
Resource Efficient Isolation Mechanisms in
Mixed-Criticality Scheduling

Xiaozhe Gu, Arvind Easwaran
Nanyang Technological University, Singapore

Email: guxi0002@e.ntu.edu.sg, arvinde@ntu.edu.sg

Kieu-My Phan, Insik Shin
KAIST, Korea

Email: phankieumy@kaist.ac.kr, insik.shin@cs.kaist.ac.kr

Abstract—Mixed-criticality real-time scheduling has been de-
veloped to improve resource utilization while guaranteeing safe
execution of critical applications. These studies use optimistic
resource reservation for all the applications to improve utiliza-
tion, but prioritize critical applications when the reservations
become insufficient at runtime. Many of them however share
an impractical assumption that all the critical applications will
simultaneously demand additional resources. As a consequence,
they under-utilize resources by penalizing all the low-criticality
applications. In this paper we overcome this shortcoming using
a novel mechanism that comprises a parameter to model the
expected number of critical applications simultaneously demand-
ing more resources, and an execution strategy based on the
parameter to improve resource utilization. Since most mixed-
criticality systems in practice are component-based, we design
our mechanism such that the component boundaries provide
the isolation necessary to support the execution of low-criticality
applications, and at the same time protect the critical ones. We
also develop schedulability tests for the proposed mechanism
under both a flat as well as a hierarchical scheduling framework.
Finally, through simulations, we compare the performance of the
proposed approach with existing studies in terms of schedulability
and the capability to support low-criticality applications.

I. INTRODUCTION

An increasing trend in embedded systems is towards open
computing environments, where multiple functionalities are
developed independently and integrated together on a single
computing platform [1]. An important notion behind this trend
is the safe isolation of separate functionalities, primarily to
achieve fault containment. This raises the challenge of how
to balance the conflicting requirements of isolation for safety
assurance and efficient resource sharing for economical bene-
fits. The concept of mixed-criticality appears to be important
in meeting those two goals.

In many safety-critical systems, the correct behavior of
some functionality (e.g., flight control) is more important
(“critical”) to the overall safety of the system than that of
another (e.g., in-flight cooling). In order to certify such systems
as being correct, they are conventionally assessed under certain
assumptions on the worst-case run-time behavior. For example,
the estimation of Worst-Case Execution Times (WCETs) of
code for highly critical functionalities involves very conserva-
tive assumptions that are unlikely to occur in practice. Such
assumptions make sure that the resources reserved for critical
functionalities are always sufficient. Thus, the system can be
designed to be fully safe from a certification perspective, but
the resources are in fact severely under-utilized in practice.

In order to close such a gap in resource utilization,

Vestal [2] proposed the mixed-criticality task model that
comprises of different WCET values. These different values
are determined at different levels of confidence (“criticality”)
based on the following principle. A reasonable low-confidence
WCET estimate, even if it is based on measurements, may
be sufficient for almost all possible execution scenarios in
practice. In the highly unlikely event that this estimate is vio-
lated, as long as the scheduling mechanism can ensure deadline
satisfaction for highly critical applications, the resulting system
design may still be considered as safe.

To ensure deadline satisfaction of critical applications,
mixed-criticality studies make pessimistic assumptions when a
single high-criticality task executes beyond its expected (low-
confidence) WCET. They assume that the system will either
immediately ignore all the low-criticality tasks [3], [4], [5], [6],
[7], [8] or degrade the service offered to them [9], [10], [11],
[12]. They further assume that all the high-criticality tasks in
the system can thereafter request for additional resources, up to
their pessimistic (high-confidence) WCET estimates. Although
these strategies ensure safe execution of critical applications,
they have a serious drawback as pointed out in a recent
article [9]. When a high-criticality task exceeds its expected
WCET, the likelihood that all the other high-criticality tasks
in the system will also require more resources is very low
in practice. For instance, it is unlikely that adaptive cruise
control and anti-lock braking, both of which are critical, would
simultaneously require additional resources because their exe-
cution time depends on different inputs. Cruise control would
most likely require additional resources when the cameras and
lidars provide dense data, whereas the execution of anti-lock
braking mainly depends on speed of the vehicle and friction
on the tyres. Therefore, to penalize all the low-criticality tasks
in the event that some high-criticality tasks require additional
resources seems unreasonable.

In practice, most mixed-criticality systems are component-
based wherein different vendors independently design and
develop the various applications. For wide applicability, it is
then natural that mixed-criticality scheduling strategies must
consider the impact of WCET violations across component
boundaries. To the extent possible, these strategies must limit
this impact to within components, so that other components
in the system can continue their execution uninterrupted. One
extreme manifestation of this view is the reservation-based
approach that completely isolates components but severly
under-utilizes the resources. On the other hand, most of the
recent mixed-criticality studies such as those mentioned above,
completely ignore these component boundaries but still under-

ar
X

iv
:2

00
4.

02
40

0v
1

 [
cs

.O
S]

 6
 A

pr
 2

02
0

utilize resources due to unrealistic assumptions.

Contributions. Addressing the two central issues described
above, in this paper we propose a resource efficient mechanism
to support low-criticality tasks while still ensuring isolation of
high-criticality tasks. This mechanism comprises the following.

1) A new parameter to model the expected number of
simultaneous violation of low-confidence WCET by
high-criticality tasks.

2) A corresponding execution strategy that maximizes
low-criticality task executions as long as this number
is not exceeded.

3) To efficiently support component-based mixed-
criticality systems, we employ our mechanism at
the component level. We ensure that as long as the
number of low-confidence WCET violations within a
component does not exceed the component’s expected
limit, task executions in other components, including
low-criticality ones, remain unaffected.

It is worth noting that this mechanism generalizes both
the reservation based approach in which high-criticality
tasks are allocated resources based on their high-confidence
WCETs [13], as well as the classical mixed-criticality studies
that penalize all the low-criticality tasks (e.g., [8]). Considering
a mixed-criticality scheduling strategy based on the Earliest
Deadline First (EDF) policy (e.g., [6], [7], [8]), we also derive
schedulability tests for the proposed mechanism. We derive
these tests for a flat (non-hierarchical) as well as a hierarchical
scheduling framework. While both these frameworks ensure
isolation for high-criticality tasks as a result of employing
criticality-aware scheduling, the hierarchical framework addi-
tionally supports compositionality, i.e., the ability of a system
to derive properties (e.g., schedulability) for higher level com-
ponents using derived properties of lower level components.
We evaluate the performance of the proposed mechanism in
terms of schedulability and the ability to support low-criticality
executions through extensive simulations. These results show
that our proposed mechanism outperforms all the other existing
studies in terms of this dual objective.

Related Work. Since Vestal’s seminal work in 2007 [2],
a growing number of studies have been introduced for mixed-
criticality real-time scheduling, e.g., [3], [4], [5], [6], [7],
[8], sharing the pessimistic strategy that all the low-criticality
tasks will be immediately dropped upon WCET violation of a
single high-criticality task. Some recent studies have presented
solutions to improve support for low-criticality executions [9],
[10], [11], [14], [12], [15]. The elastic mixed-criticality model
allows for a flexible release pattern of low-criticality tasks
depending on the runtime resource consumption of high-
criticality tasks, essentially treating the low-criticality work-
load as background [11], [9], [10]. This was improved by
the service adaptation strategy that decreased the dispatch
frequency of low-criticality tasks only when a high-criticality
task violated its low-confidence WCET. All the above studies
however, share the unrealistic assumption that once a single
high-criticality task violates its low-confidence WCET, all the
other high-criticality tasks in the system will also exhibit
similar behavior. The interference constraint graph strategy
partially relaxes this assumption, at least in terms of its online
strategy for penalizing low-criticality tasks [14]. The constraint

graph is used to specify execution dependencies between high-
and low-criticality tasks, and a response-time based approach
was presented to determine graph constraints that improve
low-criticality executions at runtime. However, it still uses
high-confidence WCET estimates for all the high-criticality
tasks when determining schedulability (test based on [2]),
which again leads to the same unrealistic assumption and
therefore results in resource under-utilization. Further, none of
the above studies consider the impact of WCET violations in
the context of component-based systems. A couple of recent
studies proposed techniques to support hierarchical schedul-
ing for component-based mixed-criticality systems [16], [13].
These studies focused on implementation issues however, and
therefore did not consider the problems discussed above.

II. SYSTEM MODEL

A. Task and Component

In this paper we consider constrained deadline mixed
criticality sporadic tasks (or tasks for short). Such a task
can be specified as τi = (Ti, Li, Ci, Di), where Ti denotes
the minimum separation between job releases, Li denotes
the criticality level, Ci is a list of WCET values, and Di

(≤ Ti) denotes the relative deadline. We assume that tasks
have only two criticality levels, LC denoting low-criticality
and HC denoting high-criticality. Hence Li ∈ {LC,HC}
and Ci = {CLi , CHi }, where CLi denotes LC WCET and CHi
denotes HC WCET. If Li = HC, then τi is called a HC
task, otherwise τi is called a LC task. We also assume that
CLi < CHi for all the HC tasks, and CLi = CHi for all the
LC tasks. Jobs of τi are released with a minimum separation
of Ti time units, and each job can execute for no more than
CHi time units (CLi in the case of LC task) within Di time
units from its release. Let T = {τ1, . . . , τn} denote a set of
such mixed-criticality tasks that are scheduled on a single-core
processor.

We assume that the tasks are partitioned into components,
where each component C = (W, TL) comprises the following.

• A real time workload W denoting a subset of tasks
from T , and

• A HC Tolerance Limit TL ∈ N denoting the maxi-
mum HC workload isolation limit of the component.
As long as no more than TLi tasks in the compo-
nent simultaneously exhibit HC behavior (execution
requirement is more than LC WCET), we must ensure
that all the job deadlines in the other components,
including those of LC jobs, are met. More details
about this parameter are presented later in this section.

Partitioning the task set into components is mainly driven
by practical considerations as mentioned in the introduction.
Since these components are developed independently, it is
desirable to limit the impact of WCET violations to within
components as much as possible, while still efficiently utilizing
the resources. The HC tolerance limit TL precisely does that
in our model. It could be set based on component properties
if information about the runtime behavior of HC jobs is
available, e.g., probability of execution requirement exceeding
LC WCET. It can also be determined such that the limit is
maximized so as to support more LC job executions, while still

maintaining system schedulability. C = (W, TL) is called a
LC component if every task in its workload is a LC task, and
for such components we assume that TL = 0. Otherwise, C
is called a HC component.

B. Task and Component Execution Model

The execution semantics of a mixed-criticality task has
been presented previously [3], and we summarize it as follows.
A task τi is said to be in low-criticality mode (or LC mode
for short) as long as no job of the task has executed beyond
its LC WCET CLi . If τi is a LC task, then this is the only
available criticality mode. Whereas if τi is a HC task, then it
switches to high-criticality mode (or HC mode for short) at
the time instant when some job of the task requests to execute
for more than its LC WCET. In HC mode, jobs of τi can
request to execute for no more than CHi time units.

We now define the execution semantics of a component
C = (W, TL). C has two execution modes, an internal mode
that concerns the behavior of tasks in C, and an external mode
that concerns the behavior of tasks in the other components.
We first describe these two modes, and then discuss their
implications.

Internal Mode. Component C experiences Internal Mode
Switch (or IMS for short) at the earliest time instant when any
HC task in C switches to HC mode. The component switches
its internal mode from LC to HC at this time instant. Prior
to this mode switch, all the task deadlines are required to be
met. After this switch however, all the LC tasks in C can
be dropped, and only the HC task deadlines are required to
be met. There is no impact of this mode switch on the other
components in the system.

External Mode. Component C experiences External Mode
Switch (or EMS for short) at the earliest time instant when
the (TL + 1)st HC task in C switches to HC mode. The
component switches its external mode from LC to HC at this
time instant. Prior to this mode switch, at most TL tasks in
C were executing in HC mode. After this switch however,
all the HC tasks in C may execute in HC mode. Further,
all the LC tasks in the system, including the LC tasks in the
other components, are no longer required to meet deadlines.
Component C’s internal as well as external modes could switch
back to LC mode when there are no pending jobs in the system
at some time instant.

Note that the intra- and inter-component execution require-
ments based on their internal and external modes respectively,
are consistent with the mixed-criticality requirements in the
existing literature (e.g, [6]). If C is a LC component, then
its internal and external modes are identical and equal to
LC. On the other hand if C is a HC component, then these
modes, together with the HC tolerance limit TL, are key
mechanisms for supporting LC job executions. If TL > 0, it
is possible for IMS and EMS to occur at different time instants
(asynchronously). Then, during the interval when component
C’s internal mode is HC while its external mode is LC, LC
tasks in the other components are isolated from the internal
mode switch of C. That is, these LC tasks can continue
their execution even though some HC tasks in C are already
executing in HC mode.

The proposed model and execution strategy generalizes
both the worst-case reservation based approach in which HC
tasks are allocated resources based on their HC WCETs [13],
as well as the classical mixed-criticality studies that drop all
the low-criticality tasks upon WCET violation by a single
HC task (e.g., [8]). The former can be modeled by setting
TL = |H|, where |H| denotes the total number of HC tasks
in the component, while the latter can be modeled by setting
TL = 0.

Scheduling Strategy. In this paper we focus on the Earliest
Deadline First (EDF) strategy, and assume that LC tasks
are dropped (not considered for scheduling) once it becomes
known that their deadlines are not required to be met. We
have chosen this scheduling strategy because it has been
successfully employed in the past for mixed criticality systems
(e.g., [6], [7], [8]). To accommodate the sudden increase in
demand when tasks start executing in HC mode, these existing
studies artificially tighten the deadlines of HC tasks when
they are executing in LC mode. This ensures that when a
task switches to HC mode, it has some amount of time left
until its real deadline to execute any additional demand. In this
paper we assume that such deadline tightening strategies are
employed.

For a task τi = (Ti, Li, Ci, Di), we let DL
i denote the

artificially tightened deadline in LC mode of execution. By
definition, DL

i ≤ Di for all tasks, and DL
i = Di if Li = LC

because no tightening is required for such LC tasks. While a
HC task τi = (Ti, HC, Ci, Di) is executing in LC mode, τi
must receive at least CLi processor units before its tightened
deadline DL

i . When the task τi switches to HC mode, it must
receive at least CHi processor units before the actual deadline
Di. Note that a HC task in component C that executes in LC
mode after IMS of C will continue to be scheduled using its
tightened deadline DL

i , unless it switches to HC mode. After
EMS of C however, all the HC tasks are assumed to switch to
HC mode and will be scheduled using their actual deadlines.

We consider two different scheduling frameworks in this
paper; a flat (non-hierarchical) framework in which all the
tasks in all the components are collectively scheduled by
a single scheduler, and a hierarchical framework in which
the tasks in components are scheduled by intra-component
schedulers and the components themselves are scheduled by a
inter-component scheduler. The flat framework is relevant in
applications that do not use hierarchical scheduling (e.g., Deos
Real-Time Operating System for avionics [17]), whereas the
hierarchical framework is relevant in applications that require
compositionality (e.g., ARINC653 in avionics [18]). Note that
a criticality-aware flat scheduler also ensures isolation for
high-criticality tasks, and hence from that perspective provides
similar functionality as a hierarchical scheduler. In Section III
we present the schedulability test under a flat scheduling
framework, and in Section IV we present the schedulability
test under a hierarchical scheduling framework. Finally, the
capability of the proposed mechanism and the corresponding
schedulability tests to support LC job executions are evaluated
through extensive simulations in Section V.

CL
i

ti

CH
i − CL

i

r(JA
i) DL

i Di

r(JA
i) +DL

i − ti < 0

ti

r(JA
i) DL

i Di

r(JA
i) +DL

i − ti ≥ 0

t

t

ti

r(JA
i) DL

i Di

t

ti − r(JA
i)

(a):

(b):

(c):

Fig. 1. Execution pattern for JAi that generates maximal demand

III. SCHEDULABILITY TEST FOR FLAT SCHEDULING
FRAMEWORK

Demand bound function (dbf), which gives an upper bound
on the maximum possible execution demand of tasks in
given time interval length, was first proposed to characterize
the maximal demand of workloads comprising non-mixed-
criticality tasks [19]. Since then dbf has been extended to
mixed-criticality tasks as well [7], [8].

In this section, for the task and component model presented
earlier, we propose a dbf-based schedulability test under an
EDF-based flat scheduling framework. In Section III-A we
present the functions to calculate the demand of two special
jobs of a task, and in Section III-B we use this to compute the
dbf of a task (this dbf has already been developed in [8]). In
Section III-C, we present the dbf of a component, and finally
in Section III-D we present the dbf-based schedulability test.

Let t denote the time interval length and without loss of
generality we assume the time interval is [0, t). Let tE(≤ t)
denote the time instant for External Mode Switch or EMS of
C, and tI(≤ tE) denote the time instant for Internal Mode
Switch or IMS of C. If C is a LC component, then it has
no IMS or EMS, and tasks within it will be dropped after the
earliest EMS of any component in the system. For a HC task
τi in the workload of C, let ti denote the time instant when
it switches to HC mode. By definition tI ≤ ti ≤ tE . For a
LC task τi in the workload of C, let ti denote the time instant
when it is dropped. Note that ti in the LC case is either equal
to tI or the earliest EMS of any HC component, whichever is
earlier. We use Ji to denote any job of τi, and r(Ji) to denote
its release time.

A. Demand of two special jobs

We now introduce how to compute the demand of the first
special job which is the last one released by HC task τi before
it switches to HC mode at ti. As shown in Figure 1, this is a
job such that r(Ji) ≤ ti and r(Ji) + Ti > ti, and we denote
such a job as JAi . The following lemma bounds the demand
of JAi when its deadline is greater than t.

Lemma 1: If r(JAi) +DL
i > t, then JAi will generate zero

demand during [0, t). Further, if r(JAi)+Di > t, then JAi will
not generate any demand after ti.

Proof: Since r(JAi) +DL
i > t⇒ r(JAi) +Di > t (Di ≥

DL
i), JAi does not generate any demand in the interval of

interest. On the other hand, if r(JAi) + Di > t and r(JAi) +
DL
i ≤ t, then even if JAi does not finish before ti, it does not

generate any demand in the interval [ti, t) because after ti its
deadline is outside the interval of interest.

If JAi satisfies the condition r(JAi)+DL
i < ti (Figure 1(a)),

then JAi must finish by ti, and hence it can generate a demand
of up to CLi during [0, t). However if r(JAi) + DL

i ≥ ti
(Figure 1(b)), then JAi will generate maximal demand during
[0, t) if it executes as late as possible. In this case it can
generate a demand of up to CHi . One special case is when
ti ≤ r(JAi) + DL

i ≤ t and r(JAi) + Di > t (Figure 1(c)). In
this case, JAi will not generate any demand after ti according
to Lemma 1. Thus, the demand of job JAi for the interval [0, t)
can be bounded as follows.

dbf(JAi , t, ti)=

CLi , r(JAi) +DL
i < ti

CHi , r(JAi) +DL
i ≥ ti

and r(JAi) +Di ≤ t
min

{
ti−r(JAi),CLi

}
, ti ≤ r(JAi) +DL

i ≤ t
and (JAi) +Di > t

0, r(JAi) +DL
i > t

(1)

Another special job is the last job released by a LC task
τi before it is dropped at ti, and we denote such a job as JBi .
The release time of JBi satisfies the conditions r(JBi) ≤ ti
and r(JBi) + Ti > ti.

If r(JBi) + DL
i > t (DL

i = Di), JBi will generate
zero demand during [0, t) because its deadline is outside the
interval. Otherwise, it may generate some demand in the
interval [0, ti), because it will be dropped after ti. In order to
maximize the demand of JBi in this interval, we assume that
JBi will execute continuously from r(JBi). Thus, the demand
of job JBi for the interval [0, t) can be bounded as follows.

dbf(JBi , t, ti) =

{
min

{
ti − r(JBi), CLi

}
, r(JBi) +DL

i ≤ t
0, otherwise

(2)

B. Dbf of task τi

In this section we derive the dbf of a task τi using
Equations 1 and 2 presented above. Let dbf(τi, t, ti) denote
the dbf of task τi for a given time interval length t and instant
ti. We present dbf(τi, t, ti) using four sub-cases dbf(τi, t, ti)[x],
where x ∈ {a, b, c, d}, defined as follows.

a: Li = LC,
b: Li = HC and t− ti < Di −DL

i ,
c: Li = HC and t− ti ≥ Di, and
d: Li = HC and Di −DL

i ≤ t− ti < Di.

If τi satisfies condition a, then it is a LC task. The total
demand that τi can generate during [0, t) is then the sum of
demand of jobs released before r(JBi) and the demand of
JBi itself. τi generates maximal demand during [0, t) if the
release time of the first job is equal to zero, and all successive
jobs are released as soon as possible with period Ti. Therefore
dbf(τi, t, ti)[a] is given as follows.

ti t0

bi × CL
i

CL
i CH

i − CL
i

dbf(JA
i , t, ti) ai × CH

i

Fig. 2. Execution pattern for condition c

dbf(τi, t, ti)[a] =

⌊
ti
Ti

⌋
CLi + dbf(JBi , t, ti) (3)

If τi satisfies condition b, c or d, then τi is a HC task.
Therefore, the total demand it generates is the sum of demand
of all the jobs released before t. Among these jobs, the ones
released before r(JAi) will generate a demand of CLi , and
the ones released after r(JAi) + Ti will generate a demand of
CHi . The demand of job JAi itself is given in Equation 1. In
the following lemmas we derive the dbf of τi for the three
conditions.

Lemma 2: If τi satisfies condition b (t − ti < Di −DL
i),

no job of τi can execute for CHi time units. Therefore τi can
generate maximal demand during [0, t) if the first job of τi
is released at time instant 0 and all the successive jobs are
released as soon as possible.

Proof: We prove this lemma by contradiction. Suppose
there exists a job Ji of τi that can generate a demand of CHi
time units in the interval [0, t). Then it must be true that r(Ji)+
Di ≤ t and r(Ji) +DL

i ≥ ti ⇒ t− ti ≥ Di−DL
i , because τi

is a HC task that switched to HC mode at ti. This contradicts
our assumption that t− ti < Di −DL

i . Thus no job of τi that
satisfies condition b can generate a demand of CHi time units
in the interval [0, t). Therefore τi essentially behaves like a
LC task, and this proves the lemma.

Thus dbf(τi, t, ti)[b] is given as follows.

dbf(τi, t, ti)[b] =

⌊
ti
Ti

⌋
CLi + dbf(JAi , t, ti) (4)

Lemma 3: If τi satisfies condition c (t − ti ≥ Di), it
generates maximal demand during [0, t) if the first job of
τi is released at t − Di − b(t−Di)/Tic × Ti, and all the
successive jobs are released as soon as possible (scenario
shown in Figure 2).

Proof: If t− ti ≥ Di and the first job of τi is released at
t−Di−b(t−Di)/Tic× Ti, then the last job released before
t will have its deadline at t. In this case, ti happens before the
release time of this last job. Therefore the last job can generate
a demand of CHi in the interval. Additionally, the number of
jobs with deadline before t as well as the number of jobs that
can generate CHi demand during [0, t) are maximized with this
pattern. This proves the lemma.

Intuitively speaking, the demand is maximized when the dead-
line of a job of τi coincides with t, because it maximizes the
possible executions for τi in HC mode. Thus, dbf(τi, t, ti)[c]

is given as follows.

dbf(τi, t, ti)[c] = biC
L
i + dbf(JAi , t, ti) + aiC

H
i , where

bi =

⌊
ti − (t−Di − b(t−Di)/Tic × Ti)

Ti

⌋
, and

ai =

⌊
t−Di

Ti

⌋
− bi.

(5)

If τi satisfies condition d, it does not have a single
execution pattern that maximizes its demand as stated in the
following lemma.

Lemma 4: If τi satisfies condition d (Di −DL
i ≤ t− ti <

Di), it generates maximal demand if its first job is either
released at 0 (condition b) or at t−Di − b(t−Di)/Tic × Ti
(condition c).

Proof: Since Di−DL
i ≤ t− ti < Di, τi can have at most

one job that can generate a demand of CHi in the interval [0, t).
If the first job of τi is released at t−Di−b(t−Di)/TicTi and
all the successive jobs are released as soon as possible (release
pattern of condition c), then the last job is a special job JAi
and is the only job generating CHi demand. The only way to
further increase the demand of τi is to add a new job in the
interval by shifting the pattern left to the point when the first
job is released at time instant 0.

Thus, dbf(τi, t, ti)[d] is given as follows.

dbf(τi, t, ti)[d] = max
{

dbf(τi, t, ti)[b], dbf(τi, t, ti)[c]
}

(6)

C. Dbf of component C

In this section we present the dbf of a component C =
{W, TL}. Let dbf(C, t, tE , tI) denote the dbf of component
C for a given time interval length t, with mode-switch instants
tI (IMS) and tE (EMS).

We first present dbf for the case when TL = 0 and then
for the case when TL > 0. Note that among all the HC
tasks in C, at most TL of them can switch to HC mode in
the interval [tI , tE), while all the remaining HC tasks are
assumed to switch to HC mode at tE .

If TL = 0, then this means tE (EMS) is equal to tI (IMS),
because C’s internal and external modes will switch at the
same time. Thus, each HC task τi in C will switch to HC
mode at ti = tI = tE , and hence dbf(C, t, tE = tI , tI) is
given as follows.

dbf(C, t, tE = tI , tI) =
∑
τi∈C

dbf(τi, t, tI) (TL = 0) (7)

If TL > 0, then at most TL HC tasks can switch to HC
mode before tE . To compute the dbf of C, we then need to
determine which HC tasks should switch to HC mode before
tE so as to maximize the total demand. The following lemma
asserts that for any HC task, its demand is maximized when
it switches to HC mode either at tI or tE .

Lemma 5: If a HC task τi switches to HC mode at some
time ti ∈ [tI , tE], then dbf(τi, t, ti) is maximized when ti is
either equal to tE or tI .

Proof: Suppose τi satisfies condition b when ti = tE , i.e.,
t− tE < Di −DL

i . Then as ti decreases, τi could eventually
satisfy condition d, i.e., Di −DL

i ≤ t − ti < Di, and finally
condition c, i.e., t−ti ≥ Di. Without loss of generality, assume
that τi satisfies condition b for ti ∈ (tb, tE], condition d for
ti ∈ (td, tb], and condition c for ti ∈ [tI , td], where tI ≤ td ≤
tb ≤ tE .

Case 1(ti ∈ [tI , td]): In this case, dbf(τi, t, ti)[c] (see
Equation 5) is maximized if ti = tI . This is because as ti
decreases from td to tI , the number of jobs generating CHi
demand will remain the same or increase, while the total
number of jobs that generate demand for this time interval
remains unchanged. Case 2 (ti ∈ (tb, tE]): In this case,
dbf(τi, t, ti)[b] =

⌊
ti
Ti

⌋
CLi +dbf(JAi , t, ti). Then as ti increases

from tb to tE , dbf(JAi , t, ti) and
⌊
ti
Ti

⌋
× CLi will stay the

same or increase. Thus dbf(τi, t, ti)[b] is maximized when
ti = tE . Case 3 (ti ∈ (td, tb]): From Lemma 4 we know
that dbf(τi, t, ti)d = max

{
dbf(τi, t, ti)[b], dbf(τi, t, ti)[c]

}
.

While dbf(τi, t, ti)[b]|ti ∈ (td, tb] is maximized if ti =
tb, dbf(τi, t, ti)[c]|ti ∈ (td, tb] stays the same. Since
dbf(τi, t, tb)[b] ≤ dbf(τi, t, tE)[b] and dbf(τi, t, tb)[c] ≤
dbf(τi, t, tI)[c], combining the above three cases, we conclude
that dbf(τi, t, ti) is maximized when ti = tI or ti = tE .

Let ∆i = max{0, dbf(τi, t, tI) − dbf(τi, t, tE)}. From
Lemma 5 we know that task τi generates maximum demand
when ti = tE or ti = tI . Therefore ∆i denotes the maximum
possible increase in the demand of τi (if it increases) for a
time interval length t when τi is chosen as one of the TL
tasks to switch to HC mode before tE . Once we compute ∆i

for all the HC tasks in component C, we sort these values
in descending order and select the first TL elements. Let the
corresponding set of TL HC tasks be denoted by G. The total
maximum demand of all the tasks in C is then given by the
following equation.

dbf(C, t, tE , tI) =
∑

Li=HC

dbf(τi, t, tE) +
∑
τi∈G

∆i

+
∑

Li=LC

dbf(τi, t, tI)
(8)

A tighter bound for the dbf of component C can be obtained
using an optimization presented in Section A of the Appendix.

D. Schedulability Test and Tolerance Limit

In this section we derive the schedulability test for a
mixed-criticality system comprising multiple components and
scheduled under a flat scheduling framework. Consider a
system with p HC components C1,C2, . . . ,Cp and q LC
components Cp+1,Cp+2, . . . ,Cp+q . Each HC component Ci
can independently switch its internal mode to HC at tIi. Once
the first HC component switches its external mode to HC at
tE , all the LC tasks in the system are immediately dropped.
We assume that all the HC tasks in the system can thereafter
execute in HC mode.

Suppose there is a first deadline miss in the system at some
time instant t. Then, the total maximum demand generated
by the system in [0, t) must be greater than t. This assertion
immediately leads to the following theorem that presents the
schedulability test.

Theorem 1: A mixed-criticality system comprising
p HC components and q LC components is
schedulable under a flat scheduling framework if,
∀t : 0 ≤ t ≤ tMAX ,∀tE : 0 ≤ tE ≤ t,∀tIi : 0 ≤ tIi ≤ tE ,

i≤p+q∑
i=1

dbf(Ci, t, tE , tIi) ≤ t, (9)

where tMAX is a pseudo-polynomial in the size of the input,
and is defined in Section B of the Appendix.

The complexity of the schedulability test in Theorem 1 is
exponential in the number of HC components, because we
need to consider a separate internal mode switch instant for
each component. In practice however, we expect the number
of HC components scheduled on a single processor to be
relatively small, and then the complexity of the proposed test
is pseudo-polynomial in the size of the input. Besides, if
there is freedom to select the allocation of system tasks to
components, then it is feasible to create a component structure
comprising only two components, while still fully supporting
LC task executions. All the HC tasks in the system are
allocated to a single HC component CH = {WH , TLH},
and each LC task can be either allocated to CH or to a
LC component CL = {WL, TLL = 0}. This two-component
system is sufficient to consider all the possible design choices
for isolating HC and LC task executions. This can be done
by considering different values for the tolerance limit TLH ,
and by considering different allocations of LC tasks to the
two components. We can choose the maximum possible value
for these tolerance limit as long as the resulting system is still
schedulable. Higher tolerance limit indicates support for more
LC task executions, and thus better resource utilization. In
Section V, we show through simulations that our mechanism
outperforms existing studies even with this two-component
structure. However, if the allocation of tasks to components is
fixed and the number of HC components is not small, then the
hierarchical scheduling framework presented in the following
section can be used to reduce the complexity of the test.

IV. SCHEDULABILITY TEST FOR HIERARCHICAL
SCHEDULING FRAMEWORK

Hierarchical scheduling has emerged as an effective mech-
anism to support temporal partitioning between applications,
serving as a common scheduling paradigm in many mixed-
criticality systems in practice [18]. It is preferred in practice
because it supports compositionality so that higher-level prop-
erties can be derived from verified component-level properties.
Therefore, to increase the practical relevance of the proposed
mechanism, we develop a schedulability test under a hierar-
chical scheduling framework in this section.

A. Execution Strategy under Hierarchical Scheduling

For hierarchical systems, each component will have an
additional parameter S denoting its local scheduler. We specify
such a component as C = (W, TL, S). The component
workload W is comprised of regular mixed-criticality tasks as
well as interface tasks representing the child components. The
tasks in the workload W are scheduled by the local scheduler
S, independently of all the other components in the system.

Component interfaces have been widely used in tradi-
tional hierarchical systems to abstractly represent the resource
demand and supply of components (see for example [20]).
From the component’s perspective, its interface represents the
resource demand of its workload. While from the perspective
of its parent component or system, the interface represents the
resource supply that the parent guarantees. These interfaces
of components are essential for satisfying the property of
compositionality.

Resource models such as periodic have been previously
defined as interfaces for components in traditional hier-
archical systems [20]. Analogously, we now present the
mixed-criticality periodic resource (MCPR) model for mixed-
criticality components. Since we focus on systems with two
criticality levels, we assume that the MCPR model can have
at most two criticality levels.

Definition 1: A Mixed-Criticality Periodic Resource
(MCPR) is defined as I = (T, L, C), where T denotes the
period, L ∈ {LC,HC} denotes the criticality level, and
C = {CL, CH} is a list of resource capacities. CL denotes
LC resource capacity and CH denotes HC resource capacity.

A component C can be abstracted as an MCPR interface
I = (T, L, C), and the corresponding task (T, L, C, T) (denoted
as interface task) represents C in the workload of its parent
component. We assume that period T of this interface is
already specified by the system designer as in the standard lit-
erature on hierarchical scheduling (e.g., see [20]). For instance,
this period could be determined based on either component-
level requirements or considerations for overheads such as
context-switches. The criticality level L is directly determined
by the criticality level of the component it is representing. If
C is a LC component, then L = LC, otherwise L = HC.

Mode of the interface. The semantics of interface I (and
the corresponding interface task) depend on its criticality mode
at run time, which in turn depends on the criticality mode of
component C. In fact, we assume that the criticality mode of
I is identical to the external mode of C. When C experiences
EMS, the mode of the interface and interface task switches
from LC to HC. While the interface is in LC mode, it is
guaranteed to request no more than CL time units of resource
periodically every T time units from the parent component.
But when it switches to HC mode, it can thereafter request
up to CH time units of resource periodically.

B. MCPR Supply Bound Function

The supply bound function (sbf) of a resource model
characterizes the minimum resource supply guaranteed by the
model to the underlying component. In this section, we derive
the sbf for a MCPR interface I = (T, L, C) of a component
C = (W, TL, S). We let sbfI(tE , t) denote the sbf for a time
interval of length t, where tE(≤ t) denotes the time instant for
EMS of component C. As the resource is supplied periodically,
component C is guaranteed to receive either CL or CH units of
resource every T time units in LC or HC mode, respectively.
We use the following additional notations in this section.

• s1 denotes the start time of the first interface period
within time interval [0, t).

. . .CL CL CL CL CL

EMS
0 tE xE t

sE eE e

Interval of interest

s1 = T − CL CL

Executions beyond CL and up to CH

Fig. 3. MCPR worst-case resource supply pattern A

. . .CL CL CL CL CL

0 tE t

sE e
(eE)

Interval of interest

Fig. 4. Boundary case for MCPR worst-case resource supply pattern A

• n denotes the number of interface periods within
interval [0, t).

• nE denotes the number of interface periods within
interval [0, tE).

• sE denotes the start of a interface period that ex-
periences EMS (tE), i.e., sE ≤ tE < eE , where
eE = sE + T .

• e denotes the start of interface period after t, i.e., e =
s1 + n× T + T .

• For simplicity of presentation, we also use the short-
cut notation [x]0 = max{0, x}.

When tE = t, there is no external mode switch for
component C in the interval of interest, and the component
and interface are only executing in LC mode. Therefore,
sbfI(tE , t) in this case is identical to the sbf defined for
periodic resource models with I supplying CL units of resource
periodically [20]. Thus, in this case, minimal resource is
supplied when s1 = T − CL and n =

[⌊
t−(T−CL)

T

⌋]
0
. We

record this sbf in the following equation.

sbfI(tE , t)=n×CL+
[
t−2(T − CL)− n× T

]
0

If tE = t
(10)

For the case when tE < t, there are two possible resource sup-
ply patterns, denoted A and B, that can lead to the minimum
resource supply. We now present these two patterns and the
corresponding sbf equations, sbfI(tE , t)[A] and sbfI(tE , t)[B].

Pattern A: s1 = T − CL. The scenario of pattern A is
shown in Figure 3, where nE =

[⌊
tE−(T−CL)

T

⌋]
0

and n =[⌊
t−(T−CL)

T

⌋]
0
. In the first period, CL units of resource are

supplied as early as possible and hence during [0, 2×(T−CL)],
no resource is supplied. In the following periods until time
instant sE(= nE × T + T − CL), CL units are supplied as
late as possible. In the period [sE , eE], the amount of supply
depends on the distance of tE from sE . If tE − sE < CL,
then the resource supply in this period cannot be exhausted
when component C has EMS at tE . Therefore interface I will
provide CH units of resource in this period, because it can
signal its mode switch to the parent component. On the other
hand, if tE − sE ≥ CL as in the example figure, then the
resource supply in [sE , eE] can be exhausted before component

C experiences EMS, and hence the interface may only provide
CL units in this period. After time instant eE , the interface is
guaranteed to provide CH units of resource in every period.
An important boundary case to consider is when e = n ×
T + 2T − CL = eE and tE − sE ≥ CL. That is, when tE
and t are in the same period and the interface can exhaust its
resource supply before EMS of component C (scenario shown
in Figure 4). In this case, the minimum supply in this period
can happen when it is provided as late as possible (for instance
when e− t > CH −CL). We record the sbf corresponding to
the pattern of Figures 3 and 4 below.

sbfI(tE , t)[A] =

nE × CL + (n− nE)× CH

+
[
t− (2T − CL − CH)− n× T

]
0

tE − sE < CL

(nE + 1)× CL + (n− nE − 1)× CH

+
[
t− (2T − CL − CH)− n× T

]
0

e 6= eE∧
tE − sE ≥ CL

nE × CL

+ min
{
CL,

[
t− (2T − CL − CH)− n× T

]
0

}
e = eE∧
tE − sE ≥ CL

(11)

Pattern B: s1 = T − CL − (xE − tE), where xE =⌈
tE
T

⌉
× T . Scenario of pattern B is shown in Figure 5, which

is obtained by shifting pattern A in Figure 3 by xE − tE . In
this case,

nE =

[⌊
tE − s1

T

⌋]
0

, n =

[⌊
t− s1

T

⌋]
0

, eE = tE − CL + T

and e = n× T + T + s1.

The sbf corresponding to this shifted supply pattern is given
below. It is similar to the previous case, except that the
interface period containing tE is now guaranteed to supply
no more than CL time units.

sbfI(tE , t)[B] =

(nE + 1)× CL + (n− nE − 1)× CH

+
[
t− s1 − (T − CH)− n× T

]
0

e 6= eE

nE × CL

+ min
{
CL,

[
t− s1 − (T − CH)− n× T

]
0

}
e = eE

(12)

The following lemma proves that it is sufficient to consider
the above two supply patterns for determining the sbf.

Lemma 6: When tE < t, pattern A or B are the only two
possible supply patterns that can result in the minimal resource
supply from interface I.

Proof: Suppose there exists a s1 ∈ [0, T) such that s1 6=
T −CL (pattern A) and s1 6= T −CL− (xE− tE) (pattern B),
but s1 leads to the minimal supply pattern for time interval
length t. Case 1 (s1 = T − CL + ε|0 < ε ≤ CL): In this
case, it is easy to see that the supply will be greater than or
equal to sbfI(tE , t)[A], because the supply for the first interface
period will increase by ε and the supply for the last interface
period will decrease by at most ε. Case 2 (s1 = T − CL −
(xE − tE) + ε|0 < ε < (xE − tE)): In this case, the supply
for the interface period containing tE will stay the same or

. . .CL CL CL CL CL

0 tE t
eE e

Interval of interest

xE − tE

s1

Fig. 5. MCPR worst-case resource supply pattern B

increase by CH − CL while the supply for the last interface
period may decrease by at most ε compared with the case
when s1 = T − CL − (xE − tE). Therefore this supply is
also minimized when ε → xE − tE or ε → 0. Case 3 (s1 =
T − CL − (xE − tE) − ε|0 < ε ≤ T − CL − (xE − tE)): In
this case, the supply for the interface period containing tE will
stay the same, while the supply for the last interface period
may stay the same or increase compared with the case when
s1 = T − CL − (xE − tE). Therefore in this case as well,
the supply is minimized when ε → 0. Combining the above
cases, we can conclude that the supply is minimized with either
pattern A or pattern B.

Thus, a safe lower bound for sbfI for the case when tE < t
can be stated as follows.

sbfI(tE , t) = min
{

sbfI(tE , t)[A], sbfI(tE , t)[B]

}
(13)

C. Interface Generation

In this section we use the sbf, together with the dbf of
component C, to generate interface I. For component C to
be schedulable using interface I, it is sufficient to ensure that
dbf(C, t, tE , tI) ≤ sbfI(tE , t) for various time interval lengths.
Below we first present the schedulability test for the case when
component C does not experience EMS. That is, the interface
only executes in LC mode supplying CL resource capacity
periodically.

Theorem 2: A mixed-criticality component C is
schedulable in LC mode with sbfI(tE = t, t) if,
∀t : 0 ≤ t ≤ tMAX ,∀tI : 0 ≤ tI ≤ t,

dbf(C, t, tE , tI) ≤ sbfI(tE = t, t) If tE = t (14)

where tMAX is a pseudo-polynomial in the size of the input
that can be derived using similar techniques in Section B in
the appendix, and sbfI(tE , t) is given by Equation (10) in
Section IV-B.

For a given t and tI , dbf(C, t, tE , tI) can be computed using
techniques described in Section III-C. The only unknown
quantity in Equation (14) is the LC resource capacity CL.
This capacity can then be computed exactly using existing
techniques [21].

To compute the HC resource capacity CH , we need to
consider the schedulability test when component C experiences
EMS at some time instant tE(< t). The following theorem
presents this test.

Theorem 3: A mixed-criticality component C is schedula-
ble in HC mode with sbfI(tE , t) if ∀t : 0 ≤ t ≤ tMAX ,∀tE :
0 ≤ tE ≤ t, ∀tI : 0 ≤ tI ≤ tE ,

dbf(C, t, tE , tI) ≤ sbfI(tE , t) (15)

where sbfI(tE , t) is given by Equation (13) in Section IV-B.

The only unknown quantity in Equation (15) is the HC
resource capacity CH , assuming we have already computed
CL using Theorem 2. CH can then be computed similar to
CL using existing techniques [21].

V. EVALUATION

In this section we evaluate the performance of the proposed
mechanism in terms of offline schedulability as well as its
ability to support LC task executions online. Tasksets are
generated using the following settings, where each parameter
is randomly drawn from the given range using an uniform
distribution.

• uLi = CLi /Ti is in the range [0.02, 0.1].
• CHi /C

L
i is in the range [2, 3].

• Ti is in the range [10, 150].
• Di = Ti as service adaption strategy, one of the

mechanisms being compared, can only support im-
plicit deadline tasks.

• Task τi is deemed to be a HC task with probability
0.5.

• For a HC task τi, DL
i is determined by the deadline

tuning algorithm in [8].
• For the proposed mechanism, we assume that all the
|H| HC tasks in the generated taskset are allocated
to a HC component CH = {WH , TLH}, and all the
LC tasks are allocated to a LC component CL.

We have chosen relatively small values for uLi and CHi /C
L
i

so that sufficient number of HC tasks are generated. This
enables us to evaluate the online performance of various
approaches when different number of HC tasks synchronously
switch to HC mode. The generated taskset is evaluated for
offline schedulability as well as online performance in terms
of support for LC execution under four different mechanisms.
These include the mechanism presented in this paper (“Pro-
posed Mechanism”), service adaptation strategy [12] (“Service
Adaptation”), Interference Constraint Graph [14] (“ICG”), and
the classical mixed-criticality studies in which all the LC jobs
are dropped at the moment any HC job switches to HC
mode [8] (“Classical Model”). Note that the classical model
can be obtained by setting TLH = 0 in our mechanism. In
Section V-A we present our results for offline performance
based on schedulability tests, and in Section V-B we compare
their online performance through simulations.

A. Offline Schedulability

In order to generate feasible tasksets, we consider dif-
ferent bounds for the term max{ULL + ULH , U

H
H }, where

ULL =
∑

Li=LC

CLi /Ti, U
L
H =

∑
Li=HC

CLi /Ti and UHH =∑
Li=HC

CHi /Ti. For each bound value, we generate 1000

tasksets based on the procedure described above, and evaluate
their off-line schedulability. For the elastic model [11] in which
the LC task periods are extended, any generated taskset with
UHH is always schedulable, because in the worst-case all the
LC task periods can be extended to infinity. The schedulability
test for the service adaption strategy [6] is a utilization based
test. ICG uses the well known Audsley’s algorithm to assign

task priorities, and its schedulablity is maximized when the
interference graph is fully connected, i.e., each HC task has
an execution dependency with every LC task in the system.
For our mechanism, if a hierarchical scheduling framework is
considered, then we assume that the MCPR interface period T
for both CH and CL is equal to 5 time units. This is reasonable
because the smallest task period in any taskset is 10 time units.

Figures 6 and 7 show the schedulability performance
for the tasksets under various mechanisms. In Figures 6
we present results for our mechanism under a flat schedul-
ing framework, and in In Figures 6 we present results for
our mechanism under a hierarchical scheduling framework.
In these figures, the x-axis denotes the bound value for
max{ULL + ULH , U

H
H }, and the y-axis denotes schedulability

ratio, i.e., percentage of tasksets deemed schedulable by the
different mechanisms. For our mechanism, we generate the
schedulability results for various values of the tolerance limit:
TLH = 0, b0.2|H|c, b0.4|H|c, b0.6|H|c, b0.8|H|c and |H|.

As shown in Figure 6, the schedulability performance of
our mechanism clearly depends on the tolerance limit; a higher
limit generally implies lower schedulability, because it uses
additional resources to support LC executions. For values of
TLH up to b0.4|H|c, our mechanism outperforms both service
adaptation and ICG on an average. Similar trends can also be
observed for our mechanism under a hierarchical framework,
except that the schedulability drops more rapidly due to the
overhead of hierarchical scheduling. The classical model is
represented by the curve with TLH = 0 and it has the highest
schedulability, but offers no support for LC executions when
HC tasks switch to HC mode. Thus we can conclude that
as long as no more than b0.4|H|c of the HC tasks execute
in HC mode at each time instant, our mechanism offers the
best performance in terms of offline schedulability as well as
online support for LC executions.

B. Online Support for LC Executions

In this section, we compare the performance of our mech-
anism in terms of its ability to support LC executions with
the other mechanisms described above. We use the following
quantitative parameter to measure this online LC performance.

Definition 2 (Percentage of Finished LC Jobs (PFJ)):
Let MAXt denote the maximum possible number of LC
jobs that a taskset T can generate in the time interval [0, t).
By definition, MAXt =

∑
Li=LC

dt/Tie. Let FINt denote the

number of LC jobs that successfully finish by their deadlines
in the time interval [0, t) using some mechanism. Then, PFJ
is equal to FINt/MAXt.

Tasksets are generated using the procedure described earlier,
and the various mechanisms are simulated to measure their
online performance. The following additional settings and
restrictions are used for this purpose.

• max{ULL + ULH , U
H
H } = 0.8, 0.85 and 0.9.

• Tolerance limit TLH is chosen to be the largest value
that still guarantees schedulability of our mechanism
under a flat scheduling framework.

• Tasksets are simulated for t = 10, 000 time units.

● ● ● ●

●

Utilization Bound

Pe
rc

en
t o

f S
ch

ed
ul

ab
le

 T
as

ks
et

s

55 0.65 0.75 0.85 0.95

0%
20

%
40

%
60

%
80

%
10

0%

●

Setting

TLH = 0

TLH = 0.2|H|
TLH = 0.4|H|
TLH = 0.6|H|
TLH = 0.8|H|
TLH = |H|
Service Adaptation

ICG

Fig. 6. Schedulability under a Flat Scheduling
Framework

● ●

●

●

●

Utilization Bound

Pe
rc

en
t o

f S
ch

ed
ul

ab
le

 T
as

ks
et

s

0.55 0.65 0.75 0.85 0.95

0%
20

%
40

%
60

%
80

%
10

0%

●

Setting

TLH = 0

TLH = 0.2|H|
TLH = 0.4|H|
TLH = 0.6|H|
TLH = 0.8|H|
TLH = |H|

Fig. 7. Schedulability under a Hierarchical
Scheduling Framework

The Probability A HC Job Exhibits HC Behavior

P
FJ

 (
Pe

rc
en

t o
f F

in
is

he
d

LC
 J

ob
s)

0.5% 2% 5% 20% 50%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0% ● ● ●

●

●

●

Strategy

Proposed Mechanism
Service Adaption
Elastic Model
Classical Model

Fig. 8. max{ULL + ULH , U
H
H } = 0.8

The Probability A HC Job Exhibits HC Behavior

P
F

J
 (

P
er

ce
nt

 o
f F

in
is

he
d

LC
 J

ob
s)

0.5% 2% 5% 20% 50%

40
%

50
%

60
%

70
%

80
%

90
%

10
0% ●

●

●

●

●

●

●

●

●

●

●

●

Strategy

Proposed Mechanism with Utilization Bound = 0.80
Proposed Mechanism with Utilization Bound = 0.85
Proposed Mechanism with Utilization Bound = 0.90
Classic Model with Utilization Bound = 0.80
Classical Model with Utilization Bound = 0.85
Classic Model with Utilization Bound = 0.90

Fig. 9. max{ULL + ULH , U
H
H } = 0.8, 0.85 and 0.9

• Each HC job independently switches to HC mode,
i.e., executes for more than LC WCET, with a prob-
ability of 0.005, 0.02, 0.05, 0.2 or 0.5.

• All the mechanisms will transition back to LC mode
of execution when there are no pending jobs.

We have chosen a relatively high value for max{ULL +
ULH , U

H
H }, because at smaller values there is sufficient spare

capacity so that all the mechanisms are easily able to support
LC executions. Simulation results are shown in Figures 8 and
9. The x-axis denotes the probability that a HC job indepen-
dently switches to HC mode, and the y-axis denotes PFJ
for each mechanism. Each point in these figures is generated
by taking an average value of PFJ over 1000 tasksets. In
Figure 8, we consider only those tasksets that are deemed to
be offline schedulable by all the presented mechanisms. As
shown in the figure, our mechanism consistently outperforms
all the other mechanisms for different values of mode switch
probability, and the performance gap improves with increasing
probability values. One should note that the results in Figure 8
may not be truly representative of the performance of our
mechanism in terms of its ability to support LC jobs, and
this can be explained as follows. To compare our mechanism’s
ability to support LC executions with the other mechanisms,
we have to simulate using tasksets that are schedulable by
all these mechanisms. In particular, it does not include many

tasksets that are schedulable under our mechanism, but not
under one of the other mechanisms. From our observation,
in the tasksets that are schedulable by all these mechanisms,
the average percentage of HC tasks is much higher than that
of LC tasks. Hence to show the ability of our mechanism to
support LC executions in a more objective way, we compare
the proposed mechanism alone with the classical model, with
utilization bound max{ULL + ULH , U

H
H } = 0.8, 0.85 and 0.9

as shown in Figure 9. In this case, any taskset schedulable
by the classical model can be used in the simulation. It can
be seen that the performance of both our mechanism and
the classical model drops when compared with the results in
Figure 8. However, it can also been seen that, our mechanism
still dominates the classical model and the corresponding
performance gap does not decrease compared with the gap
in Figure 8.

ACKNOWLEDGMENT

This work was supported in part by MoE Tier-2 grant
(MOE2013-T2-2-029) and NTU start-up grant, Singapore.
This work was also supported in part by MSIP/IITP (14-824-
09-013) funded by the Korea Government.

VI. CONCLUSIONS

In this paper we proposed a novel mechanism to improve
the service levels of low-criticality tasks by allowing them to
execute even when some high-criticality tasks have exceeded
their estimated WCETs. We developed schedulability tests for
our mechanism under the mixed-criticality EDF scheduling
strategy, considering both a flat as well as an hierarchical
scheduling framework. We also evaluated the performance
of our mechanism in terms of offline schedulability and
online support for low-criticality executions. Simulation results
clearly show that the proposed mechanism outperforms all the
existing approaches.

In the evaluation section we only consider the performance
of our mechanism when all the high-criticality tasks are in
one component and all the low-criticality tasks are in another
component. In fact, its performance can be further improved if
we also consider scenarios in which the low-criticality tasks are
allocated to the same component as the high-criticality ones,
especially in terms of offline schedulability. In our future work

we will consider this problem of optimally allocating the low-
criticality tasks so as to maximize offline schedulability as well
as online performance.

REFERENCES

[1] P. J. Prisaznuk, “Integrated modular avionics,” in Aerospace and Elec-
tronics Conference (NAECON). IEEE, 1992, pp. 39–45.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International. IEEE, 2007,
pp. 239–243.

[3] S. Baruah, A. Burns, and R. Davis, “Response-Time Analysis for Mixed
Criticality Systems,” in RTSS, 2011, pp. 34–43.

[4] S. Baruah and G. Fohler, “Certification-Cognizant Time-Triggered
Scheduling of Mixed-Criticality Systems,” RTSS, pp. 3–12, 2011.

[5] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and Efficient
Scheduling of Certifiable Mixed-Criticality Sporadic Task Systems,” in
RTSS, 2011, pp. 13–23.

[6] S. Baruah, V. Bonifaci, G. D”Angelo, H. Li, and A. Marchetti-
Spaccamela, “The Preemptive Uniprocessor Scheduling of Mixed-
Criticality Implicit-Deadline Sporadic Task Systems,” in ECRTS, 2012.

[7] P. Ekberg and W. Yi, “Bounding and Shaping the Demand of Mixed-
Criticality Sporadic Tasks,” in ECRTS, 2012, pp. 135–144.

[8] A. Easwaran, “Demand-based Scheduling of Mixed-Criticality Sporadic
Tasks on One Processor,” in RTSS, 2013, pp. 78–87.

[9] A. Burns and S. Baruah, “Towards a More Practical Model for Mixed-
Criticality Systems,” in Workshop on Mixed-Criticality Systems (co-
located with RTSS), 2013.

[10] M. Jan, L. Zaourar, and M. Pitel, “Maximizing the execution rate of
low-criticality tasks in mixed criticality system,” in Workshop on Mixed-
Criticality Systems (co-located with RTSS), 2013.

[11] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Proceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE ’13. San Jose, CA,
USA: EDA Consortium, 2013, pp. 147–152. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2485288.2485325

[12] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, “Service
adaptions for mixed-criticality systems,” in In Proceedings of the Asia
and South Pacific Design Automation Conference (ASP-DAC), 2014.

[13] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening hier-
archical scheduling,” in Proceedings of the Tenth ACM International
Conference on Embedded Software (EMSOFT), 2012, pp. 93–102.

[14] P. Huang, P. Kumar, N. Stoimenov, and L. Thiele, “Interference
constraint grapha new specification for mixed-criticality systems,” in
Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th
Conference on. IEEE, 2013, pp. 1–8.

[15] T. Fleming and A. Burns, “Incorporating the notion of importance into
mixed criticality systems,” in WMC, 2014, p. 33.

[16] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson,
“RTOS support for multicore mixed-criticality systems,” in RTAS, 2012.

[17] “Deos: A Time & Space Partitioned DO-178 Level A Certifiable
RTOS,” http://www.ddci.com/products deos.php.

[18] ”ARINC653 - An Avionics Standard for Safe, Partitioned Systems”.
Wind River Systems / IEEE Seminar, 2008.

[19] S. Baruah, A. Mok, and L. Rosier, “Preemptively Scheduling Hard-
Real-Time Sporadic Tasks on One Processor,” in RTSS, 1990, pp. 182–
190.

[20] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS, 2003, pp. 2–13.

[21] A. Easwaran, M. Anand, and I. Lee, “Compositional Analysis Frame-
work using EDP Resource Models,” in RTSS, 2007, pp. 129–138.

APPENDIX

A. Dbf Optimization

When component C experiences EMS, i.e., the case when
tE < t, it is pessimistic to simply add up the demand of

all the tasks. Here we introduce an optimization that can be
applied in the schedulability test to reduce this pessimism. We
split dbf(τi, t, ti) into two elements, DL(τi, t, ti) denoting the
demand for the interval [0, tE), and DH(τi, t, ti) denoting the
demand for the interval [tE , t).

dbf(τi, t, ti) = DL(τi, t, ti) + DH(τi, t, ti) (16)

Below we present a key observation that provides some
insight into this split. Since the first deadline miss is assumed
to happen at time instant t in our schedulability test, the
demand before tE | < t cannot exceed tE . Otherwise, the
first deadline miss would happen at or before tE . Thus the
total demand during [0, tE) can be bounded by tE , and as a
consequence dbf(C, t, tE , tI) can be more tightly bounded as
follows.

dbf(C, t, tE , tI) = DL + DH +
∑

∆i∈G

∆i, where

DH =
∑

Li=LC

DH(τi, t, tI) +
∑

Li=HC

DH(τi, t, tE), and

DL = min

tE , ∑
Li=LC

DL(τi, t, tI) +
∑

Li=HC

DL(τi, t, tE)

(17)

In Equation 17, we use DL to bound the total demand of
C for the interval [0, tE), and DH to bound the total demand
for the interval [tE , t). In order to maximize the total demand,
we must then split the demand between DL and DH such that
DH is maximized (or equivalently DL is minimized). This is
because the total demand for the interval [0, tE) is bounded
by tE .

In Section III-B we already present dbf(τi, t, ti) when task
τi satisfies condition a, b, c or d. Here we present DL(τi, t, ti)
and DH(τi, t, ti) for these cases, such that DH(τi, t, ti) is
maximized. If τi is a LC task, then it cannot execute after tE
(dropped at ti = tI ≤ tE). Hence for condition a,

DL(τi, t, tI)[a] = dbf(τi, t, tI)[a]

DH(τi, t, tI)[a] = 0
(18)

Consider the case when τi satisfies condition b, i.e., Li =
HC and t − ti < Di − DL

i . Here as well τi cannot execute
after tE as given in Lemma 2. Hence,

DL(τi, t, tE)[b] = dbf(τi, t, tE)[b]

DH(τi, t, tE)[b] = 0
(19)

ti = tE0 DL
i − CL

i

tE − r(JA
i)− (DL

i − CL
i)

r(JA
i)

Fig. 10. DL(τi, t, tE)[c] and DH(τi, t, tE)[c]

Consider the case when τi satisfies condition c, i.e.,
Li = HC and t− ti ≥ Di. In this case ti(= tE) occurs after
the release of special job JAi and this scenario is shown in

http://dl.acm.org/citation.cfm?id=2485288.2485325

Figure 10. To minimize the demand of JAi before tE , we
assume that it executes as late as possible. Thus, JAi ’s demand
before tE can be bounded by tE − r(JAi)− (DL

i −CLi), and
we have,

DL(τi, t, tE)[c] =min
{[
tE − r(JAi)− (DL

i − CLi)
]

0
, CLi

}
+ bi × CLi ,

DH(τi, t, tE)[c] =−min
{[
tE −r(JAi)−(DL

i − CLi)
]

0
, CLi

}
+ dbf(JAi , t, tE) + ai × CHi , where

bi = b(tE −(t−Di −b(t−Di)/Tic × Ti)) /Tic ,
ai = b(t−Di) /Tic − bi, and

r(JAi) = t−Di − b(t−Di)/Tic × Ti + bi × Ti.
(20)

Finally, consider the case when τi satisfies condition d,
i.e., Li = HC and Di − DL

i ≤ t − ti < Di. In this case
as well DH(τi, t, ti = tE)[d] is maximized if the first job is
released at t−Di − b(t−Di)/Tic × Ti (pattern of condition
c), and therefore we have,

DH(τi, t, tE)[d] = DH(τi, t, tE)[c]

DL(τi, t, tE)[d] = dbf(τi, t, tE)[d] − DH(τi, t, tE)[d]

(21)

B. Upper bound for tMAX

Consider a mixed-criticality system with p HC
components C1,C2, . . . ,Cp and q LC components

Cp+1,Cp+2, . . . ,Cp+q . Let ULL (j) =
τi∈Cj∑
Li=LC

CLi /Ti,

ULH(j) =
τi∈Cj∑
Li=HC

CLi /Ti and UHH (j) =
τi∈Cj∑
Li=HC

CHi /Ti.

Case 1: If component Cj experience IMS at tIj , then the
demand of a LC task τi in the time interval [0, t) is upper
bounded by (tIj/Ti + 1) × CLi , because τi will be dropped
after tIj .

A HC task τi in Cj switches to HC mode at some
time instant ti ∈ [tIj , tE]. The demand of τi before job
JAi is bounded by ti/Ti × CLi , the demand of job JAi is
bounded by CHi , and the demand after ti is bounded by
(t − ti − Di + Ti)/Ti × CHi . Thus the total demand of τi
in the time interval [0, t) is bounded by

ti
Ti
× CLi + CHi +

t− ti −Di + Ti
Ti

× CHi (22)

Since CHi > CLi and ti ∈ [tIj , tE], the value of Expression
(22) is maximized when ti = tIj . Therefore the total demand
of Cj is bounded by

τi∈Cj∑
Li=HC

(
tIj × CLi + CHi (t− tIj −Di + 2Ti)

)
/Ti

+

τi∈Cj∑
Li=LC

(tIj/Ti + 1)× CLi

≤ UHH (j)× t+ max
τi∈Cj

{2Ti −Di} × UHH (j) +

τi∈Cj∑
Li=LC

CLi

+ (ULL (j) + ULH(j)− UHH (j))× tIj

Case 2: Suppose component Cj does not experience IMS,
i.e., all the LC tasks within Cj are dropped after tE , and all
the HC tasks switch to HC mode at tE . In this case, the
demand of a LC task τi in the time interval [0, t) is upper
bounded by (tE/Ti + 1)×CLi , and the demand of a HC task
τi in the time interval [0, t) is upper bounded by tE

Ti
× CLi +

CHi + t−tE−Di+Ti

Ti
× CHi . Therefore the total demand of Cj

is bounded by
τi∈Cj∑
Li=HC

(
tE × CLi + CHi × (t− tE −Di + 2Ti)

)
/Ti

+

τi∈Cj∑
Li=LC

(tE/Ti + 1)× CLi

≤ UHH (j)× t+ max
τi∈Cj

{2Ti−Di} × UHH (j) +

τi∈Cj∑
Li=LC

CLi

+ (ULL (j) + ULH(j)− UHH (j))× tE

Let A denote the set of components Cj with ULL (j)+ULH(j)−
UHH (j) < 0, and B denote the remaining set of components.
Then if Cj ∈ A, its demand bound given above is maximized
when tIj = 0 or tE = 0. On the other hand, if Cj ∈ B, its
demand bound is maximized when tIj = t or tE = t. Thus,
an upper bound on the total demand of Cj is equal to

UHH (j)× t+ max
τi∈Cj

{2Ti −Di} × UHH (j)

+
τi∈Cj∑
Li=LC

CLi if Cj ∈ A

max
τi∈Cj

{2Ti −Di} × UHH (j) +
τi∈Cj∑
Li=LC

CLi

+(ULL (j) + ULH(j))× t if Cj ∈ B

(23)

Suppose
j≤p+q∑
j=1

dbf(Cj , t, tE , tIj) > t for some t. Then it must

be the case that
j≤p+q∑
j=1

max
τi∈Cj

{2Ti −Di} × UHH (j) +

τi∈Cj∑
Li=LC

CLi

> t

1−
∑
Cj∈A

UHH (j)−
∑
Cj∈B

(ULL (j) + ULH(j))

⇒ t <

j≤p+q∑
j=1

(
max
τi∈Cj

{2Ti −Di} × UHH (j) +
τi∈Cj∑
Li=LC

CLi

)
1−

∑
Cj∈A

UHH (j)−
∑

Cj∈B
(ULL (j) + ULH(j))

Thus we can conclude that the upper bound of t, i.e., tMAX ,
is given as

j≤p+q∑
j=1

(
max
τi∈Cj

{2Ti −Di} × UHH (j) +
τi∈Cj∑
Li=LC

CLi

)
1−

∑
Cj∈A

UHH (j)−
∑

Cj∈B
(ULL (j) + ULH(j))

	I Introduction
	II System Model
	II-A Task and Component
	II-B Task and Component Execution Model

	III Schedulability Test for Flat Scheduling Framework
	III-A Demand of two special jobs
	III-B Dbf of task i
	III-C Dbf of component C
	III-D Schedulability Test and Tolerance Limit

	IV Schedulability Test for Hierarchical Scheduling Framework
	IV-A Execution Strategy under Hierarchical Scheduling
	IV-B MCPR Supply Bound Function
	IV-C Interface Generation

	V Evaluation
	V-A Offline Schedulability
	V-B Online Support for LC Executions

	VI Conclusions
	References
	Appendix
	A Dbf Optimization
	B Upper bound for tMAX

