

Aalborg Universitet

Model Checking Process Algebra of Communicating Resources for Real-time Systems

Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand; Nyman, Ulrik

Published in:
Proceedings of ECRTS 2014

DOI (link to publication from Publisher):
10.1109/ECRTS.2014.24

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Boudjadar, J., Kim, J. H., Larsen, K. G., & Nyman, U. (2014). Model Checking Process Algebra of
Communicating Resources for Real-time Systems. In Proceedings of ECRTS 2014 (pp. 51-60). IEEE Press.
https://doi.org/10.1109/ECRTS.2014.24

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

https://doi.org/10.1109/ECRTS.2014.24
https://vbn.aau.dk/en/publications/16b13dde-563e-4a55-97c0-b07fb53b1fc2
https://doi.org/10.1109/ECRTS.2014.24

1

Model Checking Process Algebra of
Communicating Resources for Real-time Systems

A.Jalil Boudjadar, Jin Hyun Kim, Kim G. Larsen, Ulrik Nyman
Institute of Computer Science, Aalborg University, Denmark

{jalil,jin,kgl,ulrik}@cs.aau.dk

Abstract—This paper presents a new process algebra, called
PACOR, for real-time systems which deals with resource-
constrained timed behavior as an improved version of the ACSR
algebra. We define PACOR as a Process Algebra of Communicat-
ing Resources which allows to express preemptiveness, urgentness
and resource usage over a dense-time model. The semantic
interpretation of PACOR is defined in the form of a timed
transition system expressing the timed behavior and dynamic
creation of processes. We define a translation of PACOR systems
to Parameterized Stopwatch Automata (PSA). The translation
preserves the original semantics of PACOR and enables the
verification of PACOR systems using symbolic model checking in
UPPAAL and statistical model checking UPPAAL SMC. Finally we
provide an example to illustrate system specification in PACOR,
translation and verification.

I. INTRODUCTION

More and more complex systems are being used in a safety
and mission critical setting. Such systems need to be specified in
a rigorous and formal way and proved to be safe and correct in
practice. As a complement to the many transition system based
formal models, process algebras provide a means of compact
and precise formal specification framework with a calculi for
checking properties. This paper defines an improved dense time
process algebra (PACOR) and provides a link to verification
tools which makes it relevant for practical verification.

Algebra of Communicating Shared Resources (ACSR)[4],
[14] is a process algebraic approach to specify resource-
constrained real-time systems. It introduces the notion of
prioritized transitions based on a preemption relation of
concurrent real-time processes. Recently, ACSR has become
more relevant as multi-core systems are increasingly being
used for real-time systems. ACSR has inspired Process Algebra
for Demand and Supply (PADS)[16] to specify hierarchical
scheduling systems. ACSR has been defined over a dense
real-time semantics, however the underlying verification tools,
VERSA[7] and XVERSA[6], have only been able to deal with
the discrete time version. Moreover, ACSR has some difficulties
in describing real-time systems. In the continuous-time version
of ACSR timed actions cannot be restored after they have been
preempted [4], which is contrary to actual real-time system
implementations. This notion of processes being restored can
be described in the discrete time version of ACSR, but only
with the granularity of one time unit.

Inspired by ACSR, this paper presents a new process
algebra, called Process Algebra of Communicating

The research presented in this paper has been partially supported by EU
Artemis Projects CRAFTERS and MBAT.

Resources (PACOR), to address the above issues.

Fig. 1. Translation and Semantics

PACOR supports more expres-
sive descriptions for timed ac-
tions in terms of the urgent-
ness and preemptiveness. More-
over, we present translation
rules from PACOR to Param-
eterized Stopwatch Automata
(PSA) models which can be
analyzed using UPPAAL and
UPPAAL SMC. The translation preserves the semantics of
PACOR. The rest of this paper is organized as follows:
Section II presents the related work. Section III presents the
syntax and semantics of PACOR. Section IV provides the
translation rules. Section V provides a train platform system
example. Finally section VI concludes the paper.

II. RELATED WORK

Process algebras, like CCS [15] and CSP [12], have originally
been introduced as a formal way to rigorously describe
concurrent and communicating systems together with a calculi
for the verification of their properties. Over the years, different
algebras have been developed for the specification and analysis
of domain-specific systems like ACSR [4], [14], mCRL2 [11]
for resource sharing, Timed CSP [17] for time modeling, etc.

mCRL2 is a process algebra that includes data and time
suitable for the specification and verification of real-time
systems. It enables local communication, multi-actions and
communication-independent parallelism that are key concepts
of component-based and hierarchical systems. A toolset support-
ing the verification of mCRL2 models has been developed[8].
However the syntactic richness of mCRL2 makes the semantics
and interaction between the different concepts hard to grasp,
and leads to state space explosion that affects verification.

An alternative to algebra based formalisms are timed
automata-based formalisms [2], [9], where systems are de-
scribed as a set of concurrent automata modeling the concrete
timed behavior of the systems. Such formalisms enable certain
flexibility when describing systems but may suffer to deal
with hierarchy. The PACOR language is relatively compact
in terms of syntax comparing to other algebra, but provides
sufficient expressiveness to model resource sharing in real-time
systems in an elegant way, and also enables effective dense-
time analysis thanks to its timed semantics and to the UPPAAL
toolsuite.

III. PACOR: PROCESS ALGEBRA OF COMMUNICATING
RESOURCES

Process Algebra of Communicating Resources (PACOR)
is a revised and improved version of ACSR for requirement
specification of real-time systems. It adopts the concept of
timed actions and event actions of ACSR. The execution of a
timed action requires a set of resources (potentially empty) that
are requested with individual priorities. The execution time is
given as an interval between best and worst cases. Event actions
are instantaneous, and two events (e.g. e and ē) synchronize
if they are compatible. An internal action, represented by the
distinguished event τ , cannot synchronize with any other action.
Unlike ACSR, we have chosen in PACOR not to associate
priorities to the event actions. The reason for this being that
event actions are not resource consuming, while our language
framework is resource based. Moreover, PACOR changes the
meaning of the ACSR operator ”{}” so that timed actions can
be non-urgent and preemptive. Instead of {}, we introduce 〈〉
as a urgent non-preemptive operator by which the execution
of timed actions is never allowed to stop once it starts. The
urgentness can be loosened or hardened when the operators 〈〉
and {} are composed with the scope operator 4.

A resource requirement is specified as a pair (r, pri)
representing a resource name r and a priority pri. An action
is a (potentially empty) sequence of resource requirements. A
timed action without any resource requirement is called empty-
set timed action and denoted by ∅ or {}. An action a can be
either preemptible ({a}) or non-preemptible (〈a〉) signifying
whether it can be preempted by an action having a higher
priority. Higher priorities have numbers greater than that of
lower priorities. In PACOR, all priorities should be greater
than 0, which is reserved for the empty-set timed actions. A
timed action aδ is defined as an action a specified with a timed
interval δ representing the best and worst case execution time.
We use DR as a set of resources and DE a set of events. We
also use x, y, z for clock variables; P,Q for processes; R for
natural numbers; l,m, n, u for time values; and α and β for
events and actions.

A. Syntax of PACoR

The syntax of PACoR is defined by the following grammar:

P ::= NIL | DONE | A : P | E.P | P1 + P2

| P1 ‖ P2 | [P] | P\F | recX.P
A ::= Aδ4(n, Pt, Pe) | Aδ

E ::= E∇(n, Pt, Pe) | E
A ::= {S} | 〈S〉
E ::= e | ē | τ
S ::= ε | (r, pri), S

δ ::= [l;u]

NIL is a process that cannot progress, meaning that it is
in deadlock. DONE is a regular termination statement.There
are two prefix operators, corresponding to actions and events
respectively. The timed action operator A : P executes a

resource-consuming action A. A[l;u] : P executes for a specific
time bound δ = [l;u], and then proceeds to the process
P . The event action operator E.P executes an event action
instantaneously. Basically, the event actions are urgent, but they
can be delayed by the scope operator. The Choice construct
P1 + P2 represents a non-deterministic choice between two
processes P1 and P2. The construct P1 || P2 represents the
parallel composition of two processes P1 and P2 where they
may progress synchronously or independently. PACOR includes
also two scope constructors to bind timed and event actions to
timing requirements. A[l;u]4(n, Pt, Pe) binds the timed action
A to a temporal scope and incorporates time-out and exception
handlers. For a given time bound n ∈ R+ ∪ {∞}, the scope
may be exited in 3 ways: 1) if A successfully terminates using
resources for δ time units before the deadline n, then the system
proceeds to the following process; 2) if A fails to execute and
misses its deadline n, then the system proceeds to a time-out
handler Pt; 3) the scoped timed action can intervened by an
exception handler Pe at any time. Urgent and non-preemptive
timed actions associated with the scope operator 4 can be
delayed unless resources are available, but they cannot cease
using resources once they start the execution. In contrast, non-
urgent and preemptive timed actions are enforced to execute
as soon as they start by setting the deadline as same as the
execution time. The Scope constructor E∇(n, Pt, Pe) for event
actions binds an event action E to a temporal scope, which
requires an event to happen within the temporal scope n. The
process Pt executes when the event E does not happen within
the temporal scope n. The waiting of event E can be interrupted
by an exception process Pe. The Close operator [P] associates a
special resource r0 to all simultaneously enabled timed actions,
so that all enabled timed actions including the empty-set timed
action (∅ or {}) become comparable according to the priority
relation. Moreover, it enables to choose a process among a set
of processes using the same priorities for the same resources.
The Restriction operator, P\F , limits the behavior of P in a
way that no event with labels in F is permitted to execute.
The construct rec X : P denotes a (infinite) recursive process.

TABLE I
EXAMPLE: PREEMPTIVE RM TASK SCHEDULING IN PACOR

System
def
= [(D1 || D2 || T1 || T2)\{s1, s2}]

D1
def
= ∅5 : s̄1.D1

D2
def
= ∅10 : s̄2.D2

T1
def
= s1∇(∞, NIL,NIL).C1

T2
def
= s2∇(∞, NIL,NIL).C2

C1
def
= {(cpu, 3)}[2,2]4(5, NIL,NIL) : T1

C2
def
= {(cpu, 2)}[3,3]4(7, NIL,NIL) : T2

Example 3.1: Table I shows a PACOR example of two
periodic tasks having the following attributes:
• T1: Period 5, Execution Time: 2, Deadline: 5
• T2: Period 10, Execution Time: 3, Deadline: 7

2

D1 and D2 periodically dispatch T1 and T2, whereas C1 and
C2 are timed actions that require the resource cpu.

B. Comparison of PACOR and ACSR Algebra

TABLE II
EXPRESSIVENESS COMPARISON OF ACSR AND PACOR

Attribute ACSR PACoR

Timed Action

Non-urgent &
7 XPreemptive

Urgent &
X XNon-preemptive

Non-urgent &
7 XNon-preemptive

Process Creation Static Static &
& Termination Dynamic

Verification No UPPAAL &
Tools UPPAAL SMC

Table II compares ACSR Dense-Time and PACOR in terms
of expressiveness for timed actions, processes creation, and
verification tools. Notice that PACOR allows the preemption
of timed actions. In ACSR, a process in which a timed action
using a resource is preempted cannot restore the execution of
such an action. For instance, the following is a typical way
where process P waits to use the resource cpu in dense-time
ACSR:

P
def
= ∅ : P † {(cpu1, 3)}5 : P ′

In this ACSR specification, the process P is idling until the
resource cpu is available. If cpu is free, the timed action
{(cpu1, 3)}5 starts its execution. However, it will be in a
deadlock if the timed action can be preempted again. In contrast,
PACOR specifies the non-urgent and preemptive timed actions
in the following way:

P
def
= {(cpu1, 3)}5 : P ′

In this PACOR specification, P can either execute the timed
action {(cpu1, 3)} or wait for cpu. PACOR allows P to restore
and execute using the resource even if it is earlier preempted.

In addition to the static creation of processes, PACOR pro-
vides dynamic creation and termination of processes, adopting
the new features of UPPAAL. In ACSR, a process never dies or
terminates once it starts. In contrast, PACOR supports process
termination, such a termination does not influence any process
execution. In our framework, the static process creation can
be supported by both UPPAAL and UPPAAL SMC verification
techniques, but the dynamic process creation can be supported
only by UPPAAL SMC.

C. Timed Operational Semantics

In the following, we define the semantics of PACOR in
terms of a timed transition system (TTS). Such a semantics
allows expressing both the discrete behavior of the process
terms and the timed progress. Given a timed action A, the
function ρ(A) returns the set of resources required by A. The
function lp(A) states 1) the lowest priority of requests of
action A if A has shared resources, 2) lp(A) = 0 if ρ(A) = ∅,
otherwise 3) lp(A) = 1 if A has no shared resources and
ρ(A) 6= ∅. Moreover, we generalize the timed action priority

relation in order to consider event actions, making then all
action types comparable. This priority relation also functions as
a preemption relation between timed actions, and thus specifies
in which cases a timed action can preempt another timed action.

Definition 3.1: (Priority Relation) Given two actions α and
β, we say that β has priority over α, denoted by (α ≺ β), if
one of the following cases holds:

1) α ∈ DR and β ∈ DE
2) Both α and β are actions in DR, where
∀r ∈ ρ(β) ∩ ρ(α), (r, p) ∈ α ∧ (r, p′) ∈ β ⇒ p < p′

According to the first condition, all instantaneous events have
priority over timed actions. Besides, timed actions sharing a
resource are arbitrated according to the second condition: if
there exist resources shared by two timed actions α and β,
then β preempts α if and only if all the priorities of α over
the shared resources are lower than the priorities of β over the
same resources. Our preemption relation is more strict than the
ACSR preemption relation but helps to solve non-deterministic
relations between tasks. Such a fact makes the system more
deterministic.

Example 3.2: some relations between two timed actions can
be as follows:

1) {(r1, 2), (r2, 5)} ≺ {(r1, 7), (r2, 5)}
2) {(r1, 2), (r2, 5)} ≺ {(r2, 7), (r3, 5)}
3) {(r1, 2), (r2, 5)} ⊀ {(r1, 7), (r2, 3)}
4) {(r1, 2), (r2, 0)} ≺ {(r1, 7)}
5) {(r1, 2), (r2, 1)} ≺ {(r1, 7)}
6) {(r1, 3), (r2, 3), (r3, 1)} ⊀ {(r1, 1), (r2, 1), (r3, 1)}

In ACSR, cases 2 and 4 are incomparable, no one has priority
over the other, but in case 6 actions are comparable.

Let us first recall timed transition systems and their bisimula-
tion relation. Timed Transition Systems (TTS) [13] represent an
elegant model to define the semantics of real-time formalisms.
Basically, a TTS is a labeled transition system where labels
can be events or durations.

Definition 3.2 (Timed transition System): a timed transition
system over an alphabet Σ is a tuple 〈S,S0,→〉 where S
is a set of states, S0 ⊆ S is the set of initial states and
→⊆ S × Σ ∪ {τ} ∪ R≥0 × S is the transition relation.

Here and elsewhere, we write s
λ−→ s′ for any transition

(s, λ, s) ∈→. Moreover, a transition is continuous if it is labeled
by a real value from R≥0, otherwise the transition is discrete.
TTSs are comparable via simulation and bisimulation relations.
The simulation relation of TTSs establishes a mapping between
their timed traces [1] where, from a common state, we check
whether for each outgoing transition of the simulating system,
a corresponding transition can be triggered in the simulated
system.

We introduce the transition relation →π= (
τ−→)∗ as a

sequence of internal transitions such that for any event λ,
s
λ−→π s

′ = s
τ−→π si

λ−→ sj
τ−→π s

′. Such a transition relation
enables to check the weak-bisimulation relation of TTS.

Definition 3.3 (TTS simulation): Given 2 TTSs T1 =
〈S1,S01 ,→1〉 and T2 = 〈S2,S02 ,→2〉 defined on the same
alphabet Σ, T1 simulates T2 through a relation R ⊆ S1 × S2,
denoted by T1 vR T2, if ∀s ∈ S10 ∃s′ ∈ S20 |(s, s′) ∈ R

3

and for all (s1, s2) ∈ R if s1
λ−→ s′1 then ∃s′2 ∈ S2|s2

λ−→π

s′2 ∧ (s′1, s
′
2) ∈ R.

Accordingly, T1 and T2 are bisimilar through the relation R,
denoted T1 ∼R T2, if T1 vR T2 and T2 vR−1 T1.

The restriction of a TTS (\) enables to ignore unmatched
synchronizing transitions when composing different concurrent
processes. Such a function implements the operator \F of
PACoR.

Definition 3.4 (TTS restriction): The restriction of a TTS
over a set of events is a TTS where transitions composable
over these events are deleted. Given a TTS T = 〈S,S0,→〉 and
a set of events W , we define the restriction of T on W, denoted
by T\W , to be the TTS 〈S,S0,→ \{s λ−→ s′ | λ ∈W}〉.
According to the following theorem, the TTS restriction
operation preserves the bisimulation relation.

Theorem 3.1 (Bisimulation and restriction): Let T1 and T2
be 2 TTS defined on the same alphabet Σ andR be a simulation
relation, then T1 ∼R T2 ⇒ T1\Φ ∼R T2\Φ for any Φ ⊆ Σ.
Proof. It is straightforward.

We introduce ID as a set of identifiers and P as a set of
processes.
• Ident : P −→ ID is a function associating an identifier

to each process in order to distinguish between processes.
• fresh(ID) returns a free identifier from ID.
Definition 3.5 (Semantics of PACOR): we define the se-

mantics of PACOR in terms of a timed transition system
TTS 〈S,S0,→〉 where:
• S= (Stem∪{Deadlock})×R≥0×2ID is the set of states,
Stem represents the PACoR statements derived from the
non-terminal P given in the grammar, R≥0 represents the
time instants, and ID is a set of process identifiers.

• S0 ⊆ S is the set of initial states defined by Stem0 ×
{0} × {Id0}, where Stem0 defines a set of statements
representing the initial steps of the PACoR executions,
and Id0 is the identifier of the top level process P.

• →⊆ S × {{τ} ∪ E ∪ A ∪ R≥0} × S .
The function Stem0 is given in the following:

Stem0(NIL) = ∅
Stem0(E.P) = E
Stem0(A : P) = A
Stem0(P1 + P2) = Stem0(P1) ∪ Stem0(P2)
Stem0(P1‖P2) = Stem0(P1)× Stem0(P2)
Stem0([P]I) = Stem0(P)
Stem0(P\F) = {s|s ∈ Stem0(P) ∧ s /∈ F}
Stem0(recX.P) = Stem0(P)

The transition relation → is the smallest relation given by the
rules of Table III.

In fact, we keep constructing the function Ident on the
fly. so that when executing a statement we propagate the
identifier of the statement process to the resulting process
(Ident(P) := Ident(A : P)), respectively statement, in order
to know at any instant the owner process of a statement. The
first rule of A-success in Table III corresponds to a successful
execution of an urgent timed action, whereas the second rule
states the execution of a regular timed action with respect to its

deadline. The urgent action A[l,u] should be run immediately
once the corresponding statement is reached, otherwise the
system will be in a Deadlock according to the second rule
of A-failure. Moreover, an urgent action can be preempted
by event actions only. A-failure rule corresponds to the
execution of an action missing its deadline, the corresponding
timeout handler process Pt is triggered once the deadline is
met. The Close rule corresponds to the close operator where
the action A is extended with a particular resource request
(r0, lp(A)) in order to make the actionA comparable with other
concurrent actions, and possibly leads to a priority decision
in some non-deterministic cases. A-delay states a delay m
of a non-urgent action when the corresponding deadline n
allows (u < n−m). Preemption rules state a preemption of
either an urgent or a non-urgent preemptive timed action. E-
success rule is, the same as A-success, for urgent (E) and non-
urgent (E∇(n, Pt, Pe)) events execution, where no time elapses
because events execution is instantaneous. Rule E-failure
corresponds to the triggering of a timeout handler process when
the execution of a non-urgent event misses its deadline. Rule
Exception corresponds to the triggering of an exception handler
process Pe when a non-urgent event or timed action is waiting
to be triggered. Rule E-delay expresses a delay of a non-
urgent event while the corresponding deadline n is respected.
Rules E-ChoiceL and A-ChoiceL specify a non-deterministic
choice between 2 executions, where the left hand statement is
taken. A synchronization of 2 compatible events is described
by rule E-sync. The resulting transition will be considered as
an internal event (τ) of the composition. E-AsyncL describes
an asynchronous event of parallel composition. In rule A-sync,
2 concurrent timed actions progress together if they do not
require the same resources. The execution time of such a
synchronization will be the maximum of the execution time
of both actions. A1 ∪ A2 is the union of resource requests of
both actions A1 and A2. The priority relation is not considered
because actions A1 and A2 do not compete the same resources,
so they are incomparable. Rule A-async corresponds to the
execution of a timed action A1 having priority over the
concurrent timed action A2. Rule Event-Action states that
event actions have priority over timed actions. Rule NIL states
a system deadlock if one of the concurrent processes reaches
a NIL statement. In the rules explained above, the set of
activated process identifiers ID is not updated when executing
any transition because no process is created or killed on the
execution of these transitions. Rule P-destroy states an on-the-
fly destruction of a process once it reaches a DONE statement.
The identifier of the corresponding process (Ident(DONE))
will be so removed from the set of active process identifiers
ID. For this reason, we propagated the process identifiers
throughout transition rules in order to recognize the identifier
of the owner process of each statement. Rule P-create expresses
a dynamic creation of processes where the number of active
processes in a system may differ from a state to another. The
on-the-fly creation of a process [3] can be interpreted by the
extension of the current system state by a new instance of such
a process, where a fresh identifier is picked from the set of
identifiers ID and assigned to such a process instance. Such a
feature is recently integrated in the UPPAAL toolsuite [10].

4

TABLE III
TRANSITION RELATION OF PACOR SEMANTICS

A-success :
m ∈ R≥0, l ≤ m ≤ u, Ident(P) := Ident(A[l,u] : P)

〈A[l,u] : P, x,ID〉 A−→ 〈P, x+m,ID〉

m ∈ R≥0, l ≤ m ≤ u, m ≤ n, Ident(P) := Ident(A[l,u]4(..) : P)

〈A[l,u]4(n, Pt, Pe) : P, x,ID〉 A−→ 〈P, x+m,ID〉

A-failure :
n = 0

〈A[l,u]4(n, Pt, Pe), x,ID〉
τ−→ 〈Pt, x,ID〉

m > u

〈A[l,u] : P, x,ID〉 A−→ 〈Deadlock, x+m,ID〉

Close :
m ∈ R≥0, Ident(P) := Ident([A[l,u] : P]I)

〈[A[l,u] : P]I , x,ID〉
A∪{(r0,lp(A))}−−−−−−−−−−−→ 〈P, x+m,ID〉

A-Delay :
m ∈ R≥0, u ≤ n−m, n′ = n−m

〈A[l,u]4(n, Pt, Pe) : P, x,ID〉 m−→ 〈A[l,u]4(n′, Pt, Pe) : P, x+m,ID〉

Preemption :
0 ≤ m < l, l′ = l −m, u′ = u−m

〈{a}[l,u] : P, x,ID〉 a−→ 〈{a}[l′,u′] : P, x+m,ID〉
0 ≤ m < l, l′ = l −m, u′ = u−m, n′ = n−m

〈{a}[l,u]4(n, Pt, Pe) : P, x,ID〉 a−→ 〈{a}[l′,u′]4(n′, Pt, Pe) : P, x+m,ID〉

E-success :
Ident(P) := Ident(E.P)

〈E.P, x,ID〉 E−→ 〈P, x,ID〉

n > 0, Ident(P) := Ident(E∇(n, Pt, Pe).P)

〈E∇(n, Pt, Pe).P, x,ID〉
E−→ 〈P, x,ID〉

E-failure :
n = 0

〈E∇(n, Pt, Pe), x,ID〉
τ−→ 〈Pt, x,ID〉

Exception :
n > 0,a ∈ {E∇,A[l,u]4}

〈a(n, Pt, Pe), x,ID〉
τ−→ 〈Pe, x,ID〉

E-Delay :
m ∈ R≥0, m < n, n′ = n−m

〈E∇(n, Pt, Pe).P, x,ID〉
m−→ 〈E∇(n′, Pt, Pe).P, x+m,ID〉

E-ChoiceL :
Ident(P1) := Ident(E.P1 + P2)

〈E.P1 + P2, x,ID〉
E−→ 〈P1, x,ID〉

A-ChoiceL :
m ∈ R≥0, Ident(P1) := Ident(A[l,u] : P1 + P2)

〈A[l,u] : P1 + P2, x,ID〉
A−→ 〈P1, x+m,ID〉

E-sync :
−

〈E.P1‖Ē.P2, x,ID〉
τ−→ 〈P1‖P2, x,ID〉

E-AsyncL :
−

〈E.P1‖P2, x,ID〉
E−→ 〈P1‖P2, x,ID〉

A-sync :
ρ(A1) ∩ ρ(A2) = ∅,m = maxt(A1,A2)

〈A1 : P1‖A2 : P2, x,ID〉
A1∪A2−−−−−→ 〈P1‖P2, x+m,ID〉

A-async :
ρ(A1) ∩ ρ(A2) 6= ∅,¬(A1 ≺ A2)

〈A1 : P1‖A2 : P2, x,ID〉
A1−−→ 〈P1‖A2 : P2, x+m,ID〉

Event-Action :
−

〈A : P1‖E.P2, x,ID〉
E−→ 〈A : P1‖P2, x,ID〉

NIL :
−

〈NIL‖P, x,ID〉 τ−→ 〈Deadlock, x,ID〉

P-destroy :
−

〈DONE‖P, x,ID〉 τ−→ 〈P, x,ID\Ident(DONE)〉
P-create :

P
def
= P1‖P2, Ident(P1) := fresh(ID), Ident(P2) := fresh(ID)

〈P, x,ID〉 τ−→ 〈P1‖P2, x,ID ∪ {Ident(P1), Ident(P2)}〉

IV. TRANSLATION OF PACOR TO PSA

In order to analyze PACOR models automatically, we define
a translation rewriting any PACOR description in terms of
UPPAAL time automata, while UPPAAL and UPPAAL SMC
tools can be applied to simulate the system execution and
check the underlying properties. To this end, we consider
timed automata using stopwatches [5], often called Prioritized
Stopwatch Automata (PSA). Roughly speaking, stopwatches
are clocks that can be stopped and resumed at any time, without
reinitialization, during the system execution.

A. Parametrized Stopwatch Automata

The stopwatch concept [5] provides a sophisticated clock
mechanism to measure the execution time of preemptive tasks.
Such a mechanism enables to accumulate time when the action
is running, and once the action is preempted the stopwatch
clock makes a pause and resumes when the corresponding
action resumes its execution. Given a set variables V ar, by
C(V ar) = {x on v|x ∈ V ar, v ∈ R} we define the set of
variable constraints of V ar where on∈ {<,≤, >,≥,=}.

Definition 4.1 (Parameterized Stopwatch Automaton): A
stopwatch automaton over a set of channels Ω is given by
a tuple 〈Q, q0, Com,C,V, V 0,−→, Act, Inv〉 where Q is
a set of locations, q0 ∈ Q is the initial location, function
Com : Q → B states whether a location is committed
or not, C is a set of stopwatch clocks, V is a set of
discrete variables initialized according to the valuation V 0,
−→⊆ Q × C(C ∪ V) × Ω! ∪ Ω? ∪ {τ} × Λ × Q is the
transition relation where Λ : {C 9 {0}} ∪ {V 9 R} is a set
of actions that reset some clocks and update some discrete
variables, Act : Q × C → N defines the set of actions that
can be performed on stopwatch clocks at each location, and
Inv : Q→ C(C) associates to each location clock invariants.

We write q1
g/λ/α−−−−→ q2 for a transition (q1, g, λ, α, q2) ∈−→

outgoing from q1 to q2 guarded by g, labeled with λ and
performing the action α on clocks and discrete variables.
In fact, we have used a long right-arrow (−→) in order to
distinguish the transition relation of PSA from that of TTS
(→). Act(q)(c) = v means that the first derivative of c at
location q has value v, which represents the rate of progress
each one time unit. So, for any duration d the clock c progresses

5

with v × d.
Therefore, a network of PSA is a set of concurrent PSA

instances (processes) that can be created on the fly when
it is needed. These processes are defined on the same set
of channels where some clocks and variables can be shared.
The dynamic creation of processes is the subject of a recent
extension implemented in UPPAAL. Thus, the semantics is
based on a dynamically evolving set of processes where at
least one process (main) is immediately created when the
system starts. For this reason, we associate to each process
(template instance) an identifier Id enabling us to distinguish
between the different instances of the same template. Moreover,
we associate to each process a fresh variable loc of type Q
stating the current location of the process. We also introduce
f /g as the right overriding function where function g overrides
function f for all elements in the intersection of their domains.
For all z ∈ domain(f / g),

(f / g)(z) ,

{
g(z) if z ∈ domain(g)
f(z) if z ∈ domain(f)− domain(g)

Definition 4.2 (Semantics of a network of PSA): Given
a network of PSA 〈T0, .., Tn〉 defined on the same set of
channels Ω where some discrete variables and clocks can
be shared (global). Assuming that T0 is the main (root)
template of our network. We associate the identifier Id0
and variable loc to the first instance of T0. The semantics
of network 〈T0, .., Tn〉 is given by the TTS 〈S,S0,→〉
where S = {s ∈ val(W)|∀i s |= Invi(loci)} is a set
of valuations, each one satisfies the local invariants of
the involved locations loci of the corresponding active
processes. S0 =

⋃
i{V 0

i ∪ {Ci 7→ {0}}} ∪ {Id0.loc 7→ q00}.
W =

⋃
i{Idi.C} ∪

⋃
i{Idi.V ∪ {loc}} is the set of discrete

and continuous variables of the instances that can be created
together with the newly introduced variables loc. The transition
relation is given by the rules of table. IV.

The TTS states of the semantics are partial functions
where only variables of created instances are valued. The
condition comit(s, Id) = ∀Id′ ∈ s comId′(s(Id

′.loc)) ⇒
comId(s(Id.loc)) states that if s contains a committed location,
the current location of process Id should also be committed [3].
Rule Action of table. IV states that if there exists a process Idi
such that its current location Idi.loc corresponds to the current
reached location q, and the current system state s satisfies the
guard g of the PSA outgoing edge from q so the system moves
to another state obtained by applying action a on state s where
the current location of process Id is updated to q′. Rule Sync
describes a synchronization of 2 edges having compatible labels
when the source locations match with the current system state
s, and both guards are satisfied. The resulting transition is
labeled with internal event τ , where the receiver action aj
is applied after taking into account the update made by the
sender action ai. Rule Create expresses the on-the-fly creation
of processes. Such a feature is newly implemented in UPPAAL
via statement spawn. [[T]]s defines an instance of template T
where the template parameters are evaluated according to state
s. The rule associates to the newly created process a fresh
identifier Id′ := fresh(s) thanks to the function Ident. The
new instance will be immediately initialized through function

fInit given by: fInit(Id′, T) = {Id′.loc 7→ T.q0, ‖v∈T.V
{Id′.v 7→ T.V 0(v)}, ‖c∈T.C {Id′.c 7→ 0}}. Such a function
consists of initializing variables and initial location according
to the instantiated template declaration, whereas clocks are
initialized to 0. Over the syntactic function exit() of rule
Destroy, stating that the process execution is done, UPPAAL
removes such a process from the system.

Rule Delay states that a delay d is allowed if the invariants of
the current locations (s(Id.loc)) of all processes (Id ∈ s) are
still satisfied, and no one of the current locations is committed.
The time progress function s⊕ d updates the stopwatch clocks
at state s by d. In fact, d is the real amount of time units
elapsed whereas the update of each clock depends on its rate,
defined by function Act. Formally, s ⊕ d = ∀Id ∈ s,∀c ∈
Id.C c := s(Id.c) +Act(Id.loc)(c)× d.

B. Graphical Notations of PACOR

The translation of PACOR to timed automata is carried out
in two steps: translation of a PACOR system to a graphical
PACOR (gPACOR) model, and then translation of the gPACOR
model into the corresponding timed automata model.

TABLE V
GRAPHICAL NOTATIONS OF PACOR

Rule PACoR gPACOR

1 P
def
= P ′

2 P
def
= A[l,u] : P ′

3 P
def
= E.P ′

4 P
def
= P1 + P2

5 P
def
= P1 ‖ P2

6 P
def
= A[l,u]4(n, Pt, Pe) : P ′

7 P
def
= E∇(n, Pt, Pe).P

′

8 [P]
def
= A[l,u] : P ′

Table V shows PACOR syntax and the corresponding
notations in gPACOR. As shown in Rule 1, a process is
represented by a box with a name and a transition arrow
to the definition of the process. Timed actions are depicted as a
circle, called timed action node, with resource requirements A,
as shown in Rule 2. For timed action statements, a clock x is
introduced to specify timing requirements. Using this clock, the
upper bound of the execution time is represented by an invariant

6

TABLE IV
TRANSITION RELATION OF PSA SEMANTICS

Action :
q
G/λ/a−−−−−→ q′ ∃Idi ∈ s|s(Idi.loc) = q, s |= G, comit(s, Idi)

s
λ−→ a(s / {Idi.loc 7→ q′})

Sync :
qi

Gi/e/ai−−−−−−→ q′i qj
Gj/ē/aj−−−−−−→ q′j ∃Idi Idj ∈ s|s(Idi.loc) = qi, s |= Gi s(Idj .loc) = qj , s |= Gj , comit(s, Idi) ∨ comit(s, Idj)

s
τ−→ aj(ai(s / {Idi.loc 7→ q′i, Idj .loc 7→ q′j}))

Create :
q
G/λ/spawn T ()−−−−−−−−−−−→ q′ ∃Idi ∈ s|s(Idi.loc) = q, s |= G, comit(s, Idi), Id

′ := fresh(s) Ident([[T]]s) := Id′

s
λ−→ s ‖ fInit(Id′, T)

Destroy :
q
G/λ/exit()−−−−−−−−→ q′ ∃Idi ∈ s|s(Idi.loc) = q, s |= G, comit(s, Idi)

s
λ−→ s/Idi

Delay :
∀Id ∈ s s⊕ d |= InvId(s(Id.loc)),¬comId(s(Id.loc))

s
d−→ s⊕ d

associated to the node (oval state in Rule 2) representing the
timed action, and the lower bound is a guard on the outgoing
transition from that node. Event actions are represented by
edges from the box P , as shown in Rule 3. Rule 4 and 5 show
that gPACOR processes can be composed using Choice and
Parallel operators. The Choice operator is represented by a
choice connector +© and arrows leading to possible processes,
whereas the parallel composition is represented by a dashed
box. The scoped timed action node, with resource requirements
A, is shown in Rule 6. It has 3 outgoing transitions leading to a
normal process (P ′), a time-out handler (Pt), and an exception
handler (Pe), respectively. A new clock y is introduced for the
scoped timed action to measure the time elapsed (for deadline)
since the scoped action is reached. Rule 7 shows the scoped
event action node. It is almost the same as the scope timed
action node. The event action node triggers an event E on the
normal termination outgoing transition, and does not contain
any resource-consuming requirements. Rule 8 shows a timed
action node which is applied with the Close operator.

Fig. 2. gPACOR model of Example 3.1

Fig. 2 shows the gPACOR model of task T1 and its dispatcher
D1 of Example 3.1. Based on a gPACOR model, a model of
PSA can be built using the realizations of the priority relations.

C. Translation of Process Models

The PSA model of a PACOR specification is graphically
similar to the gPACOR description, and simply obtained
by making PSA stopwatch clocks run depending on the
availability of resources that the process timed actions would
use. Timed actions of gPACOR including resources and
timing requirements are represented in locations of PSA using
stopwatch clock variables. Event actions are executed on
transitions of PSA. The stopwatch clocks associated with
resources can run and stop according to the availability of
resources. For the convenience, we use R for a set of resources,

A1,A2, ... for resource requirements, and A1, A2, ... for timed
action nodes. For resource operations, we define the following
functions:

• S(A) is a resource requirement that a timed action node
A requires,

• ρ(A) ⊆ R is the set of resources that a timed action node
A requires.

• Request(A) is a resource request according to the
resource requirement A,

• Release(2R) is a function that releases a set of resources
(2R),

• Available(2R) is a function stating whether a set of
resources (2R) is available,

• LockPreemp(pid) sets a process pid to non preemptive
process.

Table VI shows how each basic structure (transition) of
gPACOR is implemented in PSA. The boxes in gPACOR
represent process names and correspond to the circles in PSA.
Such circles are the starting locations of the PSA model. The
hexagons in both sides represent definition of actions. For
a given PgPACOR, every PSA automaton, as shown Table VI,
is given with a starting location PPSA. In later, all starting
locations will be interpreted by the commit connector of
UPPAAL because the outgoing transitions linked to the starting
location of PSA should always be urgently taken. For gPACOR
actions, the corresponding actions in PSA are defined according
to translation rules given in this section. In fact, we only focus
on the translation and implementation of gPACOR transition
relation.

Rule 2-1 and 2-2 show how to translate a timed action
node of gPACOR to a PSA automaton. Every single timed
action node of gPACOR and its clocks is transformed to
a PSA with a set of clocks. In principle, a PSA process
requires a set of resources using the function Request(A)
according to a resource requirementA before entering the timed
action location. The PSA process should release resources,
using the function Release(2R), when it exits from the timed
action location. Inside a timed action node, the stopwatch x
runs depending on the resource availability which is checked
using Available(2R). If a process wants an exclusive (non-
preemptive) use of resources, it sets itself to “non-preemptive”
using LockPreemp(pid).

7

TABLE VI
TRANSLATION RULE 2-5

Rule gPACOR PSA

0

2-1

2-2

3

Stem0(P1) = A1, Stem0(P2) = ε

4-1

Stem0(P1) = ε1, Stem0(P2) = ε2

4-2

Stem0(P1) = A1, Stem0(P2) = A2

4-3

5-1

5-2

Rule 3 shows how gPACOR events are translated to a set
of transitions into the corresponding PSA model. As shown
in Rule 4, the Choice operator +© is replaced by the commit
connector c© of UPPAAL. The Choice operator has alternatives
of possible actions. In case of timed actions, the availability
of resources should be known before the selection of an
outgoing transition. Thus, as shown in Rule 4-1, all resources
that the alternative timed actions require are requested, e.g.
(Request(S(A1))), before making a choice and checked to
be usable (transitions are enabled) when making the choice,
e.g. [Available(ρ(A1))]. The Parallel operator is realized by

TABLE VII
TRANSLATION RULE 6-10

Rule gPACOR PSA
A = {S}, Stem0(Pe) = Ae

6-1

A = 〈S〉, Stem0(Pe) = Ae

6-2

Stem0(Pe) = ε

6-3

Stem0(Pe) = Ae

7-1

Stem0(Pe) = εe

7-2

8

9

10-1

10-2

instantiating parallel composed processes, as shown in Rule 5.
In our translation, the processes instantiation can be static or
on-the-fly. The static creation is implemented by a special event,
Spawn[pid]!, whereas the dynamic instantiation is supported
by the UPPAAL statement Spawn together with a template
name. Rule 6 shows the translation of a scoped timed action
of gPACOR. According to whether the action is preemptive
({S}) or not (〈S〉), the entering transition into the timed action
location executes the function LockPreemp(pid). Notice that
the resource requirement S(Ae) of the exception handler Pe
is required on the transition going to the timed action node,

8

because the exception handler can have the same possibility to
execute as the scoped timed action if it is enabled. Thus the
resources requests for Pe are performed before the execution
of the scoped timed actions. Similarly, in case that Pe is
a composition of processes using the Choice operator, all
alternative transitions are directly linked to the timed action
location in order to make them possibly enabled when the
timed action executes.

Rule 7-1 and 7-2 show the translation of the scoped event
action. In Rule 7-1, the resources request of the exception
handler Pe is performed in the same way as in the scoped
timed action. Rule 7-2 describes the case where the exception
handler Pe carries out an event action εe. Rule 8 shows how to
apply the Close operator to PSA. According to the semantics
of PACOR, if a process extended with the Close operator, it
adds a special resource requirement (r, lp(A)) to its resource
requirements for the execution of its timed actions. Rule 9 and
10 show how to realize NIL and DONE actions. The NIL
action is interpreted by a deadlock. For the DONE action,
the final location can be one of two types: 1) Rule 10-1 shows
the execution of DONE action, using the statement exit() of
UPPAAL, in the case of dynamic process creation; 2) Rule 10-2
shows a final location for the static process creation, which has
an outgoing transition labeled with the process instantiation
event Spawn[pid]?.

D. Composition and Instantiation of Process Models

Individual PSA automata are composed into a networked
PSA system in the following way. First, every starting
location for individual PSAs is replaced by a commit
connector. Second, every edge leading to a final location
is redirected to the starting location of the same name.

(a) (b)

Fig. 3. Initial locations of PSA

PSA templates are instan-
tiated either by static or
dynamic process creation.
If dynamic process cre-
ation is used, every PSA
template has an initial lo-
cation as shown in Fig. 3(a). Initially, only the top level process
is instantiated, and other processes are instantly created when
needed. If using static process creation, all processes are created
at the same time and every PSA template has an initial location
as shown in Fig. 3(b), excepts for the top level process which
follows Fig. 3(a). The actual execution of a process, in case of
static instantiation, begins by the instantiation event Spawn[pid]
according to the Rule 5-1. Fig. 4 shows the PSA model of
Example 3.1. Notice that it has the same structure as the
gPACOR model of Fig 2. All boxes have been translated into
initial and committed locations with names. The incoming
transitions into C1 and C2 execute the function request() to
request cpu, and the outgoing transitions from them call the
function release() to release the resource.

Theorem 4.1: The TTS semantics restricted to τ and time-
transitions of a PACOR system is bisimilar to the TTS
associated to the PACOR translation into a network of PSA.
Proof concept. The proof is direct and consists in check-
ing that each TTS transition, except event transitions re-

Fig. 4. PSA Model for Example 3.1

moved by restriction, generated by one of the rules given
in Definition. 3.5 can also be generated using the rules given
in Definition. 4.2 after applying the translation of PACOR
transitions according to tables VI and VII, and vice versa. A
sketch of this proof is given in the Appendix.

V. EXAMPLE: PLATFORM CONTROL SYSTEM

Fig. 5. Platform system

In order to illustrate our
framework, we present an ex-
ample of a train platform sys-
tem in Fig. 5. In this system,
the trains enter from five in-
coming tracks and stop in one
of two segments (seg1, seg2)
on each side of the platform.
Individual tracks have priorities
for a train to occupy the segments, and the priorities increase
every specified time interval (wt) unless the train can enter the
platform. The train can stay at the platform for st time units.
Each track has the minimum inter-arrival time (mt) to serve a
train. Variable j and i are used to index segment number and
train identity, respectively. In the second line of Table VIII we
use a timed action with an infinite execution time but with
a deadline of wt. If a segment becomes available the train
can occupy that segment, otherwise the train becomes a new
TrnReqP process waiting for a segment, but with a priority
increased by k. In the experiment shown in Table IX, we have
5 tracks and 2 or 3 segments. Over this example, we show 1)
how to specify the system using PACOR, 2) how to translate
the PACOR model into PSA, and 3) how to apply UPPAAL
and UPPAAL SMC to reason about various characteristics of
the system. Table VIII describes the platform system using
PACOR. The PSA model which is translated from the same
PACOR model is given in the Appendix.

A. Analysis using UPPAAL and UPPAAL SMC

The analysis of the train platform system has been done
using two verification methods, symbolic and statistical model
checking. We use UPPAAL to check with symbolic model
checking that there is no deadlock in the system. With
UPPAAL SMC we generate the probability distribution for
the waiting time of each train.

9

TABLE VIII
TRAIN PLATFORM SYSTEM IN PACOR

System
def
= [TrnReqP1,pri1 ‖ TrnReqP2,pri2 ‖ ... ‖ TrnReqPT,priT]{segj} 1 ≤ j ≤ Seg

TrnReqPi,k
def
= ∅∞4(wt, TrnReqPi,k+1,

Seg∑
j=1

〈(segj , k)〉[0,st] : TrnLeavePj,i) : NIL

TrnLeavePj,i
def
= ∅mt : TrnArvli

TrnArvli
def
= ∅rt : TrnArvli + TrnReqPi,k

TABLE IX
THE MAXIMUM WAITING TIME WITH st = 10± 5 AND wt = 10

Case 1 (Seg = 2) Case 2 (Seg = 2) Case 3 (Seg = 3)
i prii Wait Time prii Wait Time prii Wait Time
1 1 14.14±0.22 5 8.04±0.12 5 4.13±0.13
2 1 14.22±0.22 4 9.42±0.14 4 4.40±0.15
3 1 14.16±0.22 3 11.76±0.16 3 4.61±0.15
4 1 14.34±0.23 2 14.41±0.19 2 7.67±0.10
5 1 14.20±0.22 1 20.94±0.31 1 9.15±0.08

(a) Track 1 (b) Track 5

Fig. 6. Probability distribution of the maximum waiting times of Track 1
with priority 5 and Track 5 with priority 1 in Case 2

In order to check the safety of the system, first, we use the
following query:

A[] not deadlock

which inquiries whether there is a deadlock in the system.
In addition to the analysis of the safety, UPPAAL SMC

enables us to analyze the response-time of the system. We
use the following query of UPPAAL SMC to inquire what is
the average of the maximum waiting time of the train for the
assignment of the segment:

E[<=simTime;simCount](max:waitTime[i])

This query generates the average of the maximum waiting time
of the train for a given simulation time (simTime) and number
of simulations (simCount). Table IX shows the variability of
the maximum waiting time of trains according to different sets
of priorities of the tracks: if the same priority is given to all
the tracks, the average of the maximum waiting time for trains
are almost equal. However, for different priorities, the trains
running on tracks of higher priorities have shorter waiting time
than the ones running on tracks with lower priorities. Fig. 6
shows the probability distributions of the maximum waiting
time, which follow a Gaussian distribution.

VI. CONCLUSION

In this paper we have defined PACOR which is an updated
and improved derivative of the classical process algebra ACSR.
The formal semantics of PACOR is given in the form of a
timed transition system. We have provided translation rules

from PACOR to PSA which preserves the semantics. The
translation is not implemented yet, but it is designed to utilize
new features of UPPAAL, such as on-the-fly process creation.
Finally we have provided an example illustrating the complete
process from systems specification in PACOR, translation to
gPACOR, further translation to PSA and verification of system
properties using UPPAAL and UPPAAL SMC.

REFERENCES

[1] J. P. Bodeveix, A. Boudjadar, and M. Filali. An alternative definition
for timed automata composition. In ATVA’11, pages 105–119. LNCS
6996, 2011.

[2] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Hierarchical scheduling framework based on
compositional analysis using uppaal. In Proc of FACS 2013. To appear.

[3] A. Boudjadar, F. Vaandrager, J.-P. Bodeveix, and M. Filali. Extending
uppaal for the modeling and verification of dynamic real-time systems.
In FSEN 2013, LNCS, pages 111–132, 2013.

[4] P. Brmond-Grgoire and I. Lee. A process algebra of communicating
shared resources with dense time and priorities. Theoretical Computer
Science, 189(12):179 – 219, 1997.

[5] F. Cassez and K. Larsen. The impressive power of stopwatches. In Proc.
of CONCUR 2000, pages 138–152. Springer, 2000.

[6] D. Clarke, H. Ben-Abdallah, I. Lee, H. liang Xie, and O. Sokolsky.
Xversa: An integrated graphical and textual toolset for the specification
and analysis of resource-bound real-time sytems. In CAV, volume 1102
of LNCS, pages 402–405. Springer, 1996.

[7] D. Clarke, I. Lee, and H. liang Xie. VERSA: A tool for the specification
and analysis of resource-bound real-time systems. Journal of Computer
and Software Engineering, 3, 1995.

[8] CRAFTERS. project website. http://www.crafters-project.org/.
[9] A. David, K. G. Larsen, A. Legay, and M. Mikucionis. Schedulability

of herschel-planck revisited using statistical model checking. In ISoLA
(2), volume 7610 of LNCS, pages 293–307. Springer, 2012.

[10] A. David, K. G. Larsen, A. Legay, and D. B. Poulsen. Statistical
model checking of dynamic networks of stochastic hybrid automata. In
Proceedings of AVoCS13, volume to appear, page to appear, 2013.

[11] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. V.
Weerdenburg. The formal specification language mcrl2. In In Proceedings
of Methods for Modelling Software Systems. MIT Press, 2007.

[12] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, Aug. 1978.

[13] A. S. Jeffrey, S. A. Schneider, and F. W. Vaandrager. A comparison
of additivity axioms in timed transition systems. Technical report,
Amsterdam, The Netherlands, The Netherlands, 1993.

[14] I. Lee, P. Bremond-Gregoire, and R. Gerber. A process algebraic approach
to the specification and analysis of resource-bound real-time systems.
Proceedings of the IEEE, 82(1):158–171, 1994.

[15] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[16] A. Philippou, I. Lee, and O. Sokolsky. Pads: An approach to modeling
resource demand and supply for the formal analysis of hierarchical
scheduling. Theor. Comput. Sci., 413(1):2–20, 2012.

[17] G. M. Reed and A. W. Roscoe. A timed model for communicating
sequential processes. In Theor. Comput. Sci, pages 314–323, 1988.

10

