
A Game-Theoretic Resource Manager for RT Applications

Martina Maggio, Enrico Bini, Georgios Chasparis, Karl-Erik Årzén

Lund University, Sweden

Abstract—The management of resources among competing
QoS-aware applications is often solved by a resource manager
(RM) that assigns both the resources and the application service
levels. However, this approach requires all applications to
inform the RM of the available service levels. Then, the RM has
to maximize the “overall quality” by comparing service levels
of different applications which are not necessarily comparable.

In this paper we describe a Linux implementation of a game-
theoretic framework that decouples the two distinct problems
of resource assignment and quality setting, solving them in
the domain where they naturally belong to. By this approach
the RM has linear time complexity in the number of the
applications. Our RM is built over the SCHED_DEADLINE

Linux scheduling class.

I. INTRODUCTION

The problem of managing the computing resources among

different competing applications is as old as multitasking op-

erating systems [1], [2]. If applications have real-time con-

straints, such management must also account for them.

Together with resource assignment, an orthogonal dimen-

sion along which the application performance can be tuned

is the selection of the service levels of adaptive applications.

Service levels depend on the possible configurable features

of applications and determine the delivered quality/accuracy.

Examples are adjustable video resolutions or the amount of

data sent through a socket channel to render a web page.

Hence, a proper solution should include both the resource

assignment and the service level setting.

The typical solution to this problem is the implementation

of a resource manager (RM), which is in charge of:

− assigning the resources to each application;

− monitoring the resource usage and possibly adjusting

the assignment based on the actual measurements;

− assigning the service levels to each application, so that

an overall delivered quality is maximized.

A scheme of this approach is illustrated in Figure 1. In the

figure, appi is the i-th application, si is its service level,

and vi is a set of parameters that determines the amount of

resources allocated to appi. According to this view, the RM

monitors the behavior of the applications by measuring some

sensor fi. Then, using all the values read, the RM sets both

the service level si and the amount of resource vi assigned

to the applications. This choice is often made through a cen-

tralized optimization procedure [3], [4], [5], [6].

However, these centralized optimization-based RM’s have

the following weaknesses:

sensor
virtual

platform

sensor
virtual

platform

sensor
virtual

platformOS

s1 s2

app1 app2

sn

appn

RM

v1 v2 vn

f1 f2 fn

Figure 1. Centralized RM

− The complexity of the solvers used to implement the

RM (such as Integer Linear Programming solvers)

grows significantly with the number of applications.

Hence, it is evidently impractical to have a RM that op-

timally assigns resources at the price of a high resource

consumption by the RM itself.

− To enable the choice of a service level by the RM,

the application must inform the RM about its available

service levels and the expected consumed resource at

each service level. However, this could infringe some

Intellectual Property agreements or it could simply be

too difficult to achieve.

− To enable a meaningful formulation of a cost function

in the optimization problem, the RM must compare the

quality delivered by different applications. This com-

parison is unnatural because the concept of quality is

extremely application dependent.

Our proposal starts from the observation that the resource

allocation and the service level assignment problems natu-

rally belong to two different domains. The resource assign-

ment has certainly to be made in a centralized way by the

RM, since the same resource is shared by all applications.

However, since the quality is application dependent, the ser-

vice level assignment can be better made at application level,

in a decentralized way. In fact, the application developer is

the one who knows how to tune the application parameters

in an opportune way. However, when should the application

decide to change its service level? What is the event that

triggers such a decision at application level? Borrowing from

game theory, we introduce an “application payoff” that is

communicated by the RM to each application. Each applica-

tion then should adjust its own service level to maximize the

“revenue”. This interaction leads to an equilibrium between

the service levels of the applications, and their assigned re-

2013 25th Euromicro Conference on Real-Time Systems

1068-3070/13 $26.00 © 2013 IEEE

DOI 10.1109/ECRTS.2013.17

57

2013 25th Euromicro Conference on Real-Time Systems

1068-3070/13 $26.00 © 2013 IEEE

DOI 10.1109/ECRTS.2013.17

57

source. A final, not negligible, advantage of the proposed

solution is that the RM has linear time complexity in the

number of applications.

A. Related work

The problem of resource management was addressed by a

multitude of research groups in the past. Without pretending

to have made an exhaustive comparison, in this section we

propose our selection of the most notable related results.

Several mechanisms for abstracting resources have been

proposed in the past. Linux/RK [7] provided reserves of dif-

ferent types of resources (CPU cycles, memory pages, disk

bandwidth, network bandwidth, etc.). However, to best of

our knowledge, it is no longer maintained over current ver-

sions of the Linux kernel. LITMUSRT [8] provides an ex-

perimental platform for testing and prototyping of multipro-

cessor real-time scheduling and synchronization algorithms.

However, it does not aim to be included into the mainline

Linux kernel. Hence, we decided to isolate the CPU resource

by using the SCHED_DEADLINE scheduling class [9], be-

cause it specifically targets the inclusion into the Linux ker-

nel. Supported by the positive comments received by the ker-

nel maintainers [10] we believe that developing our frame-

work on top of SCHED_DEADLINE may ease the portability

of our framework in the future.

Many resource managers were proposed in the past. Some

of them also applied game theory. Subrata et al. [11] applied

game theory to balance the load in grid computing. Job ar-

rivals are modeled by Poisson processes. The players are the

machines that try to maximize their profit by accepting jobs.

Wei et al. [12] proposed a game-theoretic method to allocate

resources to incoming tasks. Tasks are assumed to be fully

parallelizable. Similarly, Grosu and Chronopoulos [13] for-

mulated the load balancing problem among different play-

ers as a non-cooperative game and then studied the Nash

equilibrium. However, none of these papers considered the

adjustment of application parameters.

Much of the research on resource management is based

on the concept of feedback. Initial usage of feedback loops

to control the allocated resources were independently devel-

oped by Lu et al. [14], Steere et al. [15], Eker et al. [16]. In

these approaches quality adjustment was not considered.

Rajkumar et al. [3] proposed the QoS-based Resource

Allocation Model (Q-RAM) to manage resources spanning

over multiple dimensions. The resources are allocated so that

the total utility is maximized with minimal QoS constraints.

A similar approach was proposed by Sojka et al. [4].

In the ACTORS project, applications provide a table to

the RM describing the required amount of CPU resources

and the achieved QoS at each supported service level [5],

[6]. In the multicore case, the amount of resources must be

given for each individual partition. Then, the RM decides the

service level of all the applications and how the partitions

should be mapped to physical cores using a combination of

ILP and first-fit bin-packing.

These approaches [3], [4], [5], [6] rely on the solution

of an optimization problem that determines the amount of

assigned resource and sets the service levels of all applica-

tions. The separation of the QoS-level assignment and the

resource distribution was recently proposed [17], however in

the context of network bandwidth allocation.

Contributions of the paper: In this paper we propose

a game-theoretic resource management scheme for real-time

applications. We designed the scheme and implemented it

over the SCHED_DEADLINE scheduling class [9] on the

Linux kernel. The paper presents both the theoretical anal-

ysis and the implementation of the framework. More de-

tails on the theoretical analysis and the proofs can be found

in [18]. Experiments with single and multicore platforms are

shown to validate the approach.

II. GAME-THEORETIC MODEL

The overall framework is illustrated in Figure 2. A set I
of n applications are competing among each other for re-

sources. Since we allow applications to dynamically join or

leave, the number n is not constant over time. The resource

is managed and allocated by a resource manager (RM) mak-

ing sure that the overall allocated resource does not exceed

the available one. Naturally, the set of applications along

with the resource manager constitutes a finite set of deci-

sion makers, usually called players/agents. Both the set of

applications and the resource manager are assumed to act in-

dependently. In game-theoretic terminology, the players can

take actions that are described in details below.

setting
service

aware
service

setting
service

aware
service

0
1

sensor
virtual

platform

sensor
virtual

platform

sensor
virtual

platform

0
1

0
1

unaware
service

OS

s1

app1 app2
sn

appn

RM
λ1

λ2

λn
v1 v2 vn

f1 f2 fn

Figure 2. Game-theoretic resource management framework.

Each application appi ∈ I may change its service level

si ∈ Si (examples of service levels are: the accuracy of

an iterative optimization routine, the details of an MPEG

player, etc.). The service level si is an internal state of ap-

plication appi. Hence, it is written/read by appi only. The

set of service levels Si is equipped with a partial ordering

“≥” that translates the concept of quality: if si ≥ s′i then the

perceived quality delivered to the user by application appi
when running at level si is not smaller than the quality when

running at level s′i. The partial order structure is the one that

5858

best responds to multidimensional quality settings [3]. We

denote by s = (s1, ..., sn) the profile of service level of

all applications evolving within the Cartesian product S �

S1 × ... × Sn. The framework also allows applications that

do not adjust their service level (app2 in Figure 2).

The resource manager RM manages the available resource

by allocating it to the applications. This allocation is made

by reserving a dedicated virtual platform vi ∈ V to the

application appi. A virtual platform is an abstraction for the

use of a specific resource, where the word “virtual” is used

with respect to computational capabilities. The set of virtual

platforms (VP) is also equipped with a partial ordering “≥”,

meaning that if vi ≥ v′i the quality delivered by any applica-

tion appi executing over vi cannot be lower that the quality

delivered when running over v′i. For example, if a virtual

platform is abstracted by its bandwidth, then this ordering

will simply be inherited from the bandwidth ordering. All

possible allocations of virtual platforms is Vn = V×· · ·×V
(n times). However, not all allocations are feasible on the

available physical platform and we denote by V ⊆ Vn, the

set of feasible virtual platforms. Hence the action of the RM

will be the selection of v = (v1, ..., vn) in V .

The goal of the proposed resource allocation framework

is to find, for all applications appi ∈ I, a matching between

the service level si set by application appi and the virtual

platform vi assigned by the RM to the application appi. The

quality of this matching is defined by the following function.

Definition 2.1: The quality of the matching between a ser-

vice level si and a virtual platform vi of the application appi
is defined by the matching function fi : Si × V → R with

the following properties:

− if |fi(si, vi)| ≤ δ, then the matching is perfect;

− if fi(si, vi) < −δ, then the matching is scarce;

− if fi(si, vi) > δ, then the matching is abundant;

with δ being a system parameter (in the experiments we use

δ = 0).

The perfect matching between si and vi describes a situation

in which the application has exactly the right amount of re-

source vi when it runs at service level si. A scarce (resp.,

abundant) matching describes the situation when either in-

creasing vi or decreasing si (decreasing vi or increasing si)
is needed to move toward the perfect matching.

Contrary to the centralized management framework (Fig-

ure 1), the service levels are internal states of the appli-

cations, while the virtual platforms {v1, . . . , vn} belong to

the RM space (as illustrated in Figure 2). Hence, no player

can have a complete knowledge of the matching function

fi. In fact, the matching function is only measured during

run-time. In Section IV we will describe our implementation

of this measure-based function. The only properties that we

require from any implementation of fi are the following:

1) ∀si, fi(si, 0) < −δ, that is, the matching must cer-

tainly be scarce if no resource is assigned;

2) si ≥ s′i ⇒ fi(si, vi) ≤ fi(s
′
i, vi), that is, if an appli-

cation lowers its service level (it requires less compu-

tation), then the matching function should increase;

3) vi ≥ v′i ⇒ fi(si, vi) ≥ fi(si, v
′
i), that is, if the virtual

platform is increased (in the sense of the ordering in

Vi), then the matching function should increase.

When |fi| > δ some adjustment is needed to the service

level si or to the virtual platform vi. The weight λi ∈ [0, 1],
also depicted in Figure 2, indirectly determines the amount

of correction made by each player:

− if λi = 1, then the correction is entirely made by the

RM with a calibration of the virtual platform vi;
− if λi = 0, then the correction is entirely made by appi

with an adjustment of the service level si;
− intermediate values of λi correspond to a combined

correction made by both the application and the RM.

We remark that in our framework, the correction of the ser-

vice level is left entirely to the application programmer. The

RM simply informs the applications about the correction

needed to satisfy the timing constraints of the applications.

Although we are interested in the general problem of man-

aging all types of resources, here only the CPU time is man-

aged. Not surprisingly, however, in our experiments in Sec-

tion V we are able to show that also memory-intensive ap-

plications can be controlled by managing the amount of al-

located computations. Hence, from now on, we assume that

the virtual platform vi is simply abstracted by the speed of

a virtual processor dedicated to appi, and the set of feasible

virtual platforms is

V =
{
v ∈ [0, 1]n :

n∑
i=1

vi ≤ m
}
, (1)

with m being the number of available cores. If vi = 0 then

the virtual processor is halted, if vi = 1 it provides the full

speed of a single core.

Below, we introduce a learning procedure under which the

applications and the RM adapt to possible changes in their

“environment” (variations in the actions of the other players

or variations in the number of applications) trying to maxi-

mize their own utility.

A. Adaptation of the virtual processors by the RM

To simplify the implementation, the RM updates the band-

width ṽi = vi/m normalized with the number of cores m.

The corresponding vector of normalized resources is denoted

by ṽ � [ṽi]i and lives within

Ṽ �

{
ṽ ∈ [0, 1]n :

n∑
i=1

ṽi ≤ 1
}
.

Note that the value of the actual bandwidth vi(t) may exceed

its allowable values [0, 1]. Formally, in order for vi(t) to

always be within [0, 1], the updated value of normalized re-

sources, ṽi(t+1), in (2) needs to be projected within [0, 1/m].
For the sake of clarity, we skip this projection and we briefly

5959

present the analysis for those cases where the resulting al-

location of resources satisfies vi(t) ∈ [0, 1] at all times t.
The analysis for the more general (projected) dynamics can

be found in [18].

When t = 0, the RM simply divides the amount of

assignable bandwidth equally among the applications. At

each time t = 1, 2, ... and for each application appi ∈ I,

the RM assigns resources according to the following rule:

1) it measures the performance1 fi(t);
2) it updates the virtual platform ṽi as follows:

ṽi(t+ 1) =

ṽi(t) + εRM(t)
(
− λifi(t) +

n∑
j=1

λjfj(t)ṽi(t)
)
, (2)

where εRM(t) is a step-size sequence;

3) it computes the original value of bandwidth by

vi(t+ 1) = mṽi(t+ 1),

4) it updates the time t← t+ 1 and repeats.

In the forthcoming analysis, we will consider sequences

εRM(t) that diminish similarly to Robbins-Monro type of

stochastic approximations [19]. For example, a candidate

step-size sequence is εRM(t) = 1/t+1, which establishes an

(implicit) averaging over time and recursively seeks for a

root of the observation term, i.e., the multiplier of εRM(t).
As we shall see, these roots, which also correspond to rest

points of the recursion (2), exhibit desirable properties. Note

that in the implementation we reset εRM(t) every time the set

of applications to be managed changes.

Note that according to recursion (2), we expect that vi
increases when appi performs poorly compared to the oth-

ers (when λifi(t) is small compared to
∑n

j=1 λjfj(t)ṽi(t)).
Consequently, at a rest point of (2), the performance of each

application will be close to the weighted average perfor-

mance, establishing a form of fairness.

B. Adaptation of the service level by the application

The RM provides information to all applications to guide

their selection of a proper service level. To explain how any

application appi adjusts its service level, we introduce the

following simple example.

Let us assume that the set of service levels of any appi
is Si = [si,∞), where si > 0 is the lowest possible service

level of the application. At a given service level si, the appli-

cation needs to execute sporadic jobs, each one with execu-

tion time Ci = αisi, with αi being an application dependent

constant. Since the application runs over a vi-speed virtual

processor, its job response time Ri, that is the time elapsing

from the start time to the finishing time of a job, simply is

Ri =
Ci

vi
=

αisi
vi

(3)

1As stated in its definition, fi is a function of the service level si and
the virtual platform vi. However, here we intentionally hide this dependency
and report only the dependency on time t, since the RM only measures a
value over time.

Assuming that each job of the application has a soft deadline

Di, that denotes the expected job response time, then an

example of a matching function fi is:

fi =
Di

Ri

− 1 (4)

which, given (3), can also be written as:

fi =
Divi
αisi

− 1 = βi

vi
si
− 1, (5)

with βi =
Di

αi

being an application dependent constant. This

expression satisfies the required properties of fi.
Let us assume that at time t the RM measures the match-

ing function fi(t) of Eq. (4) and it discovers it is not zero.

In response to this deviation from the equilibrium the RM

sets the virtual platforms according to Eq. (2). How should

then application appi act in order to make the next value of

the matching function, fi(t + 1), equal to zero? By setting

fi(t+ 1) equal to zero in (5), we get

si(t+ 1) = βivi(t+ 1).

However, setting the next service level si(t + 1) according

to this rule is an open-loop technique that relies on a careful

estimation of βi, which may be unavailable. Moreover, it

requires the knowledge of vi within the application. From

the (possibly non-zero) measurement fi(t) at time t we can

actually estimate βi, that is

βi = (1 + fi(t))
si(t)

vi(t)
so that the service level update rule becomes

si(t+ 1) = (1 + fi(t))
vi(t+ 1)

vi(t)
si(t). (6)

The above recursion may exhibit large incremental differ-

ences, si(t+1)−si(t), which may lead to instability. Hence,

we introduce a smoother update rule for the service level si
that exhibits the same stationary points as those of (6), by

setting:

si(t+ 1) = si(t)+

εi(t)
(
(1 + fi(t))

vi(t+ 1)

vi(t)︸ ︷︷ ︸
RM space

si(t)−si(t)
)
+ εi(t)zi(si(t)),

(7)

with εi(t) governing the adaptation rate of appi. The correc-

tion term εi(t)zi(si(t)) corresponds to the projection neces-

sary to bring the RHS of (7) within Si. In words, we should

expect that si decreases when fi < 0 and vi(t+1)/vi(t) < 1,

i.e., when the application is doing poorly and the assigned

resources have been decreased. The term vi(t+1)/vi(t) pro-

vides a look-ahead information to the application about the

expectation over future available resources.

Also, in (7) it can be observed that the only quantity that

needs to be communicated by the RM to appi is the factor

highlighted by the underbrace. After appi receives such a

quantity, it can adjust its service level without knowing all

the information the RM used to compute it.

6060

The interesting property of adjusting virtual platform and

service levels according to (2) and (7) is that we can prove

their convergence, as demonstrated in the next section.

III. CONVERGENCE ANALYSIS

Below, we summarize the convergence analysis of the

framework. The details of these results can be found in [18].

Before proceeding with the convergence analysis, we first

rewrite recursion (2) for each i = 1, . . . , n, as follows:

ṽi(t+ 1) = ṽi(t) + εRM(t)gRM,i(s(t), ṽ(t)) (8)

where

gRM,i(s, ṽ) � −λifi(si, vi) +

n∑
j=1

λjfj(sj , vj)ṽi,

where vi = mṽi, i ∈ I. Also, we write recursion (7) as

follows:

si(t+ 1) = si(t)+
εi(t)gapp,i(si(t), ṽi(t), yi(t)) + εi(t)zi(si(t)), (9)

where

gapp,i(si, ṽi, yi) � (1 + fi(si, vi))
ṽi
yi
si − si,

and yi(t) is a delayed version of vi(t) updated according to

yi(t+ 1) = yi(t) + εi(t) (ṽi(t)− yi(t)) . (10)

The reason for augmenting the state with y � [yi]i is to deal

with the different time indices in (7).

The asymptotic behavior of the overall recursion (8), (9)

and (10) can be characterized as follows:

Proposition 3.1: If εi(t) is proportional to 1/t+1 then, the

overall recursion (8), (9) and (10) is such that the sequence

{(s(t), ṽ(t), y(t))} converges2 to some limit set of the Ordi-

nary Differential Equation (ODE):⎛
⎝ ṡ

˙̃v
ẏ

⎞
⎠ = g(s, ṽ, y) +

⎛
⎝ z(s)

0
0

⎞
⎠ , (11)

where g � ([gapp,i]i, [gRM,i]i, ṽ − y) and z � [zi]i is the

minimum force required to drive s back in S. Finally, if E ⊂
S×Ṽ×Ṽ is a locally asymptotically stable set in the sense of

Lyapunov3 for (11) and (s(t), ṽ(t), y(t)) is in some compact

set in the domain of attraction of E, then (s(t), ṽ(t), y(t))→
E.

Proof: Proof is based on Theorem 2.1 in [19].

A similar result can also be stated for constant step-size se-

quences which are sufficiently small.

The above proposition relates the asymptotic behavior of

the overall discrete-time recursion with the limit sets of the

ODE (11). Since the stationary points4 of the vector field g
are invariant sets of the ODE (11), then they are also can-

didate attractors for the recursion. In the following sections,

we analyze the convergence properties of the recursion with

respect to the stationary points of the ODE (11).

2By x(t) → A for a set A, we mean limt→∞ dist(x(t), A) = 0.
3See [20, Definition 3.1].
4The stationary points of an ODE ẋ = ḡ(x) are defined as the points in

the domain D for which g(x) = 0.

A. Stationary points

Lemma 3.1 (Stationary Points): Any stationary points of

the vector field g, say (s∗, v∗, y∗), satisfies all the following

conditions:

(C1)
∑

i λifi(s
∗
i , v

∗
i)ṽ

∗
j = λjfj(s

∗
j , v

∗
j),

(C2) (fj(s
∗
j , v

∗
j) = 0) ∨ ((s∗j = sj) ∧ (fj(s

∗
j , v

∗
j) ≤ 0)),

(C3) y∗j = ṽ∗j .

for all j = 1, . . . , n. Furthermore, the set of stationary

points is non-empty.

Proof sketch: Existence of stationary points follows from

Brower’s fixed point theorem [21, Corollary 6.6]. The coor-

dinates of the stationary points follow from the definition of

gRM,i(ṽ, s). More details can be found in [18].

The above proposition states that at a stationary point,

appi is either performing sufficiently good (i.e., fj(s
∗
j , v

∗
j) =

0), or it performs poorly but its service level si cannot be

decreased any further (i.e., fj(s
∗
j , v

∗
j) ≤ 0, s∗j = sj).

Note that any pair (s, v) in the domain for which

fi(si, vi) = 0 is a stationary point of the vector field

g. This multiplicity of stationary points complicates the

convergence analysis of the dynamics, however, in several

cases, uniqueness of the stationary point can be shown. The

following subsections identify a few such special cases.

1) Fixed Service Levels: The following result character-

izes the set of stationary points when applications do not

update their service levels.

Proposition 3.2 (Large Service Levels): Consider the

matching function defined by (5). For some given s ∈ S,

let us assume that βi/si � 1 for all i. Then, the ODE (2)

exhibits a unique stationary point v∗. Furthermore, as
βi/si → 0 for all i, then

ṽ∗i →
λi∑n

j=1 λj

, (12)

for all i = 1, . . . , n.

Proof sketch: It follows directly from Corollary 4.1 in [18]

and the assumption of unconstrained dynamics (2). More de-

tails can be found in [18].

In other words, Proposition 3.2 states that, if the service level

si of each application i is sufficiently large (compared to the

available resources vi), then the unique stationary point of

the dynamics assigns resources to applications proportion-

ally to their normalized weights.

The above proposition also provides an answer to how the

stationary point changes with respect to the weight parame-

ters {λi}. In particular, from (12), we conclude that if the

hypotheses of Proposition 3.2 hold, then the percentage of

resources v∗j of application j will increase at the stationary

point if λj is also increased.

2) Non-fixed Service Levels: When the service levels are

also adjusted, characterizing the set of stationary points may

not be straightforward. The following corollary identifies one

such case where uniqueness of stationary points holds.

6161

Proposition 3.3 (Overloaded CPU): Consider the match-

ing function defined by (5). If the solution of the ODE (11),

{ṽ(t)}, satisfies supt≥0{βimṽi(t)/si} � 1 for all i, then

the ODE (11) exhibits a unique stationary point (s∗, ṽ∗) such

that s∗i = si. Furthermore, as supt≥0{βimṽi(t)/si} → 0
for all i, then ṽ∗ satisfies property (12).

Proof sketch: It follows directly from Corollary 4.2 in [18]

and the assumption of unconstrained dynamics (2). More de-

tails can be found in [18].

In other words, Proposition 3.3 states that there is a unique

stationary point of the overall dynamics when the RM is not

able to provide sufficient amount of resources to all applica-

tions, due to either the large number of running applications

or the large service levels of even a small number of applica-

tions. In such cases, we should expect that applications tend

to decrease their service levels as much as possible in order

to improve their performance. Thus, the unique stationary

point will correspond to si = si for all i. Furthermore, the

allocation of ṽ∗ will be close to the allocation of (12), since

the update of the service levels does not improve signifi-

cantly the performance of the applications and the matching

functions remain negative at all times.

As we have already pointed out, in the more general case

where the hypotheses of Proposition 3.2 do not hold, there is

a multiplicity of stationary points including any pair (s∗, v∗)
for which fi(s

∗
i , v

∗
i) = 0.

B. Local Asymptotic Stability (LAS) & Convergence

The following proposition characterizes locally the stabil-

ity properties of the stationary points under the hypotheses

of Propositions 3.2–3.3.

Proposition 3.4 (LAS): Under the hypotheses of either

Proposition 3.2 or 3.3, the unique stationary point of the

dynamics (11) is a locally asymptotically stable point in the

sense of Lyapunov.

Proof sketch: It is proved by defining an opportune Lya-

punov function. More details can be found in [18].

From Proposition 3.1, we conclude that the stationary

points of the ODE (11), which satisfy the hypotheses of

Proposition 3.4, are possible local attractors of the overall

recursion.

IV. IMPLEMENTATION

The game-theoretic resource management framework il-

lustrated in Figure 2 has been implemented in C over Linux.

Below we describe in detail all its components:

− the application interface,

− the sensing infrastructure,

− the virtual platform implementation, and

− the resource manager5.

5The code for the application interface and sensing infrastructure is avail-
able at http://github.com/martinamaggio/jobsignal. The code of the resource
manager is available at http://github.com/martinamaggio/gtrm

A. Application interface

The goal of the entire resource management framework

is to provide the most appropriate amount of resource to all

applications. It is here assumed that applications are com-

posed by some time sensitive portions of code, called jobs.

For example, in a media encoder/decoder a job is the encod-

ing/decoding of a chunk of data. Applications are requested

to inform the RM about the desired duration of each job.

Below we report a template of the application code. To ease

the presentation, we omit some details such as variable type

declarations or command line parsing.

int main(int argc, char* argv[]) {

myself = app_registration();

/∗ example: only one type of job to be completed in 1 ms ∗/
app_set_jobtypes(myself, 1, {1000000});

...

while(!finished) {

id = signal_job_start(myself, type);

adjust[type] = get_performance(myself, type);

/∗ body of the specific type job . If service aware, it should
modify its resource requirement by adjust[type] ∗/

do_work(/∗ parameters ∗/);
signal_job_end(myself, id);

}

...

app_termination(myself); /∗ free shared memory ∗/
}

When an application wants to register with the RM, it calls

app_registration. The only purpose of this call is the

initialization of a shared memory area (whose pointer is re-

turned by the call), which is used to store information about

the application run-time behavior. Notice that the manage-

ment of the shared memory is completely transparent to the

application programmer.

Then it communicates (through app_set_jobtypes)

the number of job types (NUM_JOBS in the code above) that

it can generate during its run-time and the expected response

times (job_times) for each type of job. Depending on the

application, the developer may use this value to distinguish

among different application functionalities. For example, a

video encoder could have several different types of job, cor-

responding to the encoding of the frame categories. If the

number of job types or their desired response times change

at run-time, it is possible to provide this new information by

invoking app_set_jobtypes again.

As the application runs, it is asked to signal the start

and the end of a job. This signaling actions are performed

by invoking respectively signal_job_start and

signal_job_end, providing as parameter the index

i of the job type. Within the job, the first action is the

invocation of the function get_performance for this

type of job. This function, which is computed by the

monitoring infrastructure, returns a measurement of the

service level adjustment (i.e. the underbrace expression in

Eq. (7)) required to achieve a perfect matching between the

service level and the virtual platform. We underline that

6262

the of the application code does not necessarily need to be

open, since the body of the job can be an external function

linked from some library.

B. Sensing infrastructure

To enable a prompt adjustment of the resource alloca-

tion and the service level, the progress of the applications

is constantly monitored. This is performed by computing the

matching function fi. As explained in Section II, the match-

ing function fi should be close to zero when the resources vi
allows application appi to run smoothly, should be negative

if appi needs more resources, and positive whenever it has

more than enough.

We implemented the matching function as in (4), due to

the proved convergence properties (see Section III). The job

response time, Ri, of (III) is measured using the the job start

times and finishing times signaled by the applications.

The application response time Ri of (4) can be computed

as the maximum or the average of the job response time

over a time window which can be properly specified. In the

experiments we use the average over the last 10 jobs.

C. OS support

The basic support needed from the OS is the capabil-

ity of implementing virtual processors. Our RM uses the

SCHED_DEADLINE scheduling class [9], which implements

global EDF over Linux. We chose this mechanism be-

cause of its in-depth integration within the Linux kernel6.

The SCHED_DEADLINE scheduling class fully supports

multicore architecture, processor affinities, and all other

features of modern Linux schedulers. SCHED_DEADLINE

combines EDF scheduling with hard CBS (Constant Band-

width Servers) [22]. Each task is scheduled in its own server

with adjustable parameters.

The SCHED_DEADLINE scheduling class allows chang-

ing the reservation of a task or a group of tasks at run-time.

In particular, we use the sched_setscheduler2 func-

tion to set the following parameters of virtual processors:

− the period of the CPU reservation;

− the deadline;

− the time budget.

The period of the CPU reservation in our experiments is cho-

sen to be equal to the period of the resource manager.

D. Resource Manager

The resource manager implements the mechanism to dis-

tribute the resource described by equation (2). Specifically, it

reads the matching function for each active applications and

updates the virtual platforms. The RM runs as a forever loop

within a SCHED_DEADLINE server with period of 1 msec

and budget of 10 μsec.

When assigning the virtual processors, the RM takes care

of the following crucial aspects:

6We are using branch mainline-dl that can be found at https://github.com/
jlelli/sched-deadline/.

1) Not to exceed the maximum available computing ca-

pacity determined by the number of cores minus some

safety margin which should allow for the execution

of the resource manager itself and for other operating

system routines.

2) When assigning the single virtual processors, not to

exceed the individual processor capacity minus some

safety margin to leave space to code which has to ex-

ecute in the core.

3) When adjusting the virtual processors, to start by de-

creasing and then by increasing the bandwidth of the

virtual processors, to avoid that the assigned resource

exceeds the available one during some transients.

Below is shown a stub of the RM code.

int main(int argc, char* argv[]) {

/∗ extract command line parameters and initialize ∗/
while(true) {

num_applications = update_applications(apps);

if /∗ reset rule ∗/ reset = 1;

else reset = 0;

compute_vp(apps, num_applications,

iterations, reset); /∗ equation (2) ∗/
rescale_vp(apps, num_applications);

set_vp(apps, num_applications); /∗ call the scheduler ∗/
++iterations; /∗ t++ in equation (2) ∗/

}

}

Since the function compute_vp may produce some non-

feasible bandwidth assignments, the function rescale_vp

ensures that the assigned bandwidths do not exceed the avail-

able capacity. Finally, the RM allows a reset rule, which re-

initializes the adaptation of the VPs by resetting the time

counter used to compute εRM(t) of (2). In our implemen-

tation, the reset is done when the number of applications

changes.

V. EXPERIMENTAL EVALUATION

We describe below experiments settings. The experimental

platform is a quad-core running at 3.4GHz. In single core

experiments three cores are switched off before the exper-

iment starts, while in multicore experiments all cores are

online. The RM always allocates 90% of the available cores

to the set of running applications. The remaining 10% is left

available for the RM and the other kernel processes.

To simulate service-aware applications, we developed a

synthetic test application, which performs some computa-

tion and uses some memory, depending on the service level

si. Such an application has one type of job with deadline

Di, which is executed in a forever loop. Each job performs

acpui si + bcpui mathematical operations and uses amem
i si +

bmem
i bytes of memory to simulate computation and mem-

ory usage, respectively. Hence, applications with a large acpui

and amem
i are more service-sensitive than applications with

acpui and amem
i close to zero. The application service level

is adapted according to (7) and the small constant value of

εi determines the amount of correction in the service level

6363

si. As illustrated in Eq. (7), a large εi produces a quick

adaptation together with significant fluctuations, while small

values produce a smoother evolution at the price of a slower

adaptation. All applications parameters (Di, εi, a
cpu
i , bcpui ,

amem
i , and bmem

i), which determine the application behavior

and its capacity to adapt, are read from command line. This

enables, for example, the coexistence of fully service-aware

applications together with service-unaware ones.

Single core, VP convergence: In the first scenario, we

validate Proposition 3.2 by testing the convergence of the

virtual processors vi to the expression of Equation (12),

which is proportional to the application weight. To produce

the hypotheses of Proposition 3.2, all applications keep a

constant high service level (overload condition). All appli-

cations use no memory and perform 30K mathematical op-

erations without adapting service level (bcpui = 30K, acpui =
amem
i = bmem

i = 0). Also they all have a job deadline Di =
100 msec. The convergence is tested in correspondence to

application arrivals (at time 1, 2, and 4), and application ter-

mination (at time t = 3). The results are shown in Figure 3.

The virtual processors are scheduled on a single core, we

use as maximum assignable bandwidth Uub = 0.9. At time

0 1 2 3 4 5

0.8
0.6
0.4
0.2

0

1 app
1

app
2

app
3

app
4

time (sec)

V
P

s
(v

i
)

Figure 3. Convergence of the virtual processors.

t = 0, app1 with weight λ1 = 0.1 is started. Being the only

one running the RM assigns all the available resource to it.

At time 1, a second application with weight λ2 = 0.3 starts.

We observe that the the new values of the VPs tend exactly

to the theoretical values v1 = Uubλ1/
∑

i λi = 0.225 and

v2 = Uubλ2/
∑

i λi = 0.675. At time 2, app3 with λ3 = 0.2
enters and the VPs reach again the theoretical values dictated

by (12). Finally, at time 3 app1 terminates, while at time 4 a

new one with weight λ4 = 0.5 enters. We observe that in all

these circumstances the VPs tend to the expected theoretical

values since Proposition 3.2 is satisfied.

Single core, adaptive and non-adaptive applications:

In the next experiment, we tested the coexistence between

service-aware and service-unaware applications. Again, the

RM assigns VPs such that Uub = 0.9. All the applications

have jobs that should complete in 10 msec. The values given

to the application parameters can be found in Table I.

In Figure 4 we show the results of the experiment. At

time t = 0 two applications are started. The first one is

“legacy” (non-adaptive), the second one can adapt its ser-

vice level. The matching function fi of the non-adaptive ap-

plication settles to zero and the RM therefore stops assign-

ing more resources to app1. The adaptive application, app2,

0.4
0.3
0.2
0.1

0

0.5
0.6
0.7

1.0

0.0

−1.0

0.5

−0.5

1.5
1

0.5
0

3.5
3

2.5
2

300 15 2520105

app
1

app
2

app
3

app
4

app
5

time (sec)

V
P

s
(v

i
)

m
at

ch
.

fu
n

(f
i
)

S
L

s
(s

i
)

Figure 4. Adaptive and non-adaptive applications.

takes the rest of the CPU and increases its service level until

the amount of CPU received does not match its service level.

At time t = 5 another legacy application is started, with a

lower weight λ3 than the previous non-adaptive one. Initially

it is assigned a VP equal to 0.1 and its fi is negative. This

implies that the RM assigning to app3 some amount of the

CPU that drives its matching function to zero. This is done

by penalizing app2, which must reduce its service level to

be satisfied with the VP it receives. The relationship between

the two “legacy” application is determined by their weights:

the newcomer receives less resources than the previous one.

At time t = 10 another adaptive application enters and

adjust its service level to be satisfied with its VP. The two

legacy applications are terminated respectively at time t =
15 and at time t = 25 while another adaptive application

is started at time t = 20. This last adaptive application has

a lower workload with respect to the others. Due to this and

to the termination of the two legacy applications, it is able to

increase its service level. app2 and app4 react to the increase

of VPs by raising the higher service level. Notice that all

matching functions approach zero.

Multicore, SL and VP adaptation: In this experiment,

we test the adaptation of both the service levels and the vir-

tual processors over a multicore. We have 12 applications,

each of them uses no memory and has acpui = 200 and bcpui =
30. All the applications have jobs that should complete in 10

a
cpu
i

b
cpu
i

amem
i

bmem
i

εi λi

app1 0 1000 0 0 - 0.5
app2 1000 0 0 0 0.1 0.5
app3 0 1000 0 0 - 0.2
app4 1000 0 0 0 0.1 0.2
app5 100 0 0 0 0.01 0.8

Table I
ADAPTIVE AND NON-ADAPTIVE APPLICATIONS: SETTINGS.

6464

msec. The RM assigns VPs such that Uub = 3.6 = 0.9× 4,

since the machine has all the four cores enabled.

Application app1 is assigned a weight λ1 = 0.8, app12 is

assigned λ12 = 0.2, while the other ten applications are all

assigned weight λ2..11 = 0.5. The virtual processor assign-

ment vi, the matching function fi, and the service levels si
are all shown in Figure 5 from top to bottom.

0.7
0.8
0.9

1

12

2
0

10
8
6
4

0 2 4 6 8 10

1.0

0.0
0.5

−0.5

0.4
0.3
0.2
0.1

0

0.5
0.6

app
1

app
2...11

app
12

time (sec)

V
P

s
(v

i
)

f i
S

L
s

(s
i
)

Figure 5. CPU intensive applications.

We can observe that the RM and the applications are ca-

pable to implicitly coordinate so that the assigned virtual

processors are proportional to the service level of all appli-

cations, with approximately the same proportionality factor

(being the applications the same). The difference in the VP

allocation is only determined by the different weights λi.

Multicore, SL and VP adaptation with memory: In this

experiment, we tested the RM with some memory-intensive

applications, with parameters reported in Table II. All the

applications have jobs that should complete in 10 msec.

a
cpu
i

b
cpu
i

amem
i

bmem
i

εi λi

app1..8 1000 300 1MB 10KB 0.05 0.5
app9 1000 300 0 10KB 0.05 0.2
app10 1000 300 10MB 10KB 0.05 0.2
app11 1000 300 0 10KB 0.05 0.8
app12 1000 300 10MB 10KB 0.05 0.8

Table II
MULTICORE WITH MEMORY-CONSUMING APPLICATIONS: SETTINGS.

Figure 6 shows, from top to bottom, the virtual processors,

the matching functions, and the service levels. The initial

service level is 1. We observe that the usage of memory does

not impact the execution requirement much. The two appli-

cations which are using a large amount of memory are as-

signed some share of CPU and they still perform well (their

matching functions are close to zero). The weights still de-

termine the relative allocation of the resource and the values

of the service levels. In fact, applications with higher weight

receive more resource and, consequently can execute at a

higher service level.

RM overhead: The final experiment is dedicated to the

evaluation of the time consumed by the RM. For this exper-

iment we ran it 1000 times with a number of applications

from 1 to 24. In Figure 7 (top) the measured run-time of

the RM is shown. Notice that the resource manager itself

measures its overhead by tracking its execution time, con-

taining both the sensors measurement retrieval and its own

execution. Also we draw by solid lines the maximum and

minimum and by a dashed line the average of the run-time.

During the experiments, we realized (not surprisingly) that

most of the time taken by the RM was spent in accessing the

shared memory structure that was used for the communica-

tion between the RM and the applications. Since the shared

memory is protected by a semaphore, as the number of ap-

plications grows the run-time of the RM can become much

larger due to the higher risk of being blocked.

In the bottom of the figure we plot the RM overhead with-

out the time taken to access the shared memory (still in μsec,

labeled “no shared mem”). We claim that, in the future, a

more efficient implementation of the RM (possibly devel-

oped in kernel space) that limits the usage of shared memory

can provide an overhead that is much similar to the bottom

figure. This experiment confirms one the most interesting

feature of our resource management framework that is the

linear complexity of the resource manager.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a game-theoretic resource man-

ager for real-time applications. The behavior of each appli-

cation appi is measured by its matching function fi. De-

pending on the application-dependent weight λi some of the

needed correction is made at the resource management level.

0 2 4 6 8 10

−1.0

0.5

−0.5
0.0

0.4
0.3
0.2
0.1

0

0.5
0.6

1.0

0.0

0.8
0.6
0.4
0.2

time (sec)

V
P

s
(v

i
)

f i
S

L
s

(s
i
)

app
1...8

app
9

app
10

app
11

app
12

Figure 6. Applications using memory.

6565

200

400

600

800

3.5

2.5

1.5

0.5

3

2

1

0 5 10 15 20 25

0

number of applications (n)

ru
n

-t
im

e
(μ

se
c)

n
o

sh
ar

ed
m

em

Figure 7. Overhead of the RM.

The remaining correction is made by the application itself

that adjusts its service level si. Thanks to the decoupling of

this two operations, the RM has linear time complexity in the

number of applications. The entire framework has been im-

plemented in Linux, using the SCHED_DEADLINE schedul-

ing class to isolate applications. Extensive experiments were

performed to validate the theory.

In the future we plan to continue the tuning of the RM,

to improve its implementation and to extend it with other

management policies such as energy saving.

REFERENCES

[1] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, “An ex-
perimental time-sharing system,” in Proceedings of the Spring
Joint Computer Conference, vol. 21, May 1962, pp. 335–344.

[2] E. G. Coffman Jr and L. Kleinrock, “Computer scheduling
methods and their countermeasures,” in Proceedings of the
Spring Joint Computer Conference. New York, NY, USA:
ACM, Apr. 1968, pp. 11–21.

[3] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A re-
source allocation model for QoS management,” in Proceed-
ings of the IEEE Real Time System Symposium, 1997.

[4] M. Sojka, P. Pı́ša, D. Faggioli, T. Cucinotta, F. Checconi,
Z. Hanzálek, and G. Lipari, “Modular software architecture
for flexible reservation mechanisms on heterogeneous re-
sources,” Journal of Systems Architecture, vol. 57, no. 4, pp.
366–382, 2011.

[5] E. Bini, G. C. Buttazzo, J. Eker, S. Schorr, R. Guerra,
G. Fohler, K.-E. Årzén, R. Vanessa, and C. Scordino, “Re-
source management on multicore systems: The ACTORS ap-
proach,” IEEE Micro, vol. 31, no. 3, pp. 72–81, 2011.

[6] K.-E. Årzén, V. Romero Segovia, S. Schorr, and G. Fohler,
“Adaptive resource management made real,” in Proc. 3rd
Workshop on Adaptive and Reconfigurable Embedded Sys-
tems, Chicago, IL, USA, Apr. 2011.

[7] S. Oikawa and R. Rajkumar, “Portable rk: a portable resource
kernel for guaranteed and enforced timing behavior,” in Pro-
ceedings of the 5

th IEEE Real-Time Technology and Applica-
tions Symposium, 1999, pp. 111–120.

[8] B. Brandenburg, A. Block, J. M. Calandrino, U. Devi,
H. Leontyev, and J. H. Anderson, “LitmusRT: A status
report,” Proceedings of the 9th Real-Time Linux Workshop,
pp. 107–123, 2007.

[9] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An
EDF scheduling class for the Linux kernel,” in Proceedings
of the 11th Real-Time Linux Workshop (RTLWS), Dresden,
Germany, October 2009.

[10] P. Zijlstra and S. Rostedt, “Comments on: [RFC][PATCH
00/16] sched: SCHED_DEADLINE v4,” Available at
http://thread.gmane.org/gmane.linux.kernel/1278219, 2012.

[11] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A cooperative
game framework for QoS guided job allocation schemes in
grids,” IEEE Transactions on Computers, vol. 57, no. 10, pp.
1413–1422, Oct. 2008.

[12] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-
theoretic method of fair resource allocation for cloud comput-
ing services,” The Journal of Supercomputing, vol. 54, no. 2,
pp. 252–269, Nov. 2010.

[13] D. Grosu and A. T. Chronopoulos, “Noncooperative load bal-
ancing in distributed systems,” Journal of Parallel and Dis-
tributed Computing, vol. 65, no. 9, pp. 1022–1034, 2005.

[14] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Design and
evaluation of a feedback control EDF scheduling algorithm,”
in Proceedings of the 20

th IEEE Real Time Systems Sympo-
sium, Phoenix (AZ), U.S.A., Dec. 1999, pp. 56–67.

[15] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole, “A feedback-driven proportion allocator for
real-rate scheduling,” in Proceedings of the 3

rd Symposium on
Operating Systems Design and Implementation, Feb. 1999.

[16] J. Eker, P. Hagander, and K.-E. Årzén, “A feedback scheduler
for real-time controller tasks,” Control Engineering Practice,
vol. 8, no. 12, pp. 1369–1378, Jan. 2000.

[17] J. Silvestre-Blanes, L. Almeida, R. Marau, and P. Pedreiras,
“Online QoS management for multimedia real-time transmis-
sion in industrial networks,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 3, pp. 1061–1071, Mar. 2011.

[18] G. Chasparis, M. Maggio, K.-E. Årzén, and E. Bini, “Dis-
tributed management of CPU resources for time-sensitive ap-
plications,” in Proceedings of The 2013 American Control
Conference, 2013.

[19] H. J. Kushner and G. G. Yin, Stochastic Approximation and
Recursive Algorithms and Applications, 2nd ed. Springer-
Verlag New York, Inc., 2003.

[20] H. Khalil, Nonlinear Systems. Prentice-Hall, 1992.

[21] K. Border, Fixed Point Theorems with Applications to Eco-
nomics and Game Theory. Cambridge University Press,
1985.

[22] L. Abeni and G. Buttazzo, “Integrating multimedia applica-
tions in hard real-time systems,” in Proceedings of the 19

th

IEEE Real-Time Systems Symposium, Madrid, Spain, Dec.
1998, pp. 4–13.

6666

