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Abstract—The performance and power efficiency of multi-core
processors are attractive features for safety-critical applications,
as in avionics. But increased integration and average-case per-
formance optimizations pose challenges when deploying them
for such domains. In this paper we propose a novel approach
to compute a interference-sensitive Worst-Case Execution Time
(isWCET) considering variable accesses delays due to the concur-
rent use of shared resources in multi-core processors. Thereby we
tackle the problem of temporal partitioning as it is required by
safety-critical applications. In particular, we introduce additional
phases to state-of-the-art timing analysis techniques to analyse
an applications resource usage and compute an interference
delay. We further complement the offline analysis with a runtime
monitoring concept to enforce resource usage guarantees. The
concepts are evaluated on Freescale’s P4080 multi-core processor
in combination with SYSGO’s commercial real-time operating
system PikeOS and AbsInt’s timing analysis framework aiT. We
abstract real applications’ behavior using a representative task
set of the EEMBC Autobench benchmark suite. Our results
show a reduction of up to 75% of the multi-core Worst-Case
Execution Time (WCET), while implementing full transparency
to the temporal and functional behavior of applications, enabling
the seamless integration of legacy applications.

Keywords—worst-case execution time, multi-core, safety-critical
real-time systems, avionics

I. INTRODUCTION

In recent years, the decreasing relative cost of electron-
ics and the pace of electronics development have led to
the adoption of modern Commercial Off-The-Shelf (COTS)
computing architectures in avionics. Increasing demand for
energy efficiency and performance will further introduce multi-
core processors, and especially Multi-Processor Systems on
Chip (MPSoCs) in safety-critical domains, such as avionics.
Besides certification issues with COTS hardware [1], multi-
core processors introduce additional problems related to the
isolation of functionally disjoint applications.

In avionic systems the Integrated Modular Avionics (IMA)
concept is a standard system architecture integrating applica-
tions of different criticality on the same hardware platform.
The so-called partitioning concept is introduced for manage-
ment and analysis of safety aspects and to enable the use
of incremental certification and development paradigms, cf.
[2], [3]. Partitioning ensures spatial and temporal separation
of unrelated functions, comprising isolation of address spaces
and bounding of temporal interferences respectively, cf. [4],
[5]. Spatial separation is considered to be solved since it is
not solely required in safety-critical systems. For instance,

techniques, such as Memory Management Units (MMUs)
and Input/Output Memory Management Units (IOMMUs), are
common practice in today’s computing platforms. However,
multi-core processors introduce challenges for temporal parti-
tioning [6], complicating the exact determination of the timing
behavior for shared-resource accesses, such as Network-on-
Chip (NoC) and shared caches.

In this paper we tackle the problem of temporal parti-
tioning for multi-core processors, since it is not sufficiently
solved but strongly required for safety-critical systems. For this
purpose we introduce a Worst-Case Execution Time (WCET)
analysis for multi-core processors considering shared resource
interferences between applications. Intuitively explained, we
split timing analysis into core-local and shared-resource inter-
ference delay analysis. We further refer to these bounds as
interference-sensitive Worst-Case Execution Time (isWCET).
We complement offline analysis with runtime resource usage
enforcement to bound the maximum inter-core interference.
Using this novel approach, we answer the question of how
to efficiently compute a multi-core WCET and guarantee
temporal and resource usage behavior for an arbitrary number
of hard real-time applications. In contrast to related approaches
we are able to guarantee deadlines for arbitrary hard real-time
applications, while avoiding resource privatisation and mutual
analysis of in-parallel scheduled applications. Hence enabling
independent analysis of applications supporting incremental
development and certification. We evaluate our approach on
a modern COTS MPSoC, Freescale’s P4080, using extensions
to SYSGO’s Real-Time Operating System (RTOS), PikeOS,
and AbsInt’s timing analysis framework, aiT.

The paper is structured as follows. We define our basic ter-
minology and the resource capacity enforcement in Section II.
Thereafter we describe the details of the WCET analysis
extensions and how to compute a multi-core timing bound in
Section III. In Section IV and V we present our implementation
and evaluate the approach. We discuss the results and related
research in Sections VI and VII. We conclude the paper with
a short summary and future work topics in Section VIII.

II. RESOURCE CAPACITY ENFORCEMENT

Temporal isolation is not a new topic in safety-critical
systems. It becomes much more complex when such systems
deploy multi-core processors. In single-core systems temporal
isolation with respect to shared resources has to be considered
only if Direct Memory Access (DMA)-capable peripheral
devices or interrupts are enabled [7]. By means of abstraction
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layers, device drivers and disabling of unpredictable interrupts
it is possible to avoid any unintended parallel accesses of
processing cores and peripheral devices to memory. In case of
multi-core processors, parallel resource accesses are inherent
and hardware arbitrated. Firstly, for reasons of maintaining
competitive advantage the exact arbitration in COTS proces-
sors is unknown in most cases. Secondly, preventing or con-
trolling interfering accesses of low criticality applications may
not be possible, due to their loose certification requirements,
cf. [5]. Hence the temporal behavior of applications is hard
or even impossible to predict and timing analysis becomes
increasingly complex.

We target an integrated approach of runtime mechanisms
and multi-core worst-case timing analysis. The runtime mech-
anisms are required to enforce defined resource capacities per
scheduling entity. The implications of the capacity guarantees
are further used to compute additional delays due to concur-
rent resource accesses - interference delays. We calculate an
interference-sensitive WCET bound, based on the single-core
WCET and the interference delays.

The concepts are designed such that they (1) are func-
tionally and temporally transparent to applications, (2) avoid
mutual analyses of in-parallel scheduled tasks and (3) allow
to utilise parallel resources. Functional transparency avoids
any ability of applications to control the runtime mechanisms,
which is inevitable to fulfill safety requirements. Temporal
transparency prevents influences on the timing of an appli-
cation. Avoiding mutual analysis, greatly reduces complexity,
since each application can be analysed separately. Furthermore,
it is essentially required to enable incremental certification
and independent development of applications, cf. [2], [3]. As
already mentioned, multi-core processors are, amongst others,
interesting due to their performance. Consequently, leveraging
built-in parallelism is inevitable for efficient utilisation of the
platform.

We further use the terms process to refer to the smallest
scheduleable unit, which is used for all concepts. We are aware
of different notations for such a unit, depending on application
domain and abstraction layer. For instance General-Purpose
Operating Systems (GPOSs) use the terms thread and process,
where processes are separated from each other and threads
share the address space of their parent process. In the avionics
domain the ARINC 653 standard [4] is commonly used, its
entities are partitions and processes. Partitions can consist of
multiple processes and shall be separated from each other. The
separation requirements for partitions are more strict than for
GPOS since each partition gets guarantees when and how long
it is executed.

To partition a resource it is necessary to quantify its
capabilities. We abstract a resource, using its capacity (CR),
and each requesting process (Pi) is assigned to a certain share
(CPi ) of it. In order to provide a safe mechanism, applicable
to real-time systems, each share needs to be guaranteed. We
further refer to CPi

as processes limit or capacity. For de-
scribing the approach we introduce the concepts of limitation,
monitoring and suspension.

A. Limitation

Limitation is an offline mechanism used to assign the ca-
pacity CPi per process. This limit is a numerical representative
for a specific resource parameter, e.g. bandwidth or number of
accesses. The actual parameter depends on the target resource.
To provide a safe partitioning the limits are required to bound
the resource usage of processes. Furthermore, the resource
shall not be over-utilised. Hence the sum over all process
capacities must be bounded by the overall resource capacity
CR, cf. Equation 1. The computation of the limits is part of
the extended worst-case analysis and discussed in Section III.

CR ≥
N−1∑
i=0

CPi
(1)

B. Monitoring

Runtime monitoring is used to observe the resource usage
of a process. Once a process reaches a limit, monitoring is
responsible for triggering the suspension mechanism.

Any delays between limit violation and process suspension
have to be taken into account, e.g. via a sufficient safety margin
in the limits. Monitoring as such has to be transparent, in both,
functional and temporal dimension. Functional transparency
avoids any control from processes to the monitoring mecha-
nism. Temporal transparency is required to prevent influences
on the execution time of processes, which otherwise would
additionally complicate timing analysis.

C. Suspension

If a violation of the limit has been detected a suspension
action is triggered. The action is responsible to prevent further
accesses to the shared resource, avoiding interference to other
processes.

Requirements to suspension are functional transparency
and deterministic reaction timings. The latter is required to
account for resource usages that a process can issue until it is
finally suspended. Hence it has to be included into the limits
as well.

D. Example: Concurrent NoC Accesses

To illustrate the operation of the mechanism, we describe
an example with two processes P0, P1 that compete for NoC
accesses. Figure 1 shows the processes P0 to PN−1 executed
in a periodic manner on core0 and core1. All processes are
scheduled within a periodic time frame. Each process has an
execution window, during which time and resource usage are
guaranteed. This can be understood as a simplistic view of
time-triggered execution, as used in avionics. Processes P0

and P1 are shown in more details. Each diagram plots the
accumulated number of memory accesses (C) over time under
different conditions. Continuous lines represent normal execu-
tion, dashed lines depict abnormal and dotted lines partitioned
conditions. Horizontal dot-dashed lines represent the limits
CPi . The finalisation of a process is marked by an x.

Under normal conditions (continuous lines), both processes
finish within their process window. For abnormal conditions
(dashed lines) P0 issues significantly more accesses than in
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Fig. 1. Example showing the resource usage (C) of processes P0 and P1

over time, depicting behavior under normal (continuous), abnormal (dashed),
and partitioned (dotted) conditions.

the normal case. This can, for instance, be caused by a soft-
ware error (unbounded loop) or Single Event Upsets (SEUs).
Consequently P0 executes until it is stopped at the end of
the process window. Itsadditional accesses interfere with those
of P1 such that P1 suffers higher delays, causing a deadline
violation. To avoid such unbounded temporal impacts between
processes we introduce the described partitioning approach
(dotted lines). Once P0 exhausts its limit (CP0

), it is suspended.
Consequently, P1 experiences some increase in execution time,
but since this is bounded by CP0

, P1 is able to finish within
its deadline.

In summary, by guaranteeing a resource usage limit per
process, the maximum interference with other processes is
bounded. Hence, faults of a process do not propagate to other
processes, thus temporal isolation and fault containment can
be ensured.

III. WCET ANALYSIS

This section is used to describe our novel approach to
compute a isWCET bound. This bound includes additional
delays due to interferences with in-parallel scheduled processes
without requiring mutual analyses of all processes. We will
first give a brief overview of state of the art static timing
analysis techniques and challenges that arise with modern
processor architectures. Based on that, we derive additional
analysis blocks necessary to compute a multi-core bound. For
this purpose a timing-compositional system with respect to
shared resource usage is required.

A. Timing Analysis

Over the last several years, a more or less standard archi-
tecture for timing analysis tools has emerged [8], composed
of three major building blocks:

• control-flow reconstruction and static control and data
flow analyses,

• micro-architectural analysis, computing upper bounds
on execution times of basic blocks [9],

• path analysis, computing the longest execution paths
through the program [10].

The data flow analysis also detects infeasible paths, i.e. un-
reachable program points during real execution. This reduces
the complexity of the following micro-architectural analysis.
Basic block timings are determined using an abstract processor
model to analyze the instruction flow through the pipeline
accounting for cache hit/miss information. This model defines
a cycle-level abstract semantics for each instruction’s execution
yielding in a certain set of final system states. After the analysis
of one instruction has been finished, these states are used
as start states in the analysis of the successor instruction(s).
Here, the timing model introduces non-determinism that leads
to multiple possible execution paths in the analyzed program.
The pipeline analysis needs to examine all of these paths. This
architecture is implemented by AbsInt’s timing analysis tool
aiT.

B. Predictability Challenges

Modern embedded processors try to maximize the
instruction-level parallelism by specific average-case perfor-
mance enhancing features. For example pipelines increase
performance by overlapping the executions of consecutive
instructions. Hence, a timing analysis cannot consider in-
dividual instructions in isolation. Instead, they have to be
analyzed collectively accounting for their mutual interactions
to obtain tight timing bounds. Commonly used performance-
enhancing features as caches, static/dynamic branch prediction,
speculative execution, out-of-order execution, branch history
tables, or branch target instruction caches can cause timing
anomalies [11] which render WCET analysis more difficult.
Intuitively, a timing anomaly is a situation where the local
worst-case does not contribute to the global worst-case. For
instance, a cache miss - the local worst-case - may result in
a globally shorter execution time than a cache hit because of
hardware scheduling effects. In consequence, it is not safe to
assume that a memory access causes a cache miss; instead both
machine states have to be taken into account. An especially
difficult timing anomaly are domino effects [12]: A system
exhibits a domino effect if there are two hardware states
s, t such that the difference in execution time (of the same
program starting in s, t respectively) may be arbitrarily high.
The approach presented in the following is based on the idea
to separate the analysis of core-local worst-case behavior and
the potential worst-case interference delays for accesses to
shared resources. This requires timing-compositionality [13].
Consequently, it needs to be proven that the target architecture
fulfills the requirements or can be configured in a way that
avoids potential sources of timing anomalies.

Concerning processor caches, both precision and efficiency
depend on the predictability of the employed replacement
policy [14], [15]. Another deciding factor is the write policy
(write-through, write-back). The write-back policy is difficult
to analyze due to uncertainties in the cache analysis, the
precise occurrence of such a write-back operation is not
known, increasing the search space. However, a smart system
configuration can decrease analysis complexity and increase
predictability.

C. Multi-core Analysis

The main contribution of this paper is the computation
of the isWCET (wcetis) as described in the following. The
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computation of a timing bound consists of two phases: (1)
single-core timing and resource analyses per process and (2)
combination of the single-core results of in-parallel scheduled
processes to derive the multi-core bounds. The single-core
timing analysis includes pipeline and local cache analysis. In
addition to this state of the art analysis, a resource analysis has
to be performed for each shared resource used by the respective
process. Consequently, the single-core analysis of process Px

returns a timing bound, denoted wcets,Px
, and an upper bound

for the usage (CPx
) of every utilised shared resource, further

denoted Worst-Case number of shared Resource Accesses
(WCRA). Both, timing and resource analyses, are implemented
using the described standard architecture for timing analysis.
The computation of the multi-core timing bound, wcetis, is
based on the single-core analysis results and the presence of
the runtime resource capacity enforcement. For the sake of
simplicity we exemplarily focus on only one shared resource,
the main memory, including the required interconnect.

The general issue of shared resources are unpredictable
access delays that depend on the resource usage of connected
devices, e.g. processor cores and peripherals. We argue, arbi-
tration delays to be a crucial, additional factor that influences
shared resource access delays. Possible sources for such delays
can be the NoC, shared caches, or the memory controller.
To compute the additional interference delays it is necessary
to determine the worst-case overlap scenario, for concurrent
cores. Naturally the worst-case access delay increases dispro-
portionately with a rising number of cores. Hence the worst-
case overlap scenario for N cores appears if all requests are
issued in parallel. This assumption is true as long as Equation 2
is valid, where di denotes the resource access delay if i
requests are issued in parallel. In practice Equation 2 can
be interpreted such, that no two delays di, di+1 exist, where
the relative delay di is greater than di+1, normalising to the
number of requesters. For architectures where Equation 2 is
not valid, the worst-case overlap scenario has to be derived
differently. Either it can be derived from the architecture
parameters or by analysing all possible permutations, selecting
the maximum.

di
i
≤ di+1

(i+ 1)
∀i ∈ N, 1 ≤ i ≤ N (2)

Figure 2 exemplarily shows how the interference delay is
computed for N = 4 cores. The x-axis shows the accumulated
resource accesses for each process Pi. It can easily be under-
stood that the access delay drops from di to di−1 if one process
has exhausted its capacity. For instance, all of the accesses
of P0 suffer interference with other processes, since it is the
process with the lowest WCRA. Hence, the respective access
delay is the maximum delay, d4 for 4 cores and dN in the
general case. If P0 exhausts CP0 = 80, the accesses of the
remaining processes further only suffer from delay d3. The
number of accesses of P1, that can be accounted with reduced
delay can be expressed as the difference of accesses between
P0 and P1, i.e. CP1

− CP0
= 30. The sames applies to the

accesses of P2 and P3.

The general case, to compute a multi-core bound for pro-
cess Px, can be expressed with Equation 3. The accesses of all
processes with higher WCRAs than Px have to be considered

P3

P2

P1

P0

80 C

d1

i = 0 i = 1 i = 2 i = 3

110 170 250

accesses with delay d4
accesses with delay d3

accesses with delay d2
accesses with delay d1

d2d3d4

Pi

Fig. 2. Computation of the interference delay for process P3, considering
the resource capacities CP0 to CP3 for N = 4 processes.

as overlaps. Hence the computation of the interference delay
stops after x iterations. In order to apply Equation 3 the
WCRAs of the processes are required in ascending order, with
CP0

being the smallest.

wcetis(x) =

single-core bound︷ ︸︸ ︷
wcets,Px

+

dN · CP0
+

x∑
i=1

(
dN−i · (CPi

− CPi−1
)
)

︸ ︷︷ ︸
interference delay

(3)

Since the runtime mechanisms enforce the process capaci-
ties the proposed timing bound computation is safe. Although
Equation 3 only covers a single resource it can easily be
extended to iterate over multiple resources.

IV. IMPLEMENTATION

In this section we cover the implementation of the de-
scribed concepts. The WCET analysis extensions are imple-
mented using AbsInt’s aiT, the world leading commercial
framework for static timing analysis. It has been success-
fully applied to real avionics applications [16]. The runtime
mechanisms have been implemented in SYSGO’s PikeOS, a
commercial RTOS which has been used in multiple certified
projects, like the Airbus A400M [17] and the Airbus A350
[18]. As target computing platform we select Freescale’s P4080
as one example for a modern COTS MPSoC, with Freescale
having a long tradition of its processors being used in many
avionic systems. The eight e500mc PowerPC cores and the
CoreNet NoC platform interconnect are from special interest
for our work. The NoC of P4080 is considered as black box,
since not enough details on design, timing and arbitration are
available for in-depth analysis.

A. Limitation

Process capacities can either be assigned using static anal-
ysis, measurement-based approaches or manually. We imple-
mented the described multi-core timing analysis in AbsInt’s
aiT analysis framework. The existing single-core analysis has
been extended to calculate the WCRA for memory accesses.
The calculation is based on the knowledge whether an access
is a cache hit/miss or unknown. Consequently it can be decided
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if an access is a local access (cache hit) or a memory/shared
resource access (cache miss or unknown). In order to provide
safe boundaries, accesses marked as unknown are treated as
shared resource accesses. Since the absence of timing anoma-
lies in case of memory accesses is assumed, cf. Section III-B,
this local decision is reasonable. The WCRA is determined for
each basic block. We extended path analysis to solve an Integer
Linear Program (ILP) optimising for WCRA. Besides this
extension, an appropriate architecture model for the e500mc
cores is required. In the current version a prototype, based
on an early e600 model is used. Architectural differences
have been derived from the processor manuals. The current
model does either represent L1 caches or Data Line Fill Buffer
(DLFB) and Instruction Line Fill Buffer (ILFB). This results
in large overestimations of the resulting WCETs and WCRAs.
This is however no limitation to our approach. To apply the tool
for the verification of safety-critical systems model refinement
and additional tool validation is required.

B. Monitoring and Suspension

Monitoring and suspension are implemented in SYSGO’s
real-time Operating System (OS), PikeOS. A similar imple-
mentation is available for evaluation purposes, using a bare
metal OS layer. Both implementations use the built-in proces-
sor core performance counter. They are configured to record
accesses to the bus interface and trigger an exception once the
limit of the process is reached. The corresponding Interrupt
Service Routine (ISR) further executes the suspension action,
i.e. the corresponding process is stopped and the core is idle
until the end of the actual process window. The implementa-
tions are encapsulated in a separate driver module. The current
implementation does yet ignore outstanding write-backs. In
productive implementations, such outstanding requests either
have to be handled during analysis, or avoided by invalidating
the caches during suspension.

C. Processor Core Configuration

The caches, Translation Lookaside Buffers (TLBs), Branch
Target Buffers (BTBs) and Branch History Tables (BHTs)
of the e500mc processor cores typically use Pseudo Least
Recently Used (PLRU) and First In First Out (FIFO) replace-
ment schemes. This makes them a non-timing-compositional
architecture according to [19]. In order to still be able to
assume timing compositionality we use the cores in a very
deterministic configuration, avoiding any known domino ef-
fects. Hence, the branch prediction is switched off, the data
cache is used in write-through mode, 2nd-level caches are
exclusively used as scratchpad memories, partial cache locking
is used to reach Least Recently Used (LRU) replacement,
and all TLBs are preloaded to avoid any miss. Avoiding all
these sources of domino effects still is no formal proof of
timing compositionality but is sufficient to use the platform
for evaluation. To cover for possible remaining timing effects,
it might be necessary to add some safety margin when using
the platform for real systems. Nevertheless, from our limited
set of practical experiments, we were not able to observe any
remaining effects and we will ignore them in the following. For
the use in safety-critical systems and for certification, further
analytical and experimental validation is required. Furthermore
it shall be noted that the validity of presented approach is
independent from the evaluation platform.

TABLE I. P4080 MEMORY ACCESSES LATENCIES FOR INCREASING
NUMBER OF CONCURRENT CORES, LATENCIES USED FOR EVALUATION

ARE MARKED BOLD

latency [cycles]
cores 1 2 3 4 5 6 7 8
read 41 75 170 268 296 438 459 603
write 38 164 244 463 516 736 782 1007

V. EVALUATION

In this section we evaluate the described approach with
respect to the reduction of the isWCET. In lack of results
for related approaches we fall back to the naive solution as
reference. This also requires the evaluation of the core-local
analysis phases for timing and resource usage. We conclude the
section by demonstrating the runtime effect of the partitioning,
by integrating all of the selected benchmarks. We use a
set of benchmarks from the EEMBC Autobench benchmark
suite [20]. After careful analysis of real avionics applications
the selected benchmarks have been identified to adequately
represent different applications’ behavior.

A. Worst-case Analysis

We use the naive approach as baseline comparison as there
are no data for other multi-core WCET approaches available.
With the naive approach, each memory access is accounted
with the maximum delay (d8 = 1007 for N = 8 cores). This
is a valid approach, as long as no assumptions on in-parallel
applications can be made. The timing bound is computed
according to Equation 4.

wcetnaive(x) = wcets,Px + dN · CPx (4)

Table I shows the memory access latencies for read and
write operations with increasing number of interfering cores.
The data is acquired using the approach described in [21],
while mapping all eight cores of the P4080 to the same
memory controller. Since the path from processor cores to
main memory is very complex it is not possible to obtain real
worst-case latencies without in-depth knowledge of the chip
design. Hence, the latencies in Table I shall only be understood
as indicators. As described, the architecture model, used for the
WCET analysis, is not able to represent both, L1 caches and
DLFB, ILFB. In order to have a comparable setup for analysis
and measurements, we disable the caches at runtime. However,
this does not restrict the presented concept or this evaluation,
only the absolute values are increased. This will also not affect
the general statements of the paper. For evaluation we always
use the higher latency, as marked in Table I, since they are
the safe decision as long as the exact distribution of read and
write accesses is not known.

We compare the analysed timing and resource usage
bounds (wcets,Px

, wcra) and respective, observed maximum
values in Table II. The appropriate bound deviation is relative
to the observed values. The results indicate relatively tight
bounds for execution and resource usage. Only the matrix and
aifftr benchmarks suffer huge overestimations.

Table III compares the computed multi-core bounds of
the naive (wcetnaive) and our interference-sensitive approach
(wcetis). The reduction is relative to the naive approach.
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TABLE II. COMPARISON OF STATICALLY ANALYSED TIMING
(wcets,Px ) AND RESOURCE USAGE BOUNDS (wcra), AND RESPECTIVE

MAXIMALLY OBSERVED EXECUTION TIMES (ET) AND RESOURCE
ACCESSES (RA).

analysed observed deviation
benchmark wcets,Px

[ms]
wcra
[106]

ET
[ms]

RA
[106]

ET
[%]

RA
[%]

a2time 151 3.2 71 1.7 113.4 88.4
cacheb 389 9.5 371 8.3 5.0 14.2

iirflt 516 13.5 369 8.1 40.0 67.2
rspeed 862 19.3 445 9.3 93.7 108.3
bitmnp 2393 53.8 1106 21.8 116.4 147.2
tblook 2371 56.8 1131 23.1 109.6 145.5
matrix 4707 99.9 230 4.3 1944.5 2249.3
aifftr 7193 190.0 87 2.2 8191.8 8681.8

TABLE III. COMPARISON OF INTERFERENCE-SENSITIVE WCET
(wcetis) AND THE NAIVE APPROACH (wcetNAIVE ).

benchmark wcetnaive
[ms]

wcetis
[ms]

reduction
[%]

a2time 2804 2804 0.0
cacheb 8362 7178 14.2

iirflt 11812 9735 17.6
rspeed 17095 12610 26.3
bitmnp 47560 27444 42.3
tblook 50014 28022 44.0
matrix 88524 36250 59.1
aifftr 166604 41813 75.0

As can be seen, the implications of the runtime resource
enforcement can reduce the multi-core timing bound up to
75%. Which, even if the absolute timings are huge, is a great
reduction, proofing the validity of our approach.

B. Functional Behavior

To demonstrate the functional behavior of monitoring and
suspension we use three scenarios:

(1) isolated: where core 0 executes the reference bench-
mark, while the remaining cores are inactive,

(2) interfered: with additional load on interconnect and
memory by interfering benchmarks on cores 1 to 7
without limiting their memory accesses,

(3) partitioned: with the same setup as for (2), but with
enabled limitation of cores 1 to 7, according to the
analysed WCRAs from Table II.

The reference benchmark, bitmnp, is executed on core
0. The benchmarks on cores 1 to 7 are used to introduce
interference for scenarios (2) and (3), while our partitioning
approach is only enabled for scenario (3). All benchmarks
are parametrised with the analysed WCRAs from Table II. To
intense the effect of interference, the benchmarks on cores 1
to 7 are executed iteratively, until the reference benchmark is
finished. Hence we increase the probability for the benchmarks
to reach their resource limit, which otherwise is very unlikely
or even impossible due to static analysis. The results are shown
in Figures 3, 4 and 5, respectively. Each figure shows a single
diagram per core, plotting the resource usage (C) over time.
Triangles indicate a suspension due to a limit violation. For
evaluation only one process window is used, but of course in
practice each core can accommodate multiple processes, cf.
Figure 1.

A comparison of the results illustrates the impact of in-
terference and partitioning. While bitmnp in isolation finishes
after 1071ms, its execution time is increased to 2876ms by
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Fig. 3. Observed resource usage (C), executing scenario (1), running bitmnp
on core 0 without any interference by other cores.
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Fig. 4. Observed resource usage (C), executing scenario (2), running bitmnp
on core 0 with interference by benchmarks on cores 1 to 7.

unlimited interfering cores. Enabling the partitioning causes
suspensions on cores 1 to 4, reducing the execution time of
bitmnp to 2230ms. The measured WCRAs for cores 1, 2, 3
and 4 further show a deviation of 8 to 12 accesses compared to
the configured limits of Table II. This stems from the overhead
of the suspension routine as described in Section II. The static
analysis of the corresponding routine returns a timing bound
of 25.0µs and a WCRA of 567 accesses.

VI. DISCUSSION

The evaluation has shown the validity and applicability of
the presented approach. The results of the single-core timing
and resource analysis are considerably high but reasonable
having in mind the prototype status of the architecture model.
The overestimation for both, timing and resource analysis,
is in the same order of magnitude. Comparing the different
benchmarks, the results for matrix and aifftr are significantly
higher than for others. This can be explained by the code
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Fig. 5. Observed resource usage (C), executing scenario (3), running bitmnp
on core 0 with interference by benchmarks on cores 1 to 7 and enabled
resource limitation according to the analysed WCRAs of Table II.

structure, containing triangular loops that are hard to analyse.
Also, the missing consideration of input data does effect those
benchmarks more than others, causing the analysis to examine
many paths that are infeasible in practice.

The evaluation of the resulting isWCETs shows a sig-
nificant reduction of up to 75% over the naive approach.
Comparing the reduction for different benchmarks, it can be
seen that the resulting effect clearly depends on the individual
benchmark characteristics. Precisely, the larger the difference
of WCRAs, the higher the WCET improvement. This can be
used to optimise system scheduling, for instance, schedule
applications such that one process with a lower and one with
a higher WCRA are scheduled in parallel. Applying this effect
to legacy applications, one can expect applications with only
a few core-local accesses to suffer a much higher WCET
increase, compared to applications with a relatively small
number of shared resource accesses.

The evaluation of the functional behavior proves the run-
time effect as described in Section II, the correctness of
the implementation and also shows the predicted overhead
for suspension. We have further shown how to bound the
suspension overhead, analysing the respective routine. In ad-
dition, the interrupt latency and outstanding instructions have
to be accounted. The interrupt latency for the e500mc cores
is limited to ≤ 10cycles, unless a guarded load or a cache
inhibited stwcx. instruction is in the last completion queue
entry [22]. For the latter cases the latency is determined
by the operations’ targeted memory location. In general the
outstanding operations depend on the application, but in terms
of memory accesses the worst-case occurs if every pending
instruction is a load or store. Any runtime overhead due to the
use of the performance counters is impossible, according to
Freescale. Hence an active process does not suffer temporal
delays by enabled monitoring.

Besides the multi-core WCET improvements, the described
partitioning further provides a safety net [23], which isolates
applications in cases of miss-behavior and faults. The so

ensured temporal fault containment guarantee is novel for
multi-core processors.

In summary, the architecture model is sufficient in order to
show the validity of the presented approach. For the judgement
of the results it shall be understood that the development of
an accurate architecture model is extremely time-consuming.
That is why we used a prototype that does not exactly represent
the real hardware. However, this does not limit the presented
approach and the general statement of the paper, since it only
influences the absolute results, but not the order of magnitude
for the WCET reduction. Moreover, it is possible to replace
the static analysis with a different technique, for instance a
measurement-based approach. The applicability only depends
on the target application and their certification requirements.
In particular, the resulting assurance has to be sufficient for an
application’s criticality.

VII. RELATED WORK

How to use multi-core processors in real-time systems is
an active field of research. Hence, over the past years several
very different approaches have been presented.

In [24], [25], Bellosa introduces the idea to leverage built-
in counters to acquire additional task runtime information.
These data are further used to extend task scheduling to
consider memory accesses. Even though we developed our
approach independently, this work can be seen as a conceptual
foundation. Recently, Yun et al. [26] presented an approach
that also uses processor performance counters to determine
the number of memory accesses of threads, separating real-
time and non-real-time threads.

However, they focus on the response times of non-real-time
threads, while our target is to give hard real-time guarantees.
They further assume the WCETs and number of cache misses
to be given beforehand. Hence we complement their work.

Schranzhofer et al. [27], Pellizzoni et al. [28], and Boniol
et al. [29] propose deterministic execution models to control
the access to shared resources. The basic concept is to divide
program execution into multiple phases and restrict their
capabilities. In [27], Schranzhofer et al. compare different
resource access schemes based on splitting the execution in ac-
quisition, execution, and replication phases. Each phase gets an
execution time and a maximum number of accesses to shared
resources assigned. With the different schemes the phases in
which communication to shared resources is permitted, are
distinguished and evaluated. Pellizzoni et al. [28] propose the
PRedictable Execution Model (PREM) architecture for single-
core COTS processors, introducing a co-scheduling for shared
resources. A program is split into sequences of what they
call predictable and compatible intervals. Predictable intervals
are restricted such that all data and instructions are preloaded
into caches, and system calls and interrupt preemptions are
prohibited. Traffic from peripheral devices is only permitted
during the execution phase of a predictable interval, resulting
in an architecture with very few contention for accesses to
shared resources. A comparable approach is presented by
Boniol et al. [29]. They also split execution in communication
and local execution phases. In contrast to Pellizzoni, they target
a multi-core processor and study several tools to realise such
an architecture.
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It would be interesting to compare the utilisation of such
resource privatising approach to ours, since we leave fine
grained arbitration to the hardware, allowing utilisation of
parallel resources. Furthermore, our approach does not require
any changes to the applications.

Another popular approach is joint analysis. To address shar-
ing of resources those approaches analyse the program flows
on all cores using the considered shared resource. Therefore
detailed knowledge on the state of execution is required. Yan
and Zhang [30] apply WCET analysis to multi-core processors
with shared L2 caches by analysing inter-thread dependencies.
The analysis is based on the program control flow and accounts
for all possible conflicts on the shared cache. Li et al. [31] and
Hardy et al. [32] extend this analysis by identifying possibly
overlapping threads and reducing the number of possible
conflicts between overlapping threads, respectively. Li et al.
use Message Sequence Charts (MSCs) and Message Sequence
Graphs (MSGs) to describe concurrent programs. Hardy et
al. use compiler techniques to identify single-usage blocks,
consequently only caching blocks that are statically known as
reused. Chattopadhyay et al. integrate shared cache and bus
analysis in various publications, cf. [33], [34], [35]. The bus
analysis is based on a Time Division Multiple Access (TDMA)
arbitration. In [35], the authors combine cache and bus analysis
with other architectural features such as pipelines and branch
prediction.

Our approach is considerably less complex, since it avoids
mutual analysis of applications. Instead abstracting an appli-
cation, using its time and resource requirements. We state
this to be essential for future platforms, containing increasing
numbers of cores.

Rosen et al. [36] and Paolieri et al. [37] are two examples of
approaches which propose changes to the hardware to address
the resource sharing problem and its consequences for WCET
analysis. Since the focus of this paper is on COTS processors,
further details on custom hardware based solutions will not be
discussed.

VIII. SUMMARY AND FUTURE WORK

In this paper we addressed the problem of computing
WCET bounds for multi-core processors to enforce temporal
partitioning. Intuitively explained, we split the timing analysis
into core-local analyses and computation of the worst-case
interference delay caused by the use of shared resources.
We further extend core-local analysis with additional phases
to account for the usage of shared resources. The proposed
approach uses runtime resource capacity enforcements to
bound the interference between in-parallel executed processes.
Using this approach we are able to independently analyse
multiple applications, enabling the seamless integration of
legacy applications and the use of incremental development
and certification.

The validity of the approach has been proven by integrating
application blocks, that have been analysed to adequately
represent different behavior of real avionics applications. The
WCET analysis extensions and runtime mechanisms have been
implemented in AbsInt’s framework for static timing analysis
and SYSGO’s RTOS, PikeOS. Both are commercial products,
successfully applied to certified projects. We evaluated the

approach on Freescale’s P4080 MPSoC, showing a reduction
of up to 67% of applications’ WCET. Great benefits, compared
to other approaches, are the true parallel usage of shared
resources while avoiding mutual analysis of applications. This
enables the utilisation of multi-core benefits while still reduc-
ing analysis complexity. Mixed criticality workloads can even
be used to adjust the WCET bounds, optimising overall system
execution time.

Even though the absolute multi-core bounds are consider-
ably high, this is no limitation to the approach, but can rather
be explained by the prototype architecture model. For later use
during production, the architecture model would be refined
to estimate the WCET much more precisely. To reduce the
analysis results in short-term, it would be possible to replace
static analysis by an alternative approach without requiring any
changes to the presented approach. Assumptions and configu-
rations made to increase the analysability of the architecture
are also no limitation to the approach but necessary to cope
with the complexity of the processor. We conclude that the
requirements of composability are a common issue for timing
analysis, already required by nowadays single-core analyses.
Hence, the proposed approach does not pose any new assump-
tions or requirements to computing architecture, applications
and overall system compared to existing approaches.

Future work will address the problem of overestimated
timing bounds due to variations in resource access delays,
targeting increased average system utilisation. Furthermore, we
will investigate how to control the effects of DMA-capable
I/O devices, extending the presented approach. Based on the
approach, scheduling solution will be developed to select
applications that should be scheduled in parallel to optimise
system resource utilisation.
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