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Abstract—The fact that energy is a scarce resource in many
embedded real-time systems creates the need for energy-aware
task schedulers, which not only guarantee timing constraints
but also consider energy consumption. Unfortunately, existing
approaches to analyze the worst-case execution time (WCET) of
a task usually cannot be directly applied to determine its worst-
case energy consumption (WCEC) due to execution time and
energy consumption not being closely correlated on many state-
of-the-art processors. Instead, a WCEC analyzer must take into
account the particular energy characteristics of a target platform.

In this paper, we present 0g, a comprehensive approach to
WCEC analysis that combines different techniques to speed up
the analysis and to improve results. If detailed knowledge about
the energy costs of instructions on the target platform is available,
our tool is able to compute upper bounds for the WCEC by
statically analyzing the program code. Otherwise, a novel ap-
proach allows 0g to determine the WCEC by measurement after
having identified a set of suitable program inputs based on an
auxiliary energy model, which specifies the energy consumption of
instructions in relation to each other. Our experiments for three
target platforms show that 0g provides precise WCEC estimates.

I. INTRODUCTION

In many embedded real-time systems energy is a scarce
resource: either because they completely lack mechanisms to
recharge their batteries after having been deployed, as it is the
case for energy-constrained systems (e.g., underwater sensor
nodes), or because the amount of energy these systems harvest
can only prolong their lifetime but cannot guarantee infinite
operation (e.g., solar-powered sensor nodes). Several authors
have argued that when energy plays such a key role, it should
also become an important factor when it comes to making
scheduling decisions [1], [2], [3]. That is, in addition to en-
suring that a task meets its timing deadline, energy-aware task
schedulers also consider whether or not there is enough energy
available in the system for the task to complete execution. As
a consequence, besides knowledge of the worst-case execution
time (WCET) of a task, a scheduler also requires information
on its worst-case energy consumption (WCEC).

Over the last few decades, the real-time systems commu-
nity has made significant progress towards precisely deter-
mining WCETs [4]. Unfortunately, existing tools cannot be
directly used for WCEC analysis: For example, one might
propose to estimate the WCEC by multiplying the results of
a WCET analysis by the average power consumption of the
system. However, such a derivation of WCEC bounds from
WCET results usually cannot be done in a safe way [5] as due
to the complexity of most state-of-the-art processors there is no
safe and close correlation between time and energy. In general,
the fact that a task has a lower execution time than another
does not always mean that it also consumes less energy [6].

WCEC analysis requires knowledge about both the task
program (i.e., the source code) as well as the hardware plat-
form; the latter must be provided by energy models comprising
information on the maximum energy consumption of each
instruction. As a consequence, the problem of determining the
WCEC can be solved by identifying the program path that
has the highest energy demand. There are mainly two reasons
why this is inherently difficult in practice: First, for non-
trivial programs examining all possible paths for all possible
program inputs is not feasible due to the huge number of
paths that need to be considered; WCET analysis suffers
from the same problem of path explosion [7], [8]. Second,
for many common low-power microcontrollers creating pre-
cise energy models is not possible as detailed documen-
tation on the behavior and energy consumption in differ-
ent power modes is missing. The situation is complicated
by the fact that even smallest ARM microcontrollers (Cor-
tex M0+) already support ten distinct power-saving modes [9].
In addition, the actual energy consumption of a microcon-
troller highly depends on the manufacturing process [10],
making it impossible to define precise absolute numbers.

In this paper, we present 0g1, a tool that relies on a
combination of different techniques to analyze the WCEC
of a task. If precise energy models are available for the
target hardware, 0g performs a static analysis solely based
on program code. For scenarios in which this is not possible,
the tool provides means to extract suitable input parameters
from program code using relative energy models in order to
determine the WCEC by measurement. In contrast to the abso-
lute energy models discussed above, a relative energy model
does not contain exact numbers for the energy cost of each
instruction but instead consists of estimated, non-dimensional
values characterizing the energy consumption of instructions in
relation to each other. The key benefit of this approach is that
due to their simplicity relative energy models are much easier
to obtain than absolute energy models. Nevertheless, relative
energy models are sufficient for 0g to produce precise WCEC
estimations, as we show in our evaluation.

Determining the WCEC by measurement transforms the
problem of finding the program path with the highest energy
consumption into the problem of finding the input values
for this path in order for them to be used as measurement
parameters. However, as the two problems are related 0g is able
to apply the same code-analysis techniques for both relative
and absolute energy models. Thereby, the tool draws on ex-
isting knowledge that mainly originated from timing analysis,
namely the implicit path enumeration technique [11], symbolic

1The name of our WCEC analyzer 0g refers to our claim for green
optimizations (-Og) and computing systems without gravity (0· g).



execution [12], and genetic algorithms [13]; to our knowledge
0g is the first tool to make use of genetic algorithms for
WCEC analysis. As each of the code-analysis techniques has
its strengths and weaknesses, prior to executing an analysis, 0g
selects a technique based on the requirements defined by the
user which, for example, may include a limit on the duration of
the analysis process or a specification whether the tool should
provide an over- or an under-approximation of the WCEC.

While relying on only a single technique for each analysis
is usually enough to get results, we show that a combination
of multiple techniques can lead to significant improvements in
quality and speed. For example, by combining implicit path
enumeration and genetic algorithms 0g is able to calculate
a metric for the quality of intermediate results, allowing the
analysis to be terminated early if a certain minimum quality
level is reached. Apart from combining techniques, 0g ensures
an efficient analysis by executing as many steps as possible
on server-grade hardware and only resorting to the embedded
system to perform measurements in the final step of a WCEC
analysis with a relative energy model.

In summary, the main contributions of this paper are:

1) 0g, a comprehensive approach to WCEC analysis
exploiting several code-analysis techniques.

2) A method that enables precise WCEC computations
based on relative energy models and measurements.

3) An approach to improve WCEC analysis by combin-
ing different techniques.

4) An evaluation of the current 0g prototype including
experiments using three distinct hardware platforms.

The remainder of the paper is structured as follows: Sec-
tion II presents our view of an energy-aware task scheduler
and identifies requirements that arise with regard to WCEC
analysis. Section III details the concept of 0g and describes
how the tool combines different techniques for WCEC analy-
sis. Section IV provides information on the implementation
of our current prototype and gives details on relative energy
models. Section V verifies the feasibility of our approach
through an evaluation. Section VI discusses design decisions
and possible alternatives. Section VII presents related work,
and Section VIII concludes.

II. ENERGY-AWARE SCHEDULING

Our work targets embedded systems in which scheduling
decisions are based on both real-time constraints as well as
energy consumption (see Figure 1). This means that a task
scheduler, for example, has to take into account (a) whether
it can guarantee that a task meets its deadline and has to
consider (b) whether there is enough energy available for the
task to complete execution. In this section, we present the
basic concepts allowing a system to perform energy-aware
scheduling. In the remainder of this paper, we thereby mainly
concentrate on the energy-related part of the problem.

A. Global System Constraints

Being a scarce resource in the embedded systems we
address, there is usually less energy available than necessary
to always provide full system functionality. As a result, a task
scheduler needs criteria based on which it decides whether
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Figure 1: Overview of an energy-aware task scheduler which
considers time and energy constraints for scheduling decisions.

or not to schedule a task. As shown in Table I, requirements
vary between different system types: If a system is energy
limited 1 (i.e., the system is initialized with a full battery
but is unable to recharge the battery over its lifetime), for
example, a common approach is to specify a minimum lifetime
during which the system must operate. In such a case, the
task scheduler is responsible to guarantee that there is enough
energy available to keep essential services running for at least
this specific period of time. The same applies to a system that
harvests energy 2 from the environment in order to achieve a
longer lifetime than would be possible with the capacity of its
battery. In contrast to the first two types, an energy-neutral sys-
tem 3 solely depends on harvested energy. As a consequence,
using minimum lifetime as a requirement is not useful, as such
a system might fail to produce a sufficient amount of energy
to reach this threshold in the first place. On the other hand,
if a system is able to harvest all the energy necessary to keep
essential services alive, its lifetime is basically infinite. In such
cases, a possible scheduling requirement could be to provide
a certain subset of functionality.

B. Energy Budgets

Energy-aware task scheduling requires the task scheduler
to know the amount of energy consumed by a task during
execution. As it is inherently difficult for non-trivial tasks to
obtain precise numbers, scheduling decisions must be based on
estimations of a task’s energy consumption. In Section III, we
detail our energy-analysis tool that provides such information
using a combination of code analysis and measurements. Uti-
lizing the results of the energy analysis, a scheduler allocates
a dedicated energy budget to each task upon execution. If the
actual energy consumption of a task is less than or equal to its
energy budget, the task can complete its execution. Otherwise,
the task is aborted after having exhausted its given budget,
either explicitly by the task scheduler or implicitly due to the
system running out of energy. In this paper, we address the goal
of minimizing the number of aborted tasks. Consequently, we
focus on analyses providing an estimation of the worst-case
energy consumption of a task.

System Class Global System
Requirement

One-time
Energy Budget

Renewable
Energy Buget

1 Energy-limited Min. lifetime Yes No
2 Energy-harvesting Min. lifetime Yes Yes
3 Energy-neutral Min. functionality No Yes

TABLE I: Although having individual system requirements,
all system classes rely on WCEC data for process scheduling.



C. Task Categories: Hard vs. Soft Energy Tasks

Different tasks in a system have different scheduling con-
straints with regard to energy consumption. Adopting the
existing terminology from the domain of real-time systems,
we distinguish between two categories: hard energy tasks and
soft energy tasks. A hard energy task may only be executed
if the scheduler is able to guarantee that there is enough
energy available for the task to run to completion. In particular,
we expect this category to include tasks providing essential
services (e.g., data-processing task) that must be available for
the entire (minimum) lifetime of the system. In contrast, it
is safe for the scheduler to abort a soft energy task if the
execution exceeds the energy budget allocated to the task.
Consequently, tasks belonging to this category usually perform
work that is not crucial for maintaining system operations
(e.g., logging of non-essential status messages). We refer to
systems with only soft/hard energy constraints as soft/hard
energy systems in analogy to soft/hard real-time systems.

The classification into hard and soft energy tasks is orthog-
onal to the classification into hard and soft real-time tasks,
requiring the scheduler to take both domains into account for
its decisions. For example, a task with hard energy and hard
real-time constraints may only be scheduled if it is guaranteed
that both the energy budget as well as the deadline can be
met. However, the differences in requirements between hard
and soft energy tasks are not only relevant to the scheduler.
As we show in Section III, they also allow different techniques
to be used for the analysis of a task’s energy consumption.

D. Energy Budget Categories: Hard vs. Soft Energy Budgets

As the scheduler ensures that the energy consumption of a
task does not exceed its designated energy budget, setting the
energy budget of each task to its respective worst-case energy
consumption (WCEC) would allow a system to run without
ever having to abort a task due to energy-budget violations.
Unfortunately, determining the exact WCEC, similar to the
WCET, is usually not possible for arbitrary non-trivial tasks
as the analysis overhead increases exponentially with task
complexity. Therefore, the energy budget of a task must be
based on an approximation of its actual WCEC.

We address this problem by distinguishing between two
different approaches, one for each task category: As the
execution of a hard energy task must always complete, we use
a conservatively determined over-approximation of the WCEC
as hard energy budget. In contrast, the fact that a soft energy
task may be aborted if it consumes more energy than estimated
by the analysis allows us to determine the soft energy budget
as an under-approximation of the actual WCEC.

III. ENERGY CONSUMPTION ANALYSIS

Performing energy-aware scheduling requires knowledge of
a task’s energy demand during execution. In this section, we
present 0g, a tool that is able to provide such information based
on code analysis. To address the particular requirements of
each task category, 0g uses different approaches to determine
the energy budgets of hard and soft energy tasks. For this
purpose, 0g combines multiple code-analysis techniques to
speed up the analysis and to improve the quality of the results.
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Figure 2: The 0g WCEC analyzer combines different code-
analysis techniques to determine hard and soft energy budgets.

A. Architecture

Figure 2 shows the architecture of the 0g tool, which
performs the energy analysis in two distinct steps: Based on the
code of the program to analyze, configuration parameters spec-
ified by the user (e.g., task category), and information about the
target platform (e.g., energy models, see Section III-B), in the
first step ( I ), the analysis composer prepares the analysis to
be executed. In particular, this step includes the selection of the
analysis techniques to be used (see Sections III-C and III-D) as
well as the creation of a schedule specifying how to combine
the individual techniques (see Section III-E). Following this, in
a second step ( II ), 0g’s analysis executor performs the actual
energy analysis and eventually reports the results back to the
user. During each step of the process, the user also receives
feedback on the current status and progress of the analysis.

B. Absolute vs. Relative Energy Models

Dimensioning a hard energy budget (see Section II-D)
for a task requires detailed information about both the task
program as well as the hardware platform it runs on. In this
context, especially obtaining the latter is often a problem, as
precise energy models comprising absolute numbers for the
energy costs of instructions are inherently difficult to create
for complex hardware platforms. This is especially true if non-
deterministic factors such as cache behavior and pipelining
must be taken into account. As a result, hard energy budgets
based on the energy models available are usually significant
over-approximations of the actual WCECs, especially if they
have to assume a cache miss on every memory access.

While the lack of detailed knowledge for the time being
makes it necessary to tolerate high over-approximations for
hard energy tasks, there is no need to pay the same price for
soft energy tasks: Relying on measurements, 0g is able to pro-
vide soft energy budgets that are close under-approximations of
tasks’ actual WCECs. Note that applying a measurement-based
approach transforms the problem of finding the most costly
path and computing its energy consumption into the problem of
finding the parameters executing this path in order for them to
be used as input for measurements. While the former requires
precise absolute numbers, 0g is able to solve the latter based
on estimated relative energy costs of instructions, which are
easier to obtain and reusable between different but similar
target platforms. In Section IV-A, we present details of such
relative energy models.

C. Energy Analysis based on Absolute Energy Models

In the following, we discuss how 0g computes energy
budgets for tasks if absolute energy models for the target
platform are available. Depending on the category of a task,
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Figure 3: 0g relies on different techniques for providing hard
and soft energy budgets based on absolute energy models.

our tool relies on different techniques (see Figure 3): Hard
energy budgets are determined by applying implicit path
enumeration [11], whereas genetic algorithms [14] are used
for soft energy budgets.

1) Analysis of Hard Energy Budgets: The implicit path
enumeration technique (IPET) is a structural approach op-
erating on the control-flow graph of a program, which is
modeled through basic blocks (i.e., branch-less sequences of
instructions). During the analysis, each basic block first is
assigned a specific weight, for example, representing its worst-
case energy cost [5]. Then, the flow with the maximum overall
weight is identified by solving the corresponding integer linear
programming problem.

Exploiting the information contained in an absolute energy
model for the target platform, 0g is able to approximate
the WCEC of a basic block by adding up the individual
costs of the instructions included in the block; if available
in the model, further knowledge about characteristics of the
target platform, such as the cache behavior, may also be
considered. In combination with the control-flow graph, the
WCECs of basic blocks allow 0g to find the flow consuming
the most energy, as shown in the example in Figure 3. Having
determined this flow, the tool computes the hard energy budget
for the program by multiplying the execution frequency of each
basic block in the flow with its respective cost and summing
up the values.

There are mainly two reasons why the hard energy budget
calculated with the IPET is usually an over-approximation of
the actual WCEC: First, the worst-case energy cost of basic
blocks by construction are a conservative estimation due to
being derived from the worst-case energy costs of instructions
as provided by the absolute energy model. Second, being an
entirely structural approach, the IPET result may represent an
infeasible path that cannot be triggered during execution. For
example, it is not guaranteed that all programs matching the

control-flow graph in Figure 3 necessarily allow both branches
A and B to be executed subsequently. In Section III-E1,

we discuss how to improve the IPET result by relying on a
mechanism aimed at detecting such infeasible paths.

2) Analysis of Soft Energy Budgets: Genetic algorithms
emulate natural evolution to solve optimization problems.
As shown in Figure 3, running a genetic algorithm is an
iterative process that is based on two principles: mutation
and selection. Starting from an initial set of input values
for the analyzed program (in which, for example, all values
are set to zero), new sets of input values are generated by
introducing variations (i.e., mutation). For each new set, the
program is then executed with the corresponding input values
in order to determine a fitness value. Higher fitness values
indicate better solutions and are therefore used to choose
the inputs to serve as starting point of the mutation step in
the next iteration (i.e., selection). The algorithm terminates
if a predefined criterion is met; example criteria include a
minimum fitness value, a maximum number of iterations, or
an upper bound on the execution time of the algorithm.

A fitness value in 0g corresponds to the energy consump-
tion of a program for a specific set of input values. Higher
values therefore indicate solutions closer to the WCEC. 0g
calculates the fitness value by determining execution frequen-
cies for basic blocks and combining them with information
provided by the absolute energy model of the target platform,
similar to the approach presented in Section III-C1 to compute
hard energy budgets with the IPET. However, in contrast to
the IPET, genetic algorithms only consider feasible paths due
to actually executing the analyzed program. The longer the
analysis runs, the higher the maximum fitness value found by
the genetic algorithm. Representing an under-approximation of
the WCEC, this fitness value is usable as soft energy budget.

D. Energy Analysis based on Relative Energy Models

Precise absolute energy models are not available for ar-
bitrary target platforms. We therefore present an approach to
determine soft energy budgets based on relative energy models
comprising estimations on the energy costs of instructions. In
contrast to absolute numbers, the relative values used in such
models are non-dimensional and thus do not represent actual
amounts of energy consumption. As a consequence, it is not
possible to directly derive an energy budget from them. How-
ever, relative energy models are an effective means to identify
input parameters for measuring the energy consumption of a
particular program path. Considering only feasible paths, the
genetic algorithm usually results in an under-approximation of
the WCEC since one cannot ensure that the path leading to the
actual WCEC is found within acceptable time. Consequently,
this approach is limited to finding soft energy budgets.

Utilizing relative energy models, 0g analyses the program
code using genetic algorithms (see Section III-C2) in order
to find a set of input values leading to an execution path as
close as possible to the path triggering the WCEC. During
this process, the relative energy costs from the model allow
0g to compute auxiliary fitness values. Although such fitness
values cannot directly serve as soft energy budgets, they still
enable the genetic algorithm to assess the quality of solutions
and therefore to decide which set of input values to select for
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prove speed and quality of the analysis.

the next iteration. Note that while this analysis step requires a
relative energy model of the target platform, there is no need to
actually execute it on the embedded system. Instead, 0g relies
on more powerful systems to speed up the analysis.

With the obtained set of input values from the relative
energy model, 0g in the second step then executes the program
on the target hardware and measures its energy consumption.
This way, our tool is able to provide an absolute number for
the soft energy budget of the corresponding task.

E. Combined Energy Analysis

In Sections III-C and III-D, we have detailed the basic
techniques based on which 0g determines hard and soft en-
ergy budgets. Below, we present approaches that allow 0g to
improve the speed and quality of the analysis by combining
different techniques (see Figure 4).

1) Improving the Analysis of Hard Energy Budgets: As
the IPET is an entirely structural approach, the analysis
is not aware of actual program paths (see Section III-C1).
Consequently, the hard energy budget calculated with this
technique is usually higher than the energy consumed by any
feasible path. To mitigate this problem, 0g applies symbolic
execution [12] before delivering a result, in order to detect
infeasible paths considered by the IPET [8]. If no indication for
an infeasible path is found, the result is returned. Otherwise,
0g compiles a set of constraints preventing the infeasible path
from being considered and restarts the IPET analysis. This
way, the amount by which the hard energy budget exceeds the
WCEC is reduced in an iterative process.

Detecting infeasible paths on a global scope of the program
code is more difficult than on a local scope [15]. Due to the
algorithmic complexity preventing a full and thus global sym-
bolic execution of most real-world programs (see Section V-E),
the technique can only be applied selectively (i.e., on parts of
the code). Therefore, there might be cases in which an infea-
sible path is not detected. Nevertheless, symbolic execution
overall remains an effective means to reduce the over-approxi-
mation of hard energy budgets, thereby allowing schedulers to
make decisions based on more precise information.

2) Improving the Analysis of Soft Energy Budgets: As dis-
cussed in Section III-C2, the execution of a genetic algorithm
terminates as soon as a predefined criterion is reached. At this
point, the algorithm returns the set of input values that so
far has achieved the highest fitness value, which—depending
on the energy model—is either an absolute or a relative

value. Unfortunately, while a fitness value is a good means to
compare two solutions, it contains no information on the global
quality of the resulting soft energy budget. That is, even if the
algorithm has been executed for a large number of iterations,
there is no guarantee that the energy consumption of the best
solution found up to this point is necessarily a close under-
approximation of the WCEC.

0g addresses this problem by enabling the result of an IPET
analysis of the same program to serve as reference value for the
quality of a solution. Using this option, as shown in Equation 1,
the fitness value fit for a set of inputs is computed as a fraction
of the hard energy budget HEBIPET determined by the IPET;
f denotes the fitness value as presented in Section III-C2.

fit =
f

HEBIPET
(1)

The fitness value fit has a possible range from 0 % to 100 %.
Consequently, the search space of the genetic algorithm is
bounded through an IPET analysis. However, a fitness value
of 100 % is not always reachable, as the hard energy budget is
an over-approximation of the WCEC and might be based on
an infeasible path; as discussed in Section III-E1, selectively
applying symbolic execution mitigates but in some cases does
not fully solve this issue. Nevertheless, this does not diminish
the approach with regard to cases in which the IPET result
corresponds to a feasible path: As we show in our evaluation
in Section V-F, utilizing the hard energy budget as reference in
such scenarios allows the analysis process to be sped up due
to being able to terminate the analysis as soon as a certain
minimum fitness value (e.g., 95 %) has been reached.

Calculating fitness values as a fraction of the hard energy
budget is not limited to absolute energy models but can also be
used to improve the input parameters for measurements (see
Section III-D). However, in order to ensure consistency it is
important to execute both the IPET as well as the genetic
algorithm with the same energy model.

IV. IMPLEMENTATION

We implemented 0g based on the LLVM [16] compiler
framework and its intermediate representation. The modular
implementation of our framework seamlessly integrates into
the LLVM infrastructure and focuses on reusing analysis
results to benefit from combinations of different analysis
techniques and energy models. In the following, we discuss the
creation and refinement of relative energy models and present
details on the current 0g implementation.

A. Creating and Refining a Relative Energy Model

Obtaining precise absolute energy models is not possible
for all hardware platforms, which is why 0g supports the
analysis of soft energy budgets based on relative energy
models (see Section III-D). The current relative energy model
used by 0g is implemented on the level of the LLVM interme-
diate representation and builds on the insight that executing
an increased number of instructions leads to higher energy
consumption [17]. Like an absolute energy model, the relative
model comprises a specific energy cost for each instruction.
However, in case of the relative model, this energy cost does
not represent an actual energy consumption, but instead is a



non-dimensional number describing the instruction’s energy
consumption in relation to other instructions. For instructions
that lead to the execution of further instructions (i.e., function
calls), the list of instruction costs is applied recursively to
determine the worst-case energy cost of the called function. By
default, our relative energy model assumes equal costs for each
instruction and is therefore independent of specific platforms.

Although relative energy models are implemented on a
target-independent representation of the code, they can be
further refined through target-specific knowledge. For example,
if a memory access is known to be expensive on a particular
target, its cost is increased in the relative model in comparison
to other instructions (e.g., simple arithmetic operations). Equal
considerations also apply if floating-point units must be used
for the execution of instructions. Furthermore, an additional
way to refine the accuracy of a relative energy model is
to introduce knowledge about cache behavior; otherwise, the
model needs to assume a cache miss on every memory access.

B. Analysis Composition and Execution

As discussed in Section III-A, prior to actually executing
the energy analysis, 0g selects the techniques to be used and
decides how to combine them in order to get the best results.
While usually combining different techniques yields significant
benefits, there are specific cases in which it is advantageous to
only rely on a single technique. For example, if the program to
analyze does not comprise branches, the tool knows in advance
that the IPET result will correspond to a feasible path. As a
consequence, 0g in such cases saves resources by leaving out
the detection of infeasible paths with symbolic execution.

When the composition step is complete 0g starts the
analysis, thereby executing as many steps as possible on server-
grade hardware and only resorting to the target embedded
system for measurements (see Section III-D). That is, most of
the analysis is performed on machines with comparably high
computing power. To further speed up the process, 0g is able
to parallelize parts of the analysis, for example, by exploiting
the parallel nature of genetic algorithms.

C. Implicit Path Enumeration

Our infrastructure for implicit path enumeration is based
on the WCET-analysis mechanism utilized in the Real-Time
Systems Compiler [18] and is implemented on the level of
the LLVM intermediate representation. To determine the upper
bound of execution frequencies, the IPET requires upper
bounds for loop iterations and recursion depths. For loops,
we developed a loop-bound detection mechanism based on
chains of recurrences [19], which are used as representation
in LLVM’s scalar-evolution analysis. This mechanism allows
the determination of loop bounds even for nested loops, as
shown in our evaluation (see Section V-D1). However, if
loop bounds cannot be determined statically, 0g reports this
unboundedness to the user and offers the possibility to provide
manual annotations. The same annotation mechanism is also
applied for recursion depths. A user of 0g is able to insert these
annotations directly into the code of the analyzed program.
The refinement of the IPET through detecting infeasible paths
is achieved through the symbolic execution engine KLEE [12].

In the current 0g implementation, the relative energy model
is integrated into the LLVM intermediate representation allow-
ing input-data determination without absolute energy models.
In order to integrate an absolute energy model for a specific tar-
get platform into the intermediate representation, the mapping
to machine code must be known. The LLVM backend stores a
mapping between the intermediate representation and assembly
when generating machine code [20]. This mapping is exploited
to reconstruct the lowering to machine code. Applying an
absolute energy-cost model to machine code yields the costs
for the IPET together with this mapping.

D. Genetic Algorithms

0g comprises a framework for genetic algorithms that is
highly configurable. Amongst other options, for example, the
tool allows different strategies to be applied to select the
input values for the next mutation step, including stochastic
universal sampling [21], tournament selection [22], and best
selection (i.e., the best-fitting values are selected). Further-
more, 0g offers the possibility to start the genetic algorithm
with different initial sets of input values (e.g., a set containing
random values or a set that only consists of zeros).

We expect a typical use case for 0g to be scenarios in which
a programmer occasionally triggers an energy consumption
analysis while still developing the program. As a result, it is
likely that the pieces of code analyzed by subsequent runs
of the tool share great similarities. To speed up the analysis
in such cases, 0g stores intermediate results of the genetic
algorithm (e.g., the best-fitting sets of input values) to disk.
This way, a subsequent analysis run does not have to start
from scratch but can be initialized with the best solution
found up to this point. Furthermore, by also storing the input
values for measurements, 0g facilitates the integration of new
target platforms: For example, if the new hardware matches a
relative energy model for which the tool has already performed
an analysis of the program, the parameters identified by the
genetic algorithm can be reused and only the measurement
step needs to be executed.

V. EVALUATION

In this section, we evaluate the accuracy of 0g for three
target platforms: an ARM Cortex-M0+ (Freescale FRDM-
KL46Z [9]), an ARM Cortex-M3 (EFM32 Giant Gecko [23]),
and an Intel Core i7-3770 (8 cores, 8 GB RAM). While the
first two are typical microcontrollers for embedded systems,
the last one allows us to assess the results of 0g for a complex
hardware platform. In addition, we analyze the performance of
our tool and different configurations of the genetic algorithm.

A. Experimental Setting

In all our experiments, 0g performs the code analysis on an
AMD Opteron server (48 cores, 64 GB RAM). However, the
methods for measuring the energy consumption of a program
differ between target platforms: The Intel Core i7 provides the
Running Average Power Limit (RAPL) interface [24], which
allows fine-grained energy measurements without expensive
external measuring hardware. In order to compensate the
relatively slow update rate of the employed model-specific reg-
isters of about one millisecond, we adopt a strategy proposed



by Hähnel et al. [25] that aligns the start and end of a function
with the update. Based on their results, we developed a Linux
kernel driver, which also handles the preemptible and multi-
threaded environment. Further obstacles for energy measure-
ments with the RAPL interface are discussed in [1]. Although
this platform does not target the domain of energy-constrained
embedded systems, it serves as example to demonstrate the
possibility of measurement-based energy analysis for complex
platforms. In contrast to the Intel Core i7, the ARM Cortex-M3
board offers an integrated possibility of current measurements
up to an accuracy of 1 µA [26]. For the evaluated program, the
sampling rate of 6,250 samples per second is sufficient. For
the ARM Cortex-M0+ platform, we use the external energy
measurement device that we presented in [6]. The device is
based on a current-to-frequency conversion allowing precise
energy measurements without sampling rate limitations.

B. Benchmarks

The Mälardalen benchmarks [27] are a widely used eval-
uation scenario to prove the effectiveness of WCET analysis
approaches [8], [15], [20]. In our experiments, we therefore
use the 0g WCEC analyzer to determine energy budgets for
several different programs from the Mälardalen benchmark
suite. In addition, we analyze an implementation of the bubble-
sort algorithm with 2,000 32-bit integer values as input.

The bubble-sort algorithm has several characteristics that
make it ideal for our evaluation: First, the benchmark has
an input array with static size, which makes it a viable
substitute for real-time signal-processing applications. Second,
the energy consumption varies significantly for different input
values, as the control-flow graph highly depends on the data
to process. Third, based on the program code, we are able to
manually determine the path leading to the worst-case energy
consumption and to assemble a set of input values for it, which
is a list sorted in reverse order. This is important as it allows us
to verify the correctness of the input values identified by 0g.
Furthermore, for this particular benchmark, we can measure
the energy consumption to provide a WCEC and compare it to
the energy budgets provided by our tool. In general, detecting
the WCEC path is costly and error-prone, creating the need
for tools such as 0g.

C. Hard Energy Budget Analysis

In the first experiment, we use 0g to determine a hard
energy budget for the bubble-sort implementation; the tar-
get platform is Cortex-M0+, for which we have developed
an absolute, instruction-level energy model. As discussed in
Section V-B, we are able to manually reproduce the WCEC
of the bubble-sort benchmark in order to have a baseline to
evaluate our tool; on the Cortex-M0+ platform this baseline
is 100.37 mJ, as shown in Table II. For comparison, the hard
energy budget put out by 0g after the analysis is 119.59 mJ,
about 19 % more than the actual WCEC. As the WCEC of
a program usually cannot be determined exactly, for a hard
energy task it is necessary to make scheduling decisions based
on such an over-approximation to ensure that the task runs
to completion. In contrast, for soft energy tasks the scheduler
may consider under-approximations, as evaluated below.

Analysis Method Energy
E

Normalized
E

WCEC

Manually (WCEC) 100.37 mJ 100.00 %
0g – Hard energy budget 119.59 mJ 119.15 %
0g – Soft energy budget (95 % fitness) 95.05 mJ 94.70 %

TABLE II: Results of the WCEC analysis of the bubble-sort
benchmark for the Cortex-M0+ platform.

Analysis Method Energy
E

Normalized
E

WCEC

Manually (WCEC) 159.99 mJ 100.00 %
0g – Soft energy budget (95 % fitness) 138.15 mJ 86.35 %

TABLE III: Results of the WCEC analysis of the bubble-sort
benchmark for the Cortex-M3 platform.

Analysis Method Energy
E

Normalized
E

WCEC

Manually (WCEC) 132.10 mJ 100.00 %
0g – Soft energy budget (95 % fitness) 127.66 mJ 96.64 %

TABLE IV: Results of the WCEC analysis of the bubble-sort
benchmark for the Intel Core i7 platform.

D. Soft Energy Budget Analysis

In this section, we present experiments evaluating the
accuracy of the soft-energy budgets determined by 0g for the
bubble-sort and Mälardalen benchmarks. For this use case,
the energy analysis consists of the following steps: Based
on the program and the relative energy model described in
Section IV-A, 0g first applies the IPET in combination with
symbolic execution (see Section III-E1) to identify a reference
value for the subsequent run of the genetic algorithm (see Sec-
tion III-E2); that is, the IPET result represents a fitness value
of 100%. Relying on the genetic algorithm, in the next step,
the tool determines a set of measurement parameters. Finally,
0g executes the program to analyze on the target hardware and
measures the energy consumption (see Section III-D).

1) Bubble-Sort Benchmark: For the soft energy budget
analysis of the bubble-sort benchmark, we configure 0g to
terminate the search for suitable measurement inputs as soon
as the genetic algorithm reaches a minimum fitness value of
95 %. Table II shows the result of the analysis for the Cortex-
M0+ platform, which corresponds to the hard energy budget
analysis presented in Section V-C. 0g returns a soft energy
budget of 95.05 mJ, which is only 5.3 % less than the actual
WCEC. This confirms that 0g’s approach relying on a relative
energy model and measurements is able to provide a close
under-approximation of the WCEC.

The third column of Table II shows the results normalized
to the actual WCEC. This allows us to assess the quality
of the fitness value as an indicator for the accuracy of the
soft energy budget determined by 0g. Here, the soft energy
budget represents 94.7 % of the actual WCEC, which is close
to the 95 % predicted by the fitness value of the inputs used
for the measurement. A key reason for this precise prediction
lies in the fact that for the bubble-sort benchmark the IPET
result, serving as a reference fitness value, corresponds to a
feasible path. As a consequence, a fitness value of 100 % can
theoretically be reached. Additionally, for this benchmark our
loop-bound detection mechanism based on a scalar-evolution
analysis identifies precise bounds even for the nested loop.



Benchmark Fitness
fit

Energy
E

Loop Bounds
Detected / Total

adpcm 98.79 % 1.36 mJ 14 / 16
bsort100 93.85 % 4.19 mJ 1 / 2
cnt 100.00 % 4.21 mJ 1 / 2
duff 100.00 % 5.27 mJ 2 / 2
edn 100.00 % 6.33 mJ 10 / 11
fir 89.51 % 3.32 mJ 0 / 2
jfdctint 100.00 % 2.19 mJ 2 / 2
st 100.00 % 4.87 mJ 7 / 7

TABLE V: WCEC evaluation of Mälardalen benchmarks

Performing the energy analysis of the bubble-sort bench-
mark for the Intel Core i7 as well as the Cortex-M3 platform
produces the results presented in Tables IV and III, respec-
tively. For the Intel Core i7, 0g determines a soft energy
budget that is within 3.4 % of the WCEC2. For the Cortex-
M3 platform, the soft energy budget under-approximates the
WCEC by 13.7 %. Although the Cortex-M3 results are not as
precise as the results for the other two platforms evaluated,
we still consider them acceptable for practical use. More
important, the fact that 0g is able to provide good results
for such different target platforms based on the same relative
energy model is a significant advantage of our approach.

2) Mälardalen: For our experiments with the Mälardalen
benchmark suite on the Intel Core i7, we configure 0g’s genetic
algorithm to terminate if the highest fitness value found is
stable for 20,000 consecutive iterations. As shown in Table V,
this allows our tool to reach a perfect fitness value of 100 %
for five of the eight benchmarks investigated. This is possible
because, as for our bubble-sort implementation evaluated in
Section V-D1, in these cases the result of the improved IPET
analysis corresponds to a feasible path. In contrast, for the
other three benchmarks (i.e., adpcm, bsort100, and fir)
the IPET provides an actual over-approximation representing
an infeasible path, which results in the genetic algorithm
terminating with fitness values lower than 100 %.

Besides evaluating the genetic algorithm, the variety of the
Mälardalen benchmark suite also allows us to assess the quality
of 0g’s loop-bound detection mechanism for the IPET (see
Section IV-C). As presented in Table V, for five of the eight
benchmarks 0g automatically detects bounds for a majority
or even all loops in the program. Across all Mälardalen
benchmarks evaluated, the detection rate of our tool is 84 %.

E. Performance

In this section, we evaluate 0g with regard to performance
using the bubble-sort benchmark. As shown in Figure 5, on our
AMD server the analysis step running a genetic algorithm to
identify measurement inputs takes nearly five hours if executed
with only a single thread. Allocating eight threads, this time
is reduced to 102 minutes; on our Intel Core i7 with eight
cores the same procedure requires 104 minutes. Employing

2The complex caching behavior of the Intel Core i7 platform makes it
difficult to precisely determine the WCEC by measurement, as it cannot
be ensured that, for example, all possible cache misses are considered. We
therefore repeated the experiment for this platform with complex hardware
features, including caches, disabled. For this scenario, the soft energy budget
provided by 0g represents an under-approximation of about 4%.
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Figure 5: A significant speedup is achieved through parallel
execution of the genetic input-determination algorithm.

all 48 physical cores of the AMD server, a fitness of 95 % is
already found after 56 minutes. On the one hand, this confirms
the good parallelizability of genetic algorithms. On the other
hand, it illustrates the advantage of 0g being able to execute
the most costly parts of the analysis on server-grade hardware.

To put these numbers into perspective, we run an experi-
ment investigating a different approach to find suitable input
values for measurements: symbolic execution. Note that due
to the prohibitively large computational cost associated, we
are not able to perform this experiment with the same input
size as for 0g (i.e., 2,000 integer values), which is why we
truncate the input list to nine elements. Despite the reduction
by two orders of magnitude, the experiment conducted with
the symbolic execution engine KLEE [12] still takes more
than five days to complete during which the analysis explores
130,026 program states. For comparison, for an input size of
nine, thanks to the genetic algorithm 0g yields a result with a
fitness value of 95 % after two seconds.

F. Genetic Algorithm Configuration

As discussed in Section IV-D, 0g’s framework for genetic
algorithms is highly configurable. In the following, we evaluate
the impact of a key parameter, the mutation rate, specifying
the degree of variation introduced during the mutation step
in each iteration. For a mutation rate of 100 % the genetic
algorithm degrades to random testing as the mutation process
in one iteration is completely independent of the set of values
selected in the previous round. In contrast, a low mutation rate
ensures with high probability that the progress made is carried
into the next round. Figure 6 shows the evolution of fitness
values in the bubble-sort benchmark for two such mutation
rates (i.e., 0.005 % and 0.2 %). In both cases, the experiment
starts with the initial input values all set to zero, which for
this use case results in a fitness value of 76.93 %. The longer
the analysis runs, the higher the maximum fitness value found
by the genetic algorithm, eventually reaching the termination
criterion of 95 %. For a mutation rate of 0.005 % this takes
about 18,700 iterations, while for a mutation rate of 0.2 % the
analysis already terminates after about 11,600 iterations due
to the higher degree of variation enabling a faster progress.

Figure 6 illustrates that there is a general trade-off between
accuracy and effort with regard to the analysis of soft-energy
budgets: Providing more computing power and/or spending
additional time leads to better results. In this context, the fact
that the fitness value can serve as a metric for accuracy is
of particular importance, as it provides a reference point for
the overall progress of the analysis. By specifying a fitness
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Figure 6: Evaluation of different mutation rates in the genetic
algorithm for the bubble-sort benchmark.

threshold as a termination criterion for the genetic algorithm, a
0g user is able to instruct the tool to end the analysis as soon as
a certain accuracy is reached. In many cases, this significantly
speeds up the process compared with waiting for the algorithm
to complete after a predefined number of iterations.

VI. DISCUSSION

In the following, we focus on a number of design decisions
made during the development of 0g and discuss possible
alternatives and extensions.

Choice of Task Categories: The main purpose of differen-
tiating between hard and soft energy tasks in this paper was to
illustrate that there are different requirements for different tasks
when it comes to using energy consumption as a scheduling
criterion. For some tasks an under-approximation of the WCEC
is acceptable, while others by all means must run to comple-
tion, requiring their energy budgets to be based on an over-
approximation of the WCEC. While these two task categories
are likely to be sufficient for some embedded systems, we
expect to see energy-aware schedulers that consider additional
task categories including, for example, hard energy tasks that
may be interrupted and suspended in order to be resumed at a
later point in time.

Use of Relative Energy Models: If an absolute energy
model for the target platform is not available, 0g can use a
relative energy model to obtain input values for measuring
soft energy budgets. In principle, it would also be possible
to execute the genetic algorithm without any energy model.
However, this would require to evaluate the fitness value of
program inputs through measurements and consequently to
perform a significant part of each iteration on the comparably
slow target platform. In contrast, the relative energy model
allows 0g to minimize the analysis time by running the most
costly steps on hardware with high computing power.

In our evaluation, we used the same relative energy model
to determine soft energy budgets for three different target
platforms. 0g provided acceptable results in all cases. How-
ever, for scenarios that require an even higher accuracy, our
approach allows to refine the relative energy model by utilizing
additional knowledge about a particular target platform. In
general, there is a tradeoff between accuracy and reusability:
On the one hand, target-specific relative energy models may
lead to better results; on the other hand, the measurement

inputs identified by the genetic algorithm based on a highly
target-specific model usually can no longer be reused for
measuring soft energy budgets on other target platforms. In
consequence, we expect the cost of refining a relative energy
model to be paid only if high accuracy is actually necessary.

Reference Values: The hard and soft energy budget of a
task represent an upper and lower bound of the WCEC, re-
spectively. Thus, the distance between the two energy budgets
serves as an indicator for the quality of the result returned
by 0g. If the distance is large, the user may want to grant
additional resources (e.g., time or processor cores) to the tool
in order to intensify the analysis. In contrast, a small distance
between hard and soft energy budget proves that each of
them is close to the WCEC, offering additional flexibility. For
example, at only a small extra cost, a soft energy task can be
given the same run-to-completion guarantees as a hard energy
task by scheduling both based on their hard energy budgets.

VII. RELATED WORK

We are not the first to argue that schedulers of embedded
real-time systems should be made energy aware. Völp et al. [1],
for example, even showed that for some mixed-criticality
systems rudimentary energy awareness is not enough in order
to ensure all real-time guarantees. They conclude that in such
cases, when it comes to making scheduling decisions, energy
must be treated equally to time. Especially for such systems,
precise information on the WCEC of tasks is essential.

Although WCET analyzers usually cannot be directly used
for determining hard and soft energy budgets, 0g is able to
benefit from ongoing research and advances made in the field
of code analysis in general and WCET analysis in particular.
For example, integrating additional approaches to refine the
IPET result could lead to more precise hard energy budgets
as well as improved reference fitness values for the genetic
algorithm. A possible candidate in this context is the technique
proposed by Blackham et al. [15] to detect and eliminate
infeasible paths through exploring mutually unsatisfiable con-
straints. Furthermore, we expect 0g to benefit from ongoing
improvements of symbolic execution platforms [28].

Wegener [13] evaluated several strategies for using evo-
lutionary algorithms to verify timing results. For 0g, we
utilize the basic concepts of this work for WCEC analysis.
Furthermore, we provide a means to bound the search space
of an evolutionary algorithm through an initial IPET analysis.

Wenzel et al. [29] addressed a key problem of measure-
ment-based WCET analysis: the generation of test data. They
proposed a systematic approach which first applies techniques
with comparably low computational overhead (e.g., reusing
the test data from previous analysis runs or setting all input
variables to random numbers) and then gradually proceeds to
more costly techniques (e.g., heuristics and model checking) if
the quality of the test data produced by the initial stages is in-
sufficient. With 0g relying on measurements to determine soft
energy budgets based on relative energy models, its accuracy
and efficiency also depends on the ability to quickly obtain
good test data. Some mechanisms, such as the reuse of input
values for different target platforms, are already integrated into
0g, but we intend to add further mechanisms in the future.



To the best of our knowledge, only a single WCEC analyzer
has been published so far: Jayaseelan et al. [5] presented
an approach to provide an over-approximation of the WCEC
based on static analysis. In contrast to 0g, their technique
mandates absolute energy models comprising precise informa-
tion on the maximum energy consumption of each instruction,
which are difficult to obtain. Our tool is able to use absolute
energy models if they are available. However, if this is not
the case, 0g can also provide precise results based on relative
energy models and measurements. Furthermore, our approach
combines several techniques, which allows 0g to tailor the
analysis to the specific requirements of the user, for example,
by applying different techniques for over-approximations than
for under-approximations of the WCEC.

VIII. CONCLUSION

Energy-aware scheduling requires knowledge about the
WCEC of tasks. In this paper, we presented 0g, an approach to
retrieve such information for different target platforms by com-
bining several techniques, including implicit path enumeration
and genetic algorithms. If an absolute energy model is avail-
able, the tool performs the entire analysis on server-grade hard-
ware. Otherwise, it identifies suitable program inputs using a
relative energy model and determines an under-approximation
of the WCEC by measurement on the actual target hardware.
Our evaluation has shown that such a measurement-based
approach can provide precise WCEC estimates.
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