ≤ s · l

 (4)

where B(τi, l) = max{Eui (Rr) | Du
i > l ∧ ψr,i ≤ l}. If no

job in τi satisfies Du
i > l ∧ ψr,i ≤ l , then B(τi, l) = 0.

Proof Sketch: Condition (3) is for the case that only jobs with
deadlines in the interval executes in it. Condition (4) is for
the case when some job executes in the interval (while holding
some resource), even though its deadline is out of this interval.
In this case we enumerate each task τi that may cause resource
blocking, and consider the longest blocking time, B(τi, l), that
any job from that task could introduce in the interval. For
blocking on some resource to occur for jobs that fit into the
interval, the ceiling of that resource when held by τi must
necessarily be smaller than the length of the interval. �

As we discussed above, the multiple-blocking prevention
property of EDF+SRP still holds for EDF+saSRP, so it is
enough to consider one blocking job in each interval. Note that
this schedulability test is of pseudo-polynomial complexity,
since for each l , DBF can be computed in pseudo-polynomial
time and Lmax is also pseudo-polynomially bounded, as we
discussed in Section III-A.

The speedup factor is 2: By adding a simple self-awareness
feature, the speedup factor is reduced from unbounded to 2,
as shown in the following two lemmas:

Lemma 1. Any task system that is feasible on a 1-speed
machine, is also schedulable by EDF+saSRP on an s-speed
machine with s ≥ 2.

Proof: Supposing τ is feasible on a 1-speed machine, but
does not pass the schedulability test for EDF+saSRP above on
an s-speed machine, we want to show that s < 2, by which
the lemma is proved.

Since τ is feasible on the 1-speed machine, we claim that
∀l ∈ (0,Lmax ], the following conditions must both be true:∑

τi∈τ
DBF(τi, l) ≤ l (5)

B(τi, l) ≤ l (6)

Condition (5) is the necessary condition for a DRT system
to be feasible without considering the shared resources, so it
must also be true here. To see that condition (6) is true, we
recall that B(τi, l) is the longest access duration, Eui (Rr), of
some job Jui to some resource Rr, such that there exists a job
Jwj in another task that needs resource Rr and has a relative
deadline of at most l . Since Jui and Jwj are from different
tasks, Jwj may be released right after Jui locked Rr. In this
case, if Jwj can meet its deadline, Eui (Rr) must be no larger
than l , i.e., B(τi, l) ≤ l must be true.

Then we consider the s-speed machine. We know by as-
sumption that there must exist some l such that at least one of
(3) or (4) is violated. If (3) is violated, then by (5) we have
s < 1 < 2.

τ1

J1
1

〈x− 2, 2x〉
E(R1) = x− 2

τ2

J1
2 〈0, 0〉

J2
2

〈x− 1, x〉

J3
2

〈1, x− 1〉
E(R1) = 1

0 0

Fig. 4. An example task system illustrating that the speedup factor 2 for
EDF+saSRP is tight.

If (4) is violated, then there exists some l ∈ (0,Lmax ] and
some task τi such that

B(τi, l) +
∑
i 6=j

DBF(τj , l) > s · l (7)

Since
∑
i6=j DBF(τj , l) is bounded by

∑
τi∈τ DBF(τi, l), we

get by (5) and (6) that l + l > s · l ,, i.e., s < 2.
Actually, the speedup factor 2 derived above is tight for

EDF+saSRP, as shown in the following lemma:

Lemma 2. There exists a task system which is feasible on a
1-speed machine, but not schedulable by EDF+saSRP on any
s-speed machine with s < 2.

Proof: Consider the task system in Figure 4 where x is
a positive integer. The task system is feasible on a 1-speed
machine: we schedule it by EDF plus the rule that J1

1 and J3
2

never preempt each other, then all deadlines can be met.
Now we consider the s-speed machine. We assume s = 2−ξ

where ξ is positive. We consider a particular scenario: J2
2 is

released just after J1
1 locked resource R1. We consider the

time interval between J2
2 ’s release time and absolute deadline,

which is of length x. According to the EDF+saSRP rule,
after J1

1 locked R1, the system ceiling is x− 1 (J3
2 ’s relative

deadline), which is smaller than J2
2 ’s relative deadline x, so

J2
2 can not preempt J1

1 , and waits until J1
1 is finished. So a

necessary condition for the task set to be schedulable is that
the worst-case access duration of J1

1 to R1 plus J2
2 ’s worst-

case execution time is smaller than the total capacity of the
interval of length x, i.e.,

x− 2 + x− 1 ≤ (2− ξ) · x
ξ · x ≤ 3.

So we know that if ξ · x > 3, τ is not schedulable by
EDF+saSRP. In other words, for any s = 2 − ξ < 2, we
can find an x satisfying ξ · x > 3 to construct a task set as
in Figure 4, which is feasible on the 1-speed machine but not
schedulable by EDF+saSRP on the s-speed machine.

V. ACP: ABSOLUTE-TIME CEILING PROTOCOL

In this section we present a new protocol, the Absolute-time
Ceiling Protocol (ACP) to better handle the resource sharing
in task graph systems. The new scheduling strategy EDF+ACP
(EDF scheduling with the Absolute-time Ceiling Protocol) has



a speedup factor no larger than 1+
√

5
2 ≈ 1.618, which is the

famous constant commonly known as the golden ratio.

A. EDF+ACP

As suggested by its name, the “ceiling” concept in ACP is
about absolute time (recall that the ceiling in SRP is about
relative time). In the following we will define the scheduling
rules of EDF+ACP. For simplicity of presentation, the data
structures are defined in the form of functions with respect
to time t. Later, in Section V-D, we will introduce how to
implement EDF+ACP such that these data structures only need
to be updated at certain time points, but not continuously at
each time point.

1) At each time instant t, each resource Rr has a ceiling:

Ψr(t) =

{
t+ ψr,i if Rr is held by τi at t

+∞ if Rr is free at t

where ψr,i is the self-exclusive level defined in (2).
2) At each time instant t, each resource Rr has a request

deadline:

Πr(t) =

{
earliest d(Rr) if Rr is held by a job at t

+∞ if Rr is free at t

where earliest d(Rr) is the earliest absolute deadline
among all the active jobs who may need Rr.

3) At each time instant t, the system ceiling is

Υ(t) = min
{

min(Ψr(t),Πr(t)) | Rr is a resource
}
.

4) The system is scheduled by EDF (with some determin-
istic priority order for two jobs with the same absolute
deadline). In addition, a job can initially start execution
only if its absolute deadline is strictly smaller than the
current system ceiling.

We use the example task system in Figure 5-(a) to illus-
trate the crucial difference between EDF+ACP and EDF+SRP
(EDF+saSRP), and disclose the main idea behind EDF+ACP.
We assume both J1

1 and J1
3 are released at time 0, and J1

2 is
released at time 1. By the inter-release separation constraints
in τ3, J2

3 can at earliest be released at 6 and J3
3 earliest at 2.

Figure 5-(b) shows how would the task set be scheduled by
EDF+SRP if J2

3 is released at time 6. At time 0, J1
1 locked

resource R1, and the system ceiling is assigned by ψ1, which
is equal to J3

3 ’s relative deadline 9. At time 1, J1
2 is released.

Since its relative deadline 12 is larger than the current system
ceiling 9, it can not start and preempt J1

1 . At time 6, J1
1 is

finished and J2
3 is released. The total amount of work that must

be finished in [6, 13] is now 8, so there will be a deadline miss
no later than at time 13.

We can see the main cause for the deadline miss under
EDF+SRP in this example: When J1

1 locked R1, EDF+SRP
used a ceiling of 9 to prevent potential priority-inversion
blocking to J3

3 who also needs R1, and may sometimes be
released right after the resource was locked. This system
ceiling of 9 makes perfect sense for sporadic task systems
since the release of such a job exactly forms the worst case:
if EDF+SRP can not avoid the deadline miss in this scenario,

τ1

J1
1

〈6, 100〉
E(R1) = 6

τ2

J1
2

〈4, 12〉

τ3

J1
3 〈0, 0〉

J2
3

〈4, 7〉

J3
3

〈2, 9〉
E(R1) = 1

6 2

(a) An example task system.

J1
1 R1

J1
2

J2
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Scheduled by EDF+SRP, J2
3 is released.

J1
1 R1 R1

J1
2

J3
3 R1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) Scheduled with no ceiling, J3
3 is released.

J1
1 R1 R1

J1
2
After time 4, the system ceiling t+ 9 is larger
than J1

2 ’s deadline 13.J2
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(d) Scheduled by EDF+ACP, J2
3 is released.

J1
1 R1

J1
2

J3
3 R1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(e) Scheduled by EDF+ACP, J3
3 is released.

Fig. 5. Illustrating the difference between EDF+SRP and EDF+ACP.

then the task system is not feasible anyway. However, in DRT
task systems this is not necessarily the worst case due to the
branching structure of τ3. In this example, it might be J2

3 ,
instead of J3

3 , that is released in the system, in which case
preventing priority-inversion blocking of J3

3 makes no sense.
The price paid for this meaningless system ceiling is to impose
on J1

2 additional blocking from J1
1 , which ultimately causes

a missed deadline.
On the other hand, if the scheduler ignores the ceiling at

time 1 and allows J1
2 to preempt J1

1 , as shown in Figure 5-
(c), a deadline also might be missed: If later J3

3 is released,
it will suffer the priority-inversion blocking from J1

2 and miss
its deadline. So we can see that due to the “branching” nature



of τ3, it is impossible for the scheduler to make a “correct
decision” at time 1 about whether J1

1 or J1
2 should run to

completion first.

The main idea behind ACP is to always make decisions to
safely prevent any potential priority-inversion blocking, and
correct a “wrong” decision as soon as it is clear that a
predicted priority-inversion blocking no longer is possible.

Figure 5-(d) shows how the task set would be scheduled by
EDF+ACP in the case where J2

3 is released at time 6. Since R1

is held by J1
1 , during the time interval [1, 4] the system ceiling

(t+ 9) is no larger than J1
2 ’s absolute deadline 13, so J1

2 can
not start. This corresponds to the fact that J3

3 , who needs R1,
may be released at some time point before 4 such that J3

3 ’s
absolute deadline is smaller than J1

2 ’s. So the system ceiling
during the time interval [1, 4] prevents the potential priority-
inversion blocking from J1

2 to J3
3 . After time 4, the system

ceiling (t+ 9) is larger than J1
2 ’s absolute deadline 13, so J1

2

preempts J1
1 and starts execution. This corresponds to the fact

that after time 4, even if J3
3 is released, its deadline is later

than J1
2 ’s, so J1

2 should not be blocked any longer. At time 6,
τ3 releases J2

3 , who does not need R1 but has more workload
than J3

3 . However, thanks to the “correction” at time 4, both
J2

3 and J1
2 can meet their deadlines.

In the other case, where J3
3 is released at time 2, the system

is also schedulable by EDF+ACP as shown in Figure 5-(e).
During the interval [1, 2], the system ceiling is no larger than
J1

2 ’s absolute deadline, so J1
2 is blocked. At time 2, J3

3 is
released, and R1’s request deadline Π1(t) is set to equal J3

3 ’s
absolute deadline 11, so J3

3 has to wait until J1
1 unlocks

R1. One can see that the request deadline Πr(t) is used to
capture this direct resource conflict, and enforces the rule that
a job can start execution only if all its needed resources are
free. Since the system ceiling prevents the priority-inversion
blocking from J1

2 to J3
3 , J3

3 can meet its deadline. Although
the release of J3

3 prevents J1
2 from preempting J1

1 as it did
in the example 5-(d), J3

3 itself has a low workload, so J1
2 can

still meet its deadline.
Correctness: One can see that there are no explicit se-

mantics for resource conflict resolving in the EDF+ACP rules
introduced above, and the jobs are scheduled only based on
priorities and an extra starting control mechanism based on the
system ceiling. Now we show that EDF+ACP can correctly
resolve resource conflicts, as stated in the following lemma.

Lemma 3. A job which has started execution will not be
blocked on any resource.

Proof: We prove by contradiction. Suppose a job Jui starts
executing at time tu, and at some point during its execution a
resource Rr that Jui may need is being held by some other job
Jwj . We know that Jui has higher priority than Jwj (because
Jui is the one executing), so Jwj can not execute after Jui
starts executing and before it is finished. By this we know
that Rr must have been held by Jwj already at tu, so we
know Υ(tu) ≤ Πr(tu). Since Jui is active at tu, Πr(tu) is
at most Jui ’s absolute deadline. Therefore we know Υ(tu) is

no larger than Jui ’s absolute deadline, which contradicts the
assumption that Jui starts executing at tu.

We can also see that the EDF+ACP strategy is work-
conserving: if there are jobs already started in the system, then
the job with the highest priority will execute. If there are no
jobs already started in the system, which implies no resource
is in use, then the system ceiling is +∞, and the highest-
priority one among all jobs that have not started will execute.
By the above reasoning, we have the following lemma:

Lemma 4. There must be a job executing whenever there are
pending jobs in the system.

B. Schedulability Analysis

We first introduce the framework we use to derive our
sufficient schedulability test for EDF+ACP. We assume a task
system τ is not schedulable by EDF+ACP on an s-speed
machine, and let td be the earliest time instant when some job
misses its deadline. Let ts be the earliest time instant before
td such that at each time instant in the busy period [ts, td],
there is at least one active job with deadline no later than td.
Let l = td − ts.

We will derive an upper bound on the total workload W (l)
that EDF+ACP executes in [ts, td]. Since some job does not
meet its deadline at td and the scheduling algorithm is work-
conserving (by Lemma 4), this upper bound must be larger
than the total capacity of [ts, td], which is s · l . By negating
the above statement, we know that if for all l ∈ (0,Lmax ] it is
true that W (l) ≤ s · l , then there does not exist a busy period
causing the deadline miss, which implies that τ is schedulable
by EDF+ACP on an s-speed machine. We first introduce two
extra notations.

Definition 1 (Pressing jobs and blocking jobs). The jobs with
both release time and absolute deadline in [ts, td] are called
pressing jobs. The jobs with absolute deadline later than td
but that executes in [ts, td] are called blocking jobs.

By the definition of the busy period [ts, td], a job that
executes in [ts, td] is either a pressing job or a blocking job.

In the following we will derive upper bounds for W (l). First
consider a simple case: Only pressing jobs execute in [ts, td].
In this case, the workload of each task τi is bounded by its
demand bound function DBF(τi, l), so we have:

W (l) ≤
∑
τi∈τ

DBF(τi, l). (8)

In the following we consider the difficult case: There are
also blocking jobs executing in [ts, td]. In this case, W (l)
consists of workload from both blocking and pressing jobs.
We start with bounding the workload of the blocking jobs.

Workload bounds for blocking jobs: Just as EDF+SRP, the
new protocol EDF+ACP can also prevent multiple priority-
inversion blocking, as stated in the following lemma:

Lemma 5. There is at most one blocking job that executes
in [ts, td], and the blocking duration is at most the worst-case
resource access duration of this blocking job to some resource.



t
ts tdtetd − ψr,i Υ(te)

ψr,i

ψr,i

where Ju
i can execute

l− ψr,i

l

Fig. 6. Intuition of Lemma 6.

Proof: If a blocking job executes at te ∈ [ts, td], then
there must be some resource Rr held at te that causes Υ(te) ≤
td, or otherwise some pressing job would execute at te instead.
Also, Rr can not be held by a pressing job, because then
that pressing job would execute instead. Consequently, Rr, a
resource that gives rise to a value of Υ(te) ≤ td, must have
been locked before ts. Let tb < ts be the earliest time point
where such a resource Rr was last locked, by job Jui say. Now,
Jui still holds Rr at te, so no jobs with deadline after td can
start in the interval [tb, te] (because of the ceiling of Rr). Note
that, according to the EDF+ACP rules, the value contributed
by resource Rr to the system ceiling will never decrease, as
long as Rr is being held. This is because the resource ceiling
t + ψr,i provides a safe lower bound of the deadline of any
future job which may need Rr.

Also, no job that was released before tb and has a deadline
later than td can execute in [tb, te], except Jui . This is because
at tb, Jui must have had the highest priority among the started
jobs, and it has not yet finished by te. It follows then that
no other job than Jui , with deadline later than td, can execute
in [tb, te], for any te ∈ [ts, td]. It also follows that while Jui
executes in [ts, td], it is holding Rr.

In the following, we use Jui and Rr to denote the job and the
resource contributing to the blocking, and we use ∆(Jui , Rr)
to denote the length of the blocking. By Lemma 5 we get an
upper bound for ∆(Jui , Rr):

∆(Jui , Rr) ≤ Eui (Rr) (9)

Apart from the above upper bound, we will give another
upper bound of ∆(Jui , Rr), which is only applicable under
the condition that no pressing job needs Rr:

Lemma 6. If no pressing job needs Rr, then

∆(Jui , Rr) ≤ (l − ψr,i) · s (10)

Proof: Let Jui be the blocking job that executes in [ts, td],
and let Rr be the resource that it holds. We know by Lemma 5
that there is at most one such job and resource. Since no
pressing jobs need Rr, we know that Πr(te) > td for all
te ∈ [ts, td]. It follows then that at any te > td − ψr,i, the
system ceiling Υ(te) > td. The pressing jobs can then be
blocked only during the interval [ts, td − ψr,i], which is of
length l − ψr,i.

An illustration of the intuition behind Lemma 6 is shown
in Figure 6.

Workload bounds for pressing jobs: Lemma 6 provides an
extra workload bound of blocking jobs for the special case that
no pressing job needs Rr. Correspondingly, we will bound the
workload of pressing jobs of a task τi in two cases, depending
on whether it contains any job which needs Rr. We define a
new demand bound function for each case:
• DBFN (τi, Rr, l) is the maximum workload of jobs with

both release time and deadline within any interval of
length l , over all job sequences generated by τi in which
none of the jobs needs Rr.

• DBFY (τi, Rr, l) is the maximum workload of jobs with
both release time and deadline within any interval of
length l , over all job sequences generated by τi in which
at least one job needs Rr.

As an example, we calculate DBFN (τi, R2, 20) and
DBFY (τi, R2, 20) for the task in Figure 1.
• DBFN (τi, R2, 20): We exclude job J4

i who needs R2, as
well as the edges connecting it. Among the remaining
nodes and paths, we can see that the sequence {J1

i , J
2
i }

(or {J2
i , J

1
i }) leads to the maximal DBFN (τi, R2, 20) =

6.
• DBFY (τi, R2, 20): The job sequences must contain J4

i ,
and we observe that the sequence {J4

i , J
3
i } leads to the

maximal DBFY (τi, R2, 20) = 8.
DBFN (τi, Rr, l) and DBFY (τi, Rr, l) can be easily com-

puted by slightly modifying the DBF computation algorithm
in [12], using an extra bit to record whether a job that needs Rr
has been visited during the graph exploration. The complexity
of computing DBFN (τi, Rr, l) and DBFY (τi, Rr, l) is still
pseudo-polynomial.

Bounding the total workload: By now, we have derived
workload bounds for both blocking and pressing jobs. Now we
will combine them to get upper bounds of the total workload
W (l). This is also done in two cases, depending on whether
there exists a pressing job that needs Rr or not:

In the first case, no pressing job needs Rr. In this case,
the blocking job’s workload is bounded by both Eui (Rr)
(Lemma 5) and s(l − ψr,i) (Lemma 6). The workload of
the pressing jobs from each task τj ∈ τ \ {τi} is bounded
by DBFN (τj , Rr, l), which only counts the paths that do not
include any jobs which need Rr. If Jui is the blocking job and
Rr the resource causing the blocking, then the total workload
in [ts, td] (on an s-speed machine) is bounded by:

UBN (Jui , Rr, l) = min
(
Eui (Rr), s · (l − ψr,i)

)
+
∑
j 6=i

DBFN (τj , Rr, l)

By enumerating all the possible candidates for Jui (a job with
relative deadline larger than l ) and Rr (a resource needed by
Jui ), and selecting the maximum, we get an upper bound:

W (l) ≤ max{UBN (Jui , Rr, l) | Du
i > l ∧Rr ∈ Rui } (11)

In the second case, at least one pressing job needs Rr. In
this case, we know there is at least one task τj that includes
a pressing job which needs Rr in its workload in the busy



period. That task’s workload is bounded by DBFY (τj , Rr, l).
Other tasks τk may or may not include a pressing job which
needs Rr, so the workload of each is bounded by the normal
demand bound function DBF(τk, l). If Jui is the blocking
job and Rr the resource it holds, then we enumerate all
possibilities of choosing τj , and the maximal one is an upper
bound of the workload (on an s-speed machine):

UBY (Jui , Rr, l) = min(Eui (Rr), s · l) +

max
j 6=i ∧

DBFY (τj ,Rr,l) 6=0

DBFY (τj , Rr, l) +
∑
k 6=i
k 6=j

DBF(τk, l)


Note that there may not exist τj ∈ τ \ {τi} such that
DBFY (τj , Rr, l) 6= 0, which means that it is not possible for
any task to include a pressing job which needs Rr in the busy
period. In this case, the second item in the RHS of the above
definition is 0, and UBY (Jui , l , Rr) is bounded by s · l .

Again, by enumerating all the possible candidates for Jui
and Rr, and selecting the maximum, we get an upper bound
of W (l) for this case:

W (l) ≤ max{UBY (Jui , Rr, l) | Du
i > l ∧Rr ∈ Rui } (12)

Schedulability test condition: We have derived upper
bounds of W (l) for all cases:

• If no resource blocking occurs in the busy period, W (l)
is bounded by (8).

• If there is resource blocking in the busy period, there are
two possible cases:

– If no pressing job needs the blocking resource, W (l)
is bounded by (11).

– If at least one pressing job needs the blocking
resource, W (l) is bounded by (12).

We put them together to get a sufficient schedulability test:

Theorem 2. A task set τ is schedulable by EDF+ACP on an
s-speed machine if for all l ∈ (0,Lmax ], all of the following
three conditions are satisfied:∑

τj∈τ
DBF(τj , l) ≤ s · l (13)

max{UBY (Jui , Rr, l) | Du
i > l ∧Rr ∈ Rui } ≤ s · l (14)

max{UBN (Jui , Rr, l) | Du
i > l ∧Rr ∈ Rui } ≤ s · l (15)

Given an l , DBF can be computed in pseudo-polynomial
time [12], and so can DBFN and DBFY as we discussed
above. So for each l the complexity of verifying all the three
conditions in Theorem (2) is pseudo-polynomial. Recall that
Lmax is a pseudo-polynomial upper bound on the values
of l that need to be checked. The overall complexity of
the schedulability test in Theorem (2) is therefore pseudo-
polynomial.

C. Speedup factor

In this section, we will show that the new EDF+ACP
scheduling strategy has a speedup factor of

√
5+1
2 . We start

from a necessary condition for a task system to be feasible on
a 1-speed machine.

Lemma 7. If a task system τ is feasible on a 1-speed machine,
then for all l ∈ (0,Lmax ], condition (13) and (14) must be true
with s = 1 and the following condition must also be true:

∀(Jui , Rr) : Eui (Rr) ≤ ψr,i (16)

Proof: Condition (13) is known to be a necessary con-
dition for the task system to be feasible without considering
any shared resources [12]. So it must be true also here.

We indirectly prove that condition (14) is true. Assume
there exists a configuration (l , Jui , Rr, τj) to violate (14),
such that Du

i > l and Rr ∈ Rui and τj can generate
workload DBFY (τj , Rr, l), which includes at least one job
who needs Rr, in a time interval of length l . We consider
a particular scenario: right after Jui locked Rr, τj releases
the job sequence of workload DBFY (τj , Rr, l) with minimal
inter-release separation, and all the other jobs release the job
sequence of their worst-case workload in l , which cause a
total workload of

∑
k 6=i
k 6=j

DBF(τk, l). It is clear that the worst-

case total workload that needs to be executed in the time
interval includes DBFY (τj , Rr, l) and

∑
k 6=i
k 6=j

DBF(τk, l). It

also includes the worst-case duration for Jui to access Rr,
since the job who needs Rr in DBFY (τj , Rr, l) can not start
until Jui unlocks Rr. Since (14) is violated, we know the
workload in this interval exceeds the total capacity, so the
deadline miss is unavoidable under any on-line scheduling
algorithm. So (14) is necessary for τ to be feasible.

To see that condition (16) is also true, we recall that ψr,i
is the minimal relative deadline of some job Jwj which needs
Rr but is not in τi. At run time, it is possible that Jwj is
released right after Jui locked Rr. In this case, if (16) is not
true, clearly no on-line scheduling algorithm can ensure that
Jwj meets its deadline. So we know (16) is also necessary for
the task system to be feasible.

Now we establish the speedup factor for EDF+ACP.

Theorem 3. Any task system τ that is feasible on a 1-speed
machine, is deemed to be schedulable by EDF+ACP according
to Theorem 2 on an s-speed machine with s ≥

√
5+1
2 .

Proof: We prove by contradiction. We assume a task sys-
tem is feasible on a 1-speed machine, and is not guaranteed to
be schedulable by the sufficient schedulability test in Theorem
2. We will prove that it must then hold that s <

√
5+1
2 .

We consider the s-speed machine. We know that at least
one of the conditions (13), (14) or (15) is violated.

Since τ is feasible on a 1-speed machine, we know that if
(13) or (14) is violated, then s < 1 <

√
5+1
2 .

In the following we consider the remaining case that (15)
is violated, i.e., there exists (Jui , Rr, l) such that

UBN (Jui , Rr, l) > s · l (17)



For simplicity, we let A = min
(
Eui (Rr), s(l − ψr,i)

)
and

B =
∑
j 6=i DBFN (τj , Rr, l) so (17) can be rewritten as:

A+B > s · l (18)

Now we will find upper bounds for A and B, respectively. We
first consider A. Let x = ψr,i. By definition, it is clear that

A ≤ s(l − x) (19)

A ≤ Eui (Rr). (20)

Since τ is feasible on a 1-speed machine, by Lemma 7 we
know that Eui (Rr) ≤ ψr,i, i.e., Eui (Rr) ≤ x, and so (20) can
be rewritten as

A ≤ x (21)

We observe that the RHS of (19) is a decreasing function with
respect to x, while the RHS of (21) is an increasing function
with respect to x. So A is bounded by the value of the point
where these two functions intersect. We let s(l − x) = x and
get x = s·l

s+1 . By the reasoning above we have

A ≤ s · l
s+ 1

. (22)

Now we consider B. Since DBFN (τj , Rr, l) ≤ DBF(τj , l),
we get B ≤

∑
τj∈τ DBF(τj , l). Since τ is feasible on a 1-

speed machine, by Lemma 7 we know that

B ≤ l . (23)

By applying (22) and (23) to (18), we get s·l
s+1 + l > s · l , by

which we have s <
√

5+1
2 .

D. Implementation and overhead

By definition, the system ceiling Υ(t) is a function with
respect to time t. However, the EDF+ACP strategy can be
implemented without updating Υ(t) at each time instant, and
the number of extra scheduler invocations for maintaining Υ(t)
can be very well bounded. The crucial observation is that the
system ceiling is important to check only at the time instants
where some job may get an absolute deadline smaller than the
system ceiling.

Firstly, we may have to check (and update) the system
ceiling at the time points where the scheduler would normally
be invoked anyway: when a job is released or finished and
when the unlocking of a resource enables some new job to
start. Updating the system ceiling at those points require no
extra scheduler invocation.

Secondly, we may have to invoke the scheduler at some
time point when the system ceiling has grown larger than the
deadline of some job that was not allowed to start due to
the ceiling. Let d(t) be the earliest deadline of all active jobs
at time t. If the job that has deadline d(t) has not yet been
allowed to start (because Υ(t) < d(t)), we may have to invoke
the scheduler at a time point t′ where the ceiling has grown
so that Υ(t′) = d(t′).

When is this time point t′? If minr{Πr(t)} ≤ d(t), then
nothing except one of the normal scheduling events described

above can lead to a t′ where Υ(t′) = d(t′), so we can
safely skip invoking the scheduler until one of these events
occur. However, if minr{Πr(t)} > d(t) (which means that
minr{Ψr(t)} < d(t)), the passing of time can bring us to
such a t′. If none of the normal scheduling events occur
before, or any new resource is locked, that t′ will be exactly
at t+ d(t)−minr{Ψr(t)}. We can set a timer to fire at this
time point. If one of those events occurs before t′, we can
simply remove or recalculate the timer as needed. When a
timer eventually fires, we know that the job with deadline
d(t) can start, and consequently that job will never be blocked
again. Clearly, the firing of the timer will happen then at most
once per job, and therefore the number of extra scheduler
invocations will be at most once per job.

VI. CONCLUSIONS

In this paper we studied the non-nested resource sharing
problem for real-time task graph systems. Due to the branching
structures in such graphs, this problem is fundamentally differ-
ent from, and significantly more difficult than, for the simple
periodic and sporadic models. We first considered applying
EDF+SRP, which is the optimal scheduling strategy for simple
sporadic models, to task graph systems. We showed that a
direct application of EDF+SRP leads to an unbounded speedup
factor, and it can be reduced to 2 by a slight modification
of the EDF+SRP rules. We also proposed ACP, a novel re-
source sharing protocol,and the scheduling strategy EDF+ACP,
achieves a speedup factor of

√
5+1
2 ≈ 1.618, which is the

well-known constant golden ratio. As future work, we seek to
design scheduling strategies with smaller speedup factors. The
potential is to trade scheduler complexity for a more precise
resource blocking prediction.

REFERENCES

[1] M. Anand, A. Easwaran, S. Fischmeister, and I. Lee. Compositional
feasibility analysis of conditional real-time task models. In ISORC,
2008.

[2] T. P. Baker. Stack-based scheduling of realtime processes. In Real-Time
Systems, 1991.

[3] S. Baruah. Dynamic- and Static-priority Scheduling of Recurring Real-
time Tasks. In Real-Time Systems, 2003.

[4] S. Baruah. Resource sharing in EDF-scheduled systems: A closer look.
In RTSS, 2006.

[5] S. Baruah. The non-cyclic recurring real-time task model. In RTSS,
2010.

[6] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In RTCSA, 2007.

[7] K. Jeffay. Scheduling sporadic tasks with shared resources in hard-real-
time systems. In RTSS, 1992.

[8] A. K. Mok. Fundamental design problems of distributed systems for
the hard-real-time environment. In PhD thesis, Massachusetts Institute
of Technology, 1983.

[9] N. T. Moyo, E. Nicollet, F. Lafaye, and C. Moy. On schedulability
analysis of non-cyclic generalized multiframe tasks. In ECRTS, 2010.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. In IEEE Transactions on
Computers, 1990.

[11] M. Spuri and J. Stankovic. How to integrate precedence constraints and
shared resources in real-time scheduling. In IEEE Trans. Computers,
1994.

[12] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The Digraph Real-Time Task
Model. In RTAS 2011.


