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Abstract

Under current analysis, tardiness bounds applica-
ble to global earliest-deadline-first scheduling and re-
lated policies depend on per-task worst-case execution
times. By splitting job budgets to create subjobs with
shorter periods and worst-case execution times, such
bounds can be reduced to near zero for implicit-deadline
sporadic task systems. However, doing so will re-
sult in more preemptions and could create problems
for synchronization protocols. This paper analyzes this
tradeoff between theory and practice by presenting an
overhead-aware schedulability study pertaining to job
splitting. In this study, real overhead data from a
scheduler implementation in LITMUSRT was factored
into schedulability analysis. This study shows that de-
spite practical issues affecting job splitting, it can still
yield substantial reductions in tardiness bounds.

1 Introduction

A tardiness bound for a real-time task is an upper
bound on the extent to which one of its jobs may
complete beyond its deadline. A number of optimal
scheduling algorithms exist that can ensure zero tar-
diness for implicit-deadline sporadic task systems in
theory (e.g., [2, 12, 13]). However, such algorithms ei-
ther cause jobs to experience frequent preemptions and
migrations or are difficult to implement in practice.
In contrast, a wide variety of global algorithms exist
that are reasonable to implement and provide bounded
tardiness while allowing full platform utilization [11].
Such algorithms are useful in supporting applications
such as multimedia systems where limited tardiness is
acceptable.

In prior work on tardiness bounds, the global earli-
est deadline first (G-EDF) scheduler and the improved
global fair lateness (G-FL) scheduler have received con-
siderable attention [6, 8, 9, 10]. G-FL is considered a G-
EDF-like (GEL) scheduler because, like G-EDF, each
job’s priority is defined by a fixed point in time after
its release. For each of the just-cited papers, the pre-
sented tardiness bounds approach zero as task worst-
case execution times approach zero, even if task uti-

lizations remain constant. Therefore, in a theoretical
sense, these tardiness bounds could be made arbitrarily
close to zero by splitting jobs so that they have arbi-
trarily small worst-case execution times. However, job
splitting introduces some of the same overhead-related
concerns that plague many optimal algorithms.

Focus of this paper. In this paper, we examine
the practical benefits of applying job splitting to re-
duce tardiness bounds under GEL schedulers. We
specifically focus on G-FL, as it has the lowest bounds
among such schedulers. We seek to determine the ex-
tent to which job splitting can lower tardiness when
relevant system overheads are considered. In addition
to increasing overheads, job splitting can adversely af-
fect locking protocols, due to problems associated with
splitting critical sections. We address this issue as well.

Contributions. Much of this paper is devoted to ex-
plaining how to account for overheads in G-FL when
job splitting is applied. We propose overhead account-
ing methods that augment prior work of Brandenburg,
who presented methods applicable to G-EDF based on
an implementation of G-EDF in LITMUSRT [3]. We
determined needed accounting modifications for our
purposes by also implementing G-FL with job split-
ting in LITMUSRT and by noting differences between
the G-EDF and G-FL implementations. In describing
these modifications, we initially assume that no locking
protocol is utilized. In the latter part of the paper, we
explain how such protocols affect both the implementa-
tion of job splitting and the earlier-presented locking-
oblivious accounting methods. With the resulting ana-
lytical framework in place, we then present the results
of an overhead-aware schedulability study that we con-
ducted to assess the impacts of job splitting under G-
FL. In this study, we utilized a new heuristic algorithm
developed by us that determines how splitting should
be done. This algorithm was found to often enable dra-
matic tardiness-bound reductions, even in cases where
a locking protocol is used. Reductions in the range 25%
to 80% were quite common.

The analytical results mentioned above are pre-
sented in Secs. 4-7, after first discussing needed back-
ground and related work in Secs. 2-3. Our overhead-
aware schedulability study is presented in Sec. 8.
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2 Task Model

We consider a system τ of n implicit deadline spo-
radic tasks τi = (Ti, Ci) running on m ≥ 2 processors,
where Ti is the minimum separation time between sub-
sequent releases of jobs of τi, and Ci ≤ Ti is the worst-
case execution time of any job of τi. We assume that
the kernel enforces execution budgets, so that each job
cannot run for more than Ci time units. The relative
deadline of each job is assumed to be equal to its pe-
riod. We use Ui = Ci/Ti to denote the utilization of
τi. All quantities are real-valued. We assume that∑

τi∈τ
Ui ≤ m, (1)

which was demonstrated in [11] to be a necessary condi-
tion for the existence of tardiness bounds. We assume
that n > m. If this is not the case, then each task can
be assigned its own processor, and no job of each τi
will complete more than Ci time units after its release.

The focus of this work is the splitting of jobs into
smaller subjobs with smaller periods and worst-case ex-
ecution times. An example job of a task τi before split-
ting is depicted in Fig. 1(a), and the same job after a
possible splitting is shown in Fig. 1(b). To distinguish
between a task before splitting (as in Fig. 1(a)) and
the same task after splitting (as in Fig. 1(b)), we de-

fine τ basei as the base task before splitting and τspliti as
the split task after splitting. To disambiguate between
base and split tasks, we also use superscripts on param-
eters: Cbase, Csplit, U base, etc. A job of a base task
is called a base job, while a split task is instead com-
posed of subjobs of base jobs. We define the split factor
of τ basei , denoted si, to be the number of subjobs per
base job. In Fig. 1, si = 3. If a base job is denoted Ji,
its subjobs will be denoted 〈Ji,0, Ji,1, . . . , Ji,si−1〉. Ji,0
is its initial subjob — e.g., the first subjob in Fig. 1(b)
— and Ji,si−1 is its final subjob — e.g., the third sub-
job in Fig. 1(b). The longest time that any job of τ basei

waits for or holds a single outermost lock is denoted
bi. Split tasks use a variant of the sporadic task model
that is described in Sec. 7, but the sporadic task model
is assumed prior to Sec. 7.

If a job has absolute deadline d and completes ex-
ecution at time t, then its lateness is t − d, and its
tardiness is max{0, t − d}. If such a job was released
at time r, then its response time is t − r. We bound
these quantities on a per-task basis, i.e., for each τi,
we consider upper bounds on these quantities that ap-
ply to all jobs of τi. The max-lateness bound for τ is
the largest lateness bound for any τi ∈ τ . Similarly,
the max-tardiness bound for τ is the largest tardiness
bound for any τi ∈ τ .

Let Ji be a job of task τi released at time ri. A
scheduler is G-EDF-like (GEL) if the priority of Ji is

(a) No job splitting.

(b) Näıve job splitting.

(c) Job splitting with early releasing.

(d) Job splitting with early releasing and critical section
support. Sections marked by “X” indicate that τi is waiting
for or holding a lock.

Figure 1: Depiction of job splitting schemes for a single
base job Ji of τi = (9, 6) with si = 3. During “HP-
busy” instants, all CPUs are occupied by work with
higher priority than τi. Alternating shades of gray rep-
resent alternating subjobs of Ji. m = 2 is assumed. For
simplicity, the exact identity of higher-priority work is
not depicted in this figure. Inset (c) is considered later
in Sec. 4 and inset (d) in Sec. 7.
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ri + Yi, where Yi is constant across all jobs of τi. Yi
is referred to as the relative priority point (of the task)
and ri + Yi as the absolute priority point (of the job).
G-EDF is the GEL scheduler with Yi = Ti, and G-FL
is the GEL scheduler with Yi = Ti − m−1

m Ci.
When a non-final subjob completes, the resulting

change in priority point is a priority point move (PPM).
In Fig. 1(b), PPMs occur at times 2 and 7.

3 Prior Work

In this section, we discuss prior work that we uti-
lize. In Sec. 3.1, we discuss work relating to tardiness
bounds, and in Sec. 3.2, we discuss work relating to
overhead analysis.

3.1 Tardiness Bounds

In this subsection, we will briefly review relevant
prior work for computing tardiness bounds. The pur-
pose of this review is to show that prior tardiness
bounds each approach zero as the maximum Ci in the
system approaches zero. We will use the notation de-
scribed in Sec. 2 rather than the original notation in
the relevant papers. Tardiness bounds for G-EDF were
originally considered in [6]. That work defines a value

x =

∑
m−1 largest Ci −minτi∈τ Ci

m−
∑
m−2 largest Ui

such that no task τi will have tardiness greater than
x + Ci. An improved, but more complex, bound was
introduced in [9]. While these works focused on G-EDF
itself, [8] proposed G-FL as a new scheduler with anal-
ysis similar to G-EDF in [9]. G-FL usually provides a
smaller maximum lateness bound for the task system.
These improvements are based on analysis following
the same basic proof structure as [6], and they maintain
the property that all tardiness bounds approach zero
as the maximum Ci in the system approaches zero.

3.2 Overhead Analysis

In order to determine the schedulability of a task
system in practice, it is necessary to determine relevant
system overheads and to account for them in the anal-
ysis. In [3], Brandenburg provides accounting methods
to do so for several different schedulers, including G-
EDF. His basic methodology is to transform the real
task system τ into a safe approximation τ ′ such that
a task of τi can have tardiness exceeding δ on a real
system only if the corresponding τ ′i can have tardiness
exceeding δ on an overhead-free system. Therefore, tar-
diness bounds produced for τ ′ while ignoring overheads
also apply to τ running on the real system.

Due to space constraints, we only provide here a
summary of the analysis provided in [3]. For complete
explanations, please consult [3].

Because G-FL is a GEL scheduler, the analysis of
G-EDF provided in [3] applies to G-FL. In Sec. 5, we
consider how splitting jobs impacts this analysis. We
emphasize that in this section, we are not providing
any new analysis. Consider Fig. 2, which depicts a job
J1 of task τ1 that is preempted by a job J2 of task τ2.
J1 experiences the following overheads.

1. From the time when an event triggering a release
(e.g., a timer firing) occurs to the time that the
corresponding interrupt is received by the kernel
(time 0 to time 1), there is event latency, denoted
∆ev.

2. When the interrupt is handled, the scheduler must
perform release accounting and may assign the re-
leased job to a CPU. This delay is referred to as
release overhead, denoted ∆rel (time 1 to time 2).

3. If the job is to be executed on a CPU other than
the one that ran the scheduler, then an inter-
processor interrupt (IPI) must be sent. In this
case, the job will be delayed by the IPI latency of
the system, denoted ∆ipi (time 2 to time 3).

4. The scheduler within the kernel must run when the
IPI arrives (time 3 to time 4), creating scheduling
overhead, denoted ∆sch.

5. After the scheduling decision is made, a context
switch must be performed (4 to time 5). Context
switch overhead is denoted ∆cxs.

In Fig. 2, J2 is released at time 6 and preempts J1.
This causes J1 to experience two additional costs (time
12 to time 15).

1. When J1 is scheduled again, it will incur another
scheduling overhead ∆sch and context switch over-
head ∆cxs.

2. Because J1 was preempted, some of its cached data
items and instructions may have been evicted from
caches by the time it is scheduled again. As a
result, J1 will require extra execution time in order
to repopulate caches. Although not depicted in
Fig. 2, it is also possible that J1 will be migrated to
another processor, which could cause even greater
cache effects. The added time to repopulate caches
is called cache-related preemption and migration
delay (CPMD) and is denoted ∆cpd.

Although these additional costs are experienced by
J1, bounding the number of times that J1 is preempted
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Figure 2: Example depicting the worst-case overheads for a job J1 of task τ1. τ2’s first job J2 has a higher priority
than J1, while its second job J3 has a lower priority. τ3 has a single job (released before time 0) with priority higher
than any other job in the system. Each overhead is shaded by the task it is charged to, with interrupt accounting
colored white because it is handled differently.

usually results in too much pessimism. Fortunately, as
shown in [3], we can instead charge these costs to J2
and maintain a safe approximation.

Another cost that must be accounted for is the pres-
ence of interrupts, both from the periodic timer tick
and from job releases. The maximum time for the timer
tick interrupt service request routine is denoted ∆tck,
and the maximum cache-related delay from an inter-
rupt is denoted ∆cid. The period of the timer tick is
denoted Q.

[3] defines virtual tasks for interrupt sources. For
the timer interrupts, such a virtual task is defined by

Ctck0 = ∆tck + ∆cid (2)

T tck0 = Q. (3)

For each task τi, the corresponding release interrupts
are handled by denoting

Cirqi = ∆rel + ∆cid (4)

T irqi = Ti. (5)

U tck0 and U irqi are defined similarly. From this, a pa-
rameter is defined representing how long a CPU can be
occupied by interrupts in the short term (see [3]):

cpre =
Ctck0 + ∆ev · U tck0 +

∑
1≤j≤n

(
∆ev · U irqj + Cirqj

)
1− U tck0 −

∑
1≤j≤n U

irq
j

.

(6)
With these definitions, each τ ′i in τ ′ is defined as

follows:

C ′i =
Ci + 2 · (∆sch + ∆cxs) + ∆cpd

1− U tck0 −
∑

1≤j≤n U
irq
j

+ 2 · cpre + ∆ipi

(7)

T ′i = Ti −∆ev. (8)

If we have one processor dedicated to handling in-
terrupts, then as shown in [3], these formulas can be
simplified somewhat.

4 Split G-FL Scheduling Algorithm

In this section, we describe the kernel mechanisms
necessary to implement the splitting of jobs under G-
FL. Although we will require the system designer to
specify the split factor si for each job, we do not require
the jobs to be split a priori. Instead, the kernel will use
the budget tracking schemes described in this section to
perform PPMs at the appropriate times. In order to aid
the reader’s understanding, we first describe schemes
that ignore overheads and critical sections; we extend
these schemes to account for overheads in Sec. 6 and
to account for critical sections in Sec. 7. The usage of
these budget tracking schemes is depicted in Fig. 1.

The tardiness analysis reviewed in Sec. 3.1 contin-
ues to hold if jobs become available for execution before
their release times, as long as their priority points are
based on release times that follow the minimum separa-
tion constraint. The technique of allowing jobs to run
before their release times is called early releasing [1].
Allowing subjobs to be released early prevents tasks
from suspending unnecessarily, as happens in Fig. 1(b)
from time 2 to time 3, and may result in shorter re-
sponse times. An improved schedule that includes early
releasing is shown in Fig. 1(c). Because other work may
have a higher priority than τi for earlier subjobs but
not for later ones, such work may execute at a different
time based on whether early releasing is used, as seen
in insets (b) and (c) of Fig. 1.

In this section, let Cspliti = Cbasei /si and T spliti =

T basei /si. For example, in Fig. 1(c), Cspliti = 6/3 = 2
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and T spliti = 9/3 = 3.

For the purposes of budget tracking, we define sev-
eral functions with respect to time below. These func-
tions are only defined for time t such that τ basei has
a job that is ready for execution (released and prede-
cessor has completed) but has not completed. We let
Ji(t) denote this job. For example, in Fig. 1(c), Ji(t)
denotes the same job of τi for any t ∈ [0, 9). If the
next job of τi is not released until time 10, then each
function below will be undefined for t ∈ [9, 10). Sev-
eral of these functions are explicitly labelled as “ideal”
functions that ignore critical sections — deviation from
“ideal” behavior will be described in Sec. 7.

• The current execution ei(t) is the amount of execu-
tion that Ji(t) has already completed before time
t. In Fig. 1(c), ei(2.5) = 2.5 and ei(5.5) = 3.5.

• The current release ri(t) is the release time of Ji(t).
In Fig. 1(c), ri(t) = 0 for all t ∈ [0, 9).

• The current offset oi(t) is a parameter that will be
used to properly handle overheads. In this section,
we assume oi(t) = 0.

• The ideal subjob ji(t) is the subjob of Ji(t) that
should be executing at time t, ignoring the effect
of critical sections. It is defined as follows:

ji(t) =

⌊
si · (ei(t)− oi(t))

Cbasei

⌋
. (9)

In Fig. 1(c), ji(2.5) = 1. (Recall that subjobs are
zero-indexed.)

• The ideal next PPM vi(t) is the time for the next
PPM after time t, ignoring the effect of critical
sections and assuming that Ji(t) is scheduled con-
tinously from time t until vi(t). It is defined as
follows:

vi(t) = t+ (ji(t) + 1)Cbasei /si+oi(t)− ei(t). (10)

In Fig. 1(c), vi(2.5) = 4. Observe that the actual
PPM does not occur until time 6 because τi is
preempted.

• The ideal subjob release ρi(t) is the release time for
the current ideal subjob. It is defined as follows:

ρi(t) = ri(t) + T spliti ji(t). (11)

In Fig. 1(c), ji(2.5) = 3. Notice that, due to early
releasing, the ideal subjob release may be after
that subjob actually commences execution.

• The ideal priority point yi(t) is the priority point
that should be active for Ji(t) at time t, ignor-
ing the effect of critical sections. It is defined as
follows:

yi(t) = ρi(t) + T spliti − m− 1

m
Cspliti . (12)

In Fig. 1(c), yi(2.5) = 5. (This occurs before the
deadline of the ideal subjob because we are using
G-FL rather than G-EDF.)

• The current priority point γi(t) is the priority
point that the scheduler actually uses for Ji(t)
at time t. This value is maintained by the bud-
get tracking algorithm we describe in this section,
rather than being merely a definition like the other
functions in this section. Because there are no crit-
ical sections in Fig. 1(c) (as we are assuming in
this section), γi(t) equals yi(t) for all t. Therefore,
γi(2.5) is 5.

With these definitions in place, we define budget
tracking rules in order to maintain the invariant γi(t) =
yi(t).

• R1. When any job of τ basei is released at time t,
γi(t) is assigned to yi(t).

In Fig. 1(c), applying this rule at time 0, we have
γi(0) = 2.

• R2. Whenever a non-final subjob of τ basei is sched-
uled at time t to run on a CPU, a PPM timer
is assigned to force a reschedule on that CPU at
time vi(t). Whenever τ basei is preempted, the PPM
timer is cancelled.

In the schedule depicted in Fig. 1(c), the PPM
timer is set at time 0 to fire at time 2. At time
2, it fires and forces a reschedule. Because τ basei

is again selected for execution, the PPM timer is
again set at time 2, this time to fire at time 4. At
time 3, however, τ basei is preempted, so the timer
is cancelled. At time 5, the timer is again set, this
time to fire at time 6. Although it fires at time 6,
only the final subjob remains, so the timer is not
set again.

• R3. Whenever the scheduler is called on a CPU
that was running τ basei at time t, if yi(t) > γi(t),
then γi(t) is assigned yi(t).

In Fig. 1(c), the scheduler is called and was run-
ning τ basei at times 2, 3, 6, and 9. A PPM occurs at
times 2 and 6, establishing yi(t) > γi(t) and caus-
ing γi(t) to be updated, but at the other times,
it is not the case that y(t) > γi(t), so γi(t) is not
reassigned.
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5 Overhead Analysis

We now consider how to extend the analysis pro-
vided in Sec. 3.2 for the case of jobs that are split. G-
FL with job splitting is simply G-FL with the budget
tracking rules described in Sec. 4. In addition, G-FL
is simply G-EDF with different priority points. There-
fore, the G-EDF overheads described in [3] will serve
as a starting point for analyzing the overheads of G-
FL with job splitting. In this section we continue to
assume the absence of critical sections; critical sections
will be handled in Sec. 7. An illustration of overheads
due to job splitting is given in Fig. 3.

Due to space constraints, we merely summarize our
needed modifications to Brandenburg’s analysis in this
section. A full description is presented in an online ap-
pendix [7]. Properly accounting for overheads will re-
quire us to inflate the actual budget used by the kernel
differently than the analytical budget used for schedu-
lability tests, and to define oi(t) for each task. Here we
summarize the computation of the analytical budget,
and in Sec. 6 we summarize how to modify the actual
budget and to define oi(t).

Whenever a PPM is necessary by Rule R3 above,
the scheduler can simulate a job completion for the old
subjob (with the old PP), followed by an immediate
arrival for the new subjob (with the new PP). This sit-
uation occurs in Fig. 1(c) at time 2, where the next
subjob happens to be selected for execution, and at
time 6, where the next subjob is not selected. Because
the PPM timer handler is executed on the CPU that
is already running the subjob to be ended, the handler
can be accounted for as a normal job completion. The
release of the new subjob will trigger the same code
path as the case when a job completes after its succes-
sor has been released, so the time required to run the
scheduler will not change.

Having considered the direct overheads produced by
PPMs, we now consider other relevant overheads that
happen while running the system. As a simple over-
head accounting method, we can simply analyze split
tasks rather than base tasks, treating subjobs as jobs.
This method is actually more pessimistic than neces-
sary. Unlike the release timer, it is not possible for the
PPM timer to affect the behavior of other tasks in the
system. In Fig. 1(c), a release interrupt will only occur
at time 0, not at times 2 and 6. Similarly, in Fig. 3, a
release interrupt only occurs between time 7 and time
9. Therefore, when computing T irqi in (5), we use base
tasks rather than split tasks, so that splitting does not
increase the overheads caused by interrupts.

In addition, each non-initial subjob becomes avail-
able immediately when its predecessor completes. Con-
sider the behavior in Fig. 1(c) at time 2. Because
the scheduler in LITMUSRTdoes not release the global

scheduler lock between processing a job completion and
the next arrival, if the new subjob has sufficient priority
to execute it will run on the same CPU as its predeces-
sor. There are two improvements that are made possi-
ble by this observation. First, only the initial subjob of
each base job can experience event latency or require an
IPI. Second, only the first subjob of each base job can
preempt another job. These observations allow us to
avoid charging every subjob for the related overheads,
as described in [7], where we present detailed overhead
accounting expressions that extend Brandenburg’s to
handle job splitting.

6 Budget Accounting

As described in Sec. 4 above, our splitting mecha-
nism works by enforcing budgets for subjobs. In Sec. 5
above we considered how to account for overheads.
As we mentioned in that section, care must be taken
when performing budget enforcement while account-
ing for overheads. In order to do so, we must distin-
guish between the actual budget used by the kernel
and the analytical budget used in schedulability tests,
because some overheads are charged to different tasks
than those their execution affects. For example, the
∆cpd overhead in Fig. 3 from time 14 to time 15 is
incurred by τ1, but is charged to τ2. How to properly
enforce budgets while accounting for overheads has not
been previously described to our knowledge.

Our goal with budget enforcement is to simulate the
execution of shorter subjobs in place of longer base
jobs. As described above, if the worst-case execution
time of a base job is known, it can be split into subjobs
in a straightforward manner. As can be seen in Fig. 3,
most of the overheads considered above — ∆ev, ∆rel,
∆ipi, ∆sch, ∆cxs, and the execution of interrupt han-
dlers — are not part of a job itself, so they should con-
tribute only to the analytical job budget. However, the
cache-related delays ∆cpd and ∆cid do affect the run-
time of jobs. For the purpose of the analytical budget,
∆cpd is usually charged to the preempting job (except
for a single charge at the beginning of each non-initial
subjob), while ∆cid is charged to the interrupt handler.
However, in a real system these overheads would actu-
ally be incurred by the job that is preempted. There-
fore, instead of assigning these overheads to the actual
job budget ahead of time (as with the analytical bud-
get), we wait until runtime to add each overhead to the
budget for the job of τ basei preempted at time t using
the oi(t) term, as described in [7]. For the special case
of the ∆cpd term charged to a non-initial subjob, we
do add ∆cpd to the actual budget of all subjobs ex-
cept initial subjobs. (The precise mechanism to do so
is described in [7].)
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Figure 3: The same situation as Fig. 2, except that J2 and J3 (both from τ2) have now been replaced with J2,0 and
J2,1 to illustrate job splitting overheads. The execution time of J1 has been shortened and the timer tick removed
to simplify the figure.

Because G-FL is analyzed based on the analytical
budgets, each relative priority point must be deter-
mined from the analytical budget, even though the ker-
nel also needs to know the actual budget.

7 Handling Critical Sections

One of the advantages of G-FL promoted in [8] is
that it is a job-level static priority (JLSP) algorithm,
which is important for synchronization mechanisms
such as those discussed in [3]. However, when splitting
is introduced, the algorithm is no longer truly JLSP.
If a subjob ends while waiting for or holding a lock,
then the priority of the underlying job is changed, po-
tentially violating the assumptions of synchronization
algorithms. Fortunately, we can simply extend subjob
budgets for as long as a resource request is active.

In order to support the necessary budget extensions,
we use a more complicated set of rules than those de-
scribed in Sec. 4. The behavior of our algorithm in the
presence of critical sections is depicted in Fig. 1(d).
These rules allow the budget for a subjob to be ex-
tended when its PPM is delayed. Furthermore, be-
cause this delay does not change the expressions for
ji(t), vi(t), ρi(t), or yi(t), the next subjob implicitly
has its budget shortened. Essentially, we are only al-
lowing each PPM to “lag” behind the ideal PPM by at
most bi units of the corresponding base job’s execution.
It is even possible for a subjob to be implicitly skipped
by this mechanism if si > Cspliti .

• R1. When any job of τ basei is released at time t,
γi(t) is assigned to yi(t).

This rule is identical to Rule R1 from Sec. 4.

• R2. Whenever a non-final subjob of τ basei is sched-
uled at time t to run on a CPU, a PPM timer is

assigned to force a reschedule on that CPU at time
vi(t). Whenever τ basei is preempted, or τ basei re-
quests a resource, the PPM timer is cancelled.

In the schedule in Fig. 1(d), the PPM timer is
set at time 0 to fire at time 2, but is cancelled at
time 1 when τ basei requests a resource. It will be
set again at time 5 to fire at time 6, when it will
actually fire. Because only a final subjob remains
after time 6, however, the timer will not be set
again.

• R3. Whenever a critical section ends, if yi(t) >
γi(t), then a reschedule is forced.

Observe in Fig. 1(d) that for t ∈ [2, 3]), the current
subjob (according to priority) is an earlier subjob
than ji(t). Thus, when the critical section ends,
a PPM should occur. Triggering a reschedule will
cause the needed PPM.

• R4. Whenever the scheduler is called on a CPU
that was running τ basei at time t, if yi(t) > γi(t),
then γi(t) is assigned yi(t).

This rule is identical to Rule R3 in Sec. 4 and
functions the same way. However, the scheduler
could have been invoked either due to Rule R2 or
Rule R3. In Fig. 1(d) it is invoked due to Rule R3
at time 3 and due to Rule R2 at time 6.

We let Cspliti denote the ideal worst-case execution
time of a subjob, ignoring critical sections. When we
account for critical sections, a single subjob of a job
from τi can run for as long as Cspliti + bi. Nonetheless,
τi’s processor share over the long term is not affected,
because the total execution of all subjobs must be the
execution of the base job. In [7], we describe the nec-
essary modifications in G-FL analysis to support the
bi term with no utilization loss.
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8 Experiments

In order to test benefits splitting has on tardiness
bounds on a real system, we used measurement data
provided by Brandenburg at [4] for G-EDF on a four-
chip 24-core system. On that system, pairs of cores
share an L2 cache and six cores on a chip share an
L3 cache. [3] reports that the best scheduler for
bounded tardiness is clustered earliest-deadline-first,
where CPUs are grouped by either L2 cache (C-EDF-
L2) or L3 cache (C-EDF-L3). If a release master (RM)
is used, then the first CPU is dedicated to handling in-
terrupts. In such cases, we add “-RM” to the name of
the scheduler, and the first cluster has one less CPU
than the other clusters. Whether an RM is used or not,
G-EDF is used on each cluster.

Similarly, we define the clustered fair lateness (C-
FL) scheduler, where CPUs grouped by L2 cache (C-
FL-L2) or L3 cache (C-FL-L3), with or without an
RM. We assigned tasks to clusters using a worst-fit
decreasing heuristic: we ordered tasks by decreasing
utilization, and we placed each task in order on the
CPU with the most remaining capacity.

Heuristic for Determining si. In order to use
splitting to reduce tardiness bounds, it is necessary
to determine appropriate si values for the tasks. To
do so, we used a simple heuristic algorithm. A simple
description follows.

• A task τi is split-beneficial if adding one to si re-
sults in a smaller maximum lateness bound for the
entire task system.

• A task τi is saturated if adding one to si results in
a system with unbounded tardiness.

• When trying to find a split-beneficial τi within a
cluster, we first order tasks based on their contri-
bution to the lateness bound. Because this order-
ing depends on the full algorithm for computing
lateness bounds, we provide the details in [7]. We
then loop through the tasks and stop upon finding
a split-beneficial task τi. If we find such a split-
beneficial task, we permanently increase its si by
one. During the loop, we mark saturated tasks,
and we skip tasks known to be saturated.

• To find a good splitting, we repeatedly try to find
a split-beneficial task in the cluster with the maxi-
mum lateness bound. (The particular cluster that
has the maximum lateness bound can change each
time we find a split-beneficial task.) If there is
no split-beneficial task in that cluster, then we at-
tempt to find split-beneficial tasks in the remain-
ing clusters in case doing so reduces system-wide
locking overheads. When we do not find any split-
beneficial task, we terminate the algorithm.

Task Set Generation. To determine the benefits
of splitting, we generated implicit-deadline task sets
based on the experimental design in [3]. We gener-
ated task utilizations using either a uniform, a bi-
modal, or an exponential distribution. For task sets
with uniformly distributed utilizations, we used ei-
ther a light distribution with values randomly chosen
from [0.001, 0.1], a medium distribution with values
randomly chosen from [0.1, 0.4], or a heavy distribu-
tion with values randomly chosen from [0.5, 0.9]. For
tasks sets with bimodally distributed utilizations, val-
ues were chosen uniformly from either [0.001, 0.5] or
[0.5, 0.9], with respective probabilities of 8/9 and 1/9
for light distributions, 6/9 and 3/9 for medium distri-
butions, and 4/9 and 5/9 for heavy distributions. For
task sets with exponentially distributed utilizations, we
used exponential distributions with a mean of 0.10 for
light distributions, 0.25 for medium distributions, and
0.50 for heavy distributions. Utilizations were drawn
until one was generated between 0 and 1. We gener-
ated integral task periods using a uniform distribution
from [3ms, 33ms] for short periods, [10ms, 100ms] for
moderate periods, or [50ms, 250ms] for long periods.

When testing the behavior with locking, critical sec-
tions were chosen uniformly from either [1µs, 15µs] for
short critical sections, [1µs, 100µs] for medium criti-
cal sections, or [5µs, 1280µs] for long critical sections.
We denote the number of resources as nr and per-
formed tests with nr = 6 and nr = 12. We denote
the probability that any given task accesses a given
resource as pacc and performed tests with pacc = 0.1
and pacc = 0.25. For a task using a given resource, we
generated the number of accesses uniformly from the
set {1, 2, 3, 4, 5}. These parameter choices are a sub-
set of those used in [3] because, unlike [3], we chose
to perform experiments on a larger variety of work-
ing set sizes to facilitate better comparisons to exper-
iments without locking. An implementation study in
[5] demonstrated that for typical soft real-time applica-
tions, the vast majority of critical sections are less than
10µs. Therefore, the short critical section distribution
is likely to be the most common in practice.

For each tested set of distribution parameters, we
generated 100 task sets for each utilization cap of the
form 24i

20 where i is an integer in [1, 20]. Tasks were gen-
erated until one was created that would cause the sys-
tem to exceed the utilization cap, which was discarded.
We tested each task set with each cluster size, with
and without an RM, and for tests involving locking
with the clustered OMLP and mutex queue spinlock
locking protocols (see [3]). We ignored on each sched-
uler task sets that were either not schedulable under
C-FL (without splitting) or that resulted in zero tardi-
ness, because our goal was to show improvements upon
previously available schedulers. For each task set that
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was schedulable, we applied task splitting using the al-
gorithm described above and compared the maximum
tardiness bound before and after splitting. (Because
si = 1 is allowed by our algorithm, every considered
task set is scheduable under C-FL with splitting by
definition.)

Results. Examples of results without locking are de-
picted in Figs. 4 and 5, which have the same key. (Ad-
ditional results can be found in [7]. In total, our ex-
periments resulted in several hundred graphs.) Ob-
serve that improvements over 25% are common, and
can be nearly 100% in some cases. Because task sys-
tems with higher working set sizes are more likely to
be unschedulable even without splitting, higher work-
ing set sizes often represent significantly smaller groups
of tasks and are skewed towards task sets with smaller
utilization. This can cause a downward trend in the
tardiness bounds with increased working set sizes for
C-FL, but our purpose is to compare the effect of split-
ting when bounded tardiness is already achievable by
C-FL.

Fig. 6 has the same key as Figs. 4 and 5, but de-
picts the difference in bounds with respect to system
utilization cap rather than working set size. Observe
that the bounds with splitting (dashed lines) tend to
grow more slowly than the bounds without (solid lines)
splitting until they grow drastically before all tested
task sets were unschedulable. This phenomenon oc-
curs because the overheads from splitting use some of
the system’s remaining utilization, and when very lit-
tle utilization is available the tasks cannot be split as
finely. An interesting result we observed in our study
was that C-EDF-L3 and C-EDF-L3-RM generally had
much larger si values (often on the order of 30) than
C-EDF-L2 and C-EDF-L2-RM (where si values were
usually on the order of 2 or 3), but the magnitude of
the improvements was similar.

Figs. 7, 8, and 9 have the same key as each other
and depict the behavior of the system in the presence of
locks. The “Semaphore” tests use the clustered OMLP,
and the “Spinlock” tests use mutex queue locks. The
phenomenon of reducing bounds with increasing work-
ing set sizes is even more pronounced in these results,
and the low schedulability of task sets with long crit-
ical sections produces strange trends in Fig. 9. Note
that C-EDF-L2-RM with semaphores was not able to
schedule most task systems we tested.

9 Conclusions

Tardiness bounds established previously for GEL
schedulers can be lowered in theory by splitting jobs.
However, such splitting can increase overheads and cre-
ate problems for locking protocols. In this paper, we
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showed how to incorporate splitting-related costs into
overhead analysis and how to address locking-related
concerns. We then applied these results in a schedu-
lablity study in which real measured overheads were
considered. This study suggests that job splitting can
viably lower tardiness bounds in practice.
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