
Partitioned Multiprocessor Fixed-Priority Scheduling
of Sporadic Real-Time Tasks

Jian-Jia Chen
1Department of Informatics, TU Dortmund University, Germany

E-mail: jian-jia.chen@cs.uni-dortmund.de

Abstract—Partitioned multiprocessor scheduling has been
widely accepted in academia and industry to statically assign
and partition real-time tasks onto identical multiprocessor sys-
tems. This paper studies fixed-priority partitioned multiprocessor
scheduling for sporadic real-time systems, in which deadline-
monotonic scheduling is applied on each processor. Prior to this
paper, the best known results are by Fisher, Baruah, and Baker
with speedup factors 4 − 2

M
and 3 − 1

M
for arbitrary-deadline

and constrained-deadline sporadic real-time task systems, respec-
tively, where M is the number of processors. We show that
a greedy mapping strategy has a speedup factor 3 − 1

M
when

considering task systems with arbitrary deadlines. Such a factor
holds for polynomial-time schedulability tests and exponential-
time (exact) schedulability tests. Moreover, we also improve the
speedup factor to 2.84306 when considering constrained-deadline
task systems. We also provide tight examples when the fitting
strategy in the mapping stage is arbitrary and M is sufficiently
large. For both constrained- and arbitrary-deadline task systems,
the analytical result surprisingly shows that using exact tests does
not gain theoretical benefits (with respect to speedup factors) if
the speedup factor analysis is oblivious of the particular fitting
strategy used.

Keywords: Sporadic real-time tasks, resource augmenta-
tion, approximation, schedulability analysis.

1 Introduction
The sporadic task model has been widely adopted as the

basic model for real-time systems with recurring executions
[31]. A sporadic real-time task τi is characterized by its
minimum inter-arrival time Ti, its timing constraint or relative
deadline Di, and its (worst-case) execution time Ci. A sporadic
task defines an infinite sequence of task instances, also called
jobs, that arrive with the minimum inter-arrival time constraint.
Under the minimum inter-arrival time constraint, any two
consecutive jobs of task τi should be temporally separated by
at least Ti. When a job of task τi arrives at time t, the job
should finish no later than its absolute deadline t+Di. If we
consider a task releases its jobs periodically, such a task model
is the well-known Liu and Layland task model [30], where Ti
is the period of the task. An input task set is said to have
1) implicit deadlines if the relative deadlines of sporadic tasks
are equal to their minimum inter-arrival times, 2) constrained
deadlines if the minimum inter-arrival times are no less than
their relative deadlines, and (3) arbitrary deadlines, otherwise.

Through this paper, we only consider implicitly preemptive
scheduling. That is, a job may be preempted by another job
on a processor. For scheduling sporadic tasks on a processor,
the preemptive earliest-deadline-first (EDF) policy is optimal
[30] to meet the timing constraints. However, EDF requires to
prioritize the jobs in the ready queue by using their absolute

deadlines, and the overhead is in general not negligible. The
industrial practice is to use fixed-priority scheduling, also
supported in most real-time operating systems, in which a task
is assigned with a fixed priority level. The seminal work by Liu
and Layland [30] shows that rate monotonic (RM) scheduling
is optimal for uniprocessor fixed-priority scheduling when
considering implicit-deadline task systems. Moreover, deadline
monotonic (DM) scheduling [29] is optimal for uniprocessor
fixed-priority scheduling for constrained-deadline task sys-
tems. For arbitrary-deadline task systems, Audsley et al. [2]
provide an optimal priority assignment algorithm to define the
priority levels of the sporadic tasks for uniprocessor fixed-
priority scheduling.

Testing whether a task set can be feasibly scheduled by
a scheduling algorithm is called a schedulability test. Even
though RM and DM are known to be optimal for unipro-
cessor fixed-priority scheduling, the exact schedulability tests
for uniprocessor fixed-priority scheduling requires pseudo-
polynomial time by using the exact tests by Lehoczky, Sha, and
Ding [28] for constrained-deadline systems and in exponential
time by Lehoczky [27] for arbitrary-deadline systems. Specifi-
cally, computing the worst-case response time of one (lowest-
priority) task is shown NP-hard by Eisenbrand and Rothvoß
[20]. There have been extensive results about testing the
schedulability of uniprocessor fixed-priority scheduling. The
more efficient strategy is to provide only sufficient conditions
that can be verified in polynomial-time, like the utilization
bound [10], [26], [30], the quadratic utilization bound [7],
the hyperbolic utilization bound [8], [16], the approximated
request bound functions [1], [11], [21].

To quantify the performance loss due to efficient schedu-
lability tests and assigning tasks with fixed priority levels,
we will adopt the notion of speedup factors, (also known
as resource augmentation factors). A fixed-priority scheduling
algorithm with a speedup factor ρ guarantees to produce
feasible schedules by running (each processor) ρ times as fast
as in the original platform (speed), if there exists a feasible
schedule (under arbitrary policies) for the task system. The
speedup factors of DM scheduling, with respect to the optimal
uniprocessor EDF scheduling, are 1

ln 2 , 1.76322, and 2 for
implicit-deadline, constrained-deadline, and arbitrary-deadline
task sets [17], [19], respectively.

To schedule real-time tasks on multiprocessor platforms,
there have been three widely adopted paradigms: partitioned,
global, and semi-partitioned scheduling. A comprehensive sur-
vey of multiprocessor scheduling in real-time systems can
be found in [18]. In this paper, we consider partitioned
scheduling, in which the tasks are statically partitioned onto
processors and all the processors are identical. That is, all the

ar
X

iv
:1

50
5.

04
69

3v
3

 [
cs

.D
S]

 2
2

Ju
n

20
16

implicit deadlines constrained deadlines arbitrary deadlines

partitioned EDF
4
3 −

1
3M [23] 3− 1

M [5] 4− 2
M [4]

PTAS [24] 2.6322− 1
M [13] 3− 1

M [13]

partitioned DM
7
4 [10] 3− 1

M [22] 4− 2
M [22]

1.5 [25] 2.84306 (this paper) 3− 1
M (this paper)

TABLE I: Summary of the speedup factors in the multiprocessor partitioned scheduling problem for sporadic task systems. For
more details of implicit-deadline cases, please refer to Table III in the survey [18].

jobs of a task are executed on a specific processor with fixed-
priority scheduling.

However, problems on multiprocessors become NP-
complete (or worse) in the strong sense even in the simplest
possible cases. For example, deciding if an implicit-deadline
task set with the same period is schedulable on multiple
processors is already NP-complete in the strong sense [31].
To cope with these NP-hardness issues, one natural approach
is to focus on approximation algorithms, i.e., polynomial time
algorithms that produce an approximate solution instead of an
exact one. There have been many results for implicit-deadline
task systems, as summarized in the survey paper [18]. But, only
a few results are known for constrained-deadline and arbitrary-
deadline task systems.

When considering sporadic task sets with constrained or
arbitrary deadlines, the problem becomes more complicated,
when EDF or fixed-priority scheduling is adopted on a pro-
cessor. The recent studies in [3], [14] provide polynomial-
time approximation schemes for some special cases when
speeding-up is adopted for EDF scheduling. For general cases,
Baruah and Fisher [4], [5] propose a simple method, denoted
as deadline-monotonic partitioning in this paper, which 1)
considers the tasks in a non-decreasing order of their relative
deadlines, and 2) assigns a task (in the above order) to a
processor if it can pass the schedulability condition. If there
are multiple processors that are feasible for assigning a task,
the deadline-monotonic partitioning algorithm by Baruah and
Fisher [4], [5] uses the first-fit strategy, but the analysis works
for any arbitrary fitting strategy. The (theoretical) advantage of
the first-fit strategy was not shown in the literature when we
consider constrained- or arbitrary-deadline task systems.

The deadline-monotonic partitioning strategy is simple, but
has been shown effective in the literature [4], [5], [13], [22].
When adopting speeding-up for resource augmentation, by
using EDF on a processor, the deadline-monotonic partitioning
proposed by Baruah and Fisher [4], [5] has been shown
with a 3 − 1

M speedup factor by Chen and Chakraborty
[13], where M is the given number of identical processors.
Prior to this paper, for fixed-priority multiprocessor parti-
tioned scheduling for constrained- and arbitrary-deadline task
systems, the best known results are by Fisher, Baruah, and
Baker [22] with speedup factors 4 − 2

M and 3 − 1
M for

arbitrary-deadline and constrained-deadline sporadic real-time
task systems, respectively. All the above results are based
on a linear-approximation to efficiently and safely test the
schedulability under EDF or DM scheduling to decide whether
a task can be assigned on a processor.

Our Contributions: Table I summarizes the related results
and the contribution of this paper for multiprocessor parti-

tioned scheduling. We focus on fixed-priority multiprocessor
partitioned scheduling, and improve the best known results
by Fisher, Baruah, and Baker [22]. The deadline-monotonic
partitioning algorithm is explored in a great detail in this paper.
Our contributions are:

• We show that the deadline-monotonic partitioning algo-
rithm has a speedup factor 3− 1

M when considering task
systems with arbitrary deadlines, where M is the number
of processors. Such a factor holds for polynomial-time
schedulability tests and exponential-time (exact) schedu-
lability tests. Moreover, we also improve the speedup
factor to 2.84306 when considering constrained-deadline
task systems by using polynomial-time and pseudo-
polynomial-time (exact) schedulability tests.

• The existing results by adopting the deadline-monotonic
partitioning algorithm were analyzed based on approxi-
mated schedulability tests. One of our key contributions
is to answer the question: Will it be possible to further
reduce the speedup factors by using exact tests in the
deadline-monotonic partitioning algorithm? Our answer
to this question is NO!! Using exact tests in the above
algorithm does not have any chance to reduce the speedup
factors if the speedup factor analysis is oblivious of
the particular fitting strategy used. We show that all
the speedup factor analyses in this paper are asymptot-
ically tight with polynomial-time schedulability tests and
exponential-time (or pseudo polynomial-time) schedula-
bility tests if the speedup factor analysis is oblivious of the
particular fitting strategy used. As a result, to improve the
speedup factor, better fixed-priority scheduling strategies
or more precise analyses for concrete fitting strategies are
needed.

2 System Models and Preliminary Results

2.1 Task and Platform Model
We consider a set T = {τ1, τ2, . . . , τN} of N independent

sporadic real-time tasks. A task τi is defined by (Ci, Ti, Di).
That is, for task τi, Di is its relative deadline, Ti is its
minimum inter-arrival time (period), and Ci is its (worst-case)
execution time. We consider identical processors in the plat-
form. Therefore, no matter which processor a task is assigned
to, the execution and timing property remains. According to
the relations of the relative deadlines and the minimum inter-
arrival times of the tasks in T, the task set can be identified
to be with 1) implicit deadlines, i.e., Di = Ti,∀τi ∈ T, 2)
constrained deadlines, i.e., Di ≤ Ti,∀τi ∈ T, or 3) arbitrary
deadlines.

2

For brevity, the utilization of task τi is denoted by Ui = Ci
Ti

.
Moreover, let ∆i be max{Ui, CiDi }. For a set X, its cardinality
is denoted by |X|.

We will consider preemptive fixed-priority scheduling
on each processor. Specifically, we will only use deadline-
monotonic (DM) scheduling on each processor to assign the
priority levels of the tasks. That is, task τi is with higher
priority than τj if Di < Dj , in which the ties are broken
arbitrarily. Therefore, for the rest of this paper, we index
the tasks from the shortest relative deadline to the longest,
i.e., Di ≤ Dj if i < j. Note that DM priority assignment
is an optimal fixed-priority scheduling for implicit-deadline
and constrained-deadline task sets [29]. Although DM priority
assignment is not an optimal fixed-priority assignment when
we consider arbitrary-deadline task systems, it has a constant
speedup factor, to be discussed in Section 2.3.

2.2 Problem Definition
Given task set T, a feasible task partition on M identical

processors is a collection of M subsets, says, T1,T2, . . . ,TM ,
of T such that

• Tm ∩Tm′ = ∅ for all m 6= m′,
• ∪Mm=1Tm is equal to the input task set T, and
• set Tm can meet the timing constraints by DM scheduling

on a processor m.

Without loss of generality, we can assume that Ui ≤ 100%
and Ci

Di
≤ 100%, i.e., ∆i ≤ 100%, for any task τi; otherwise,

there is clearly no feasible task partition.

2.3 Speedup Factors/Bounds
This paper focuses on the case where the arrival times of

the sporadic tasks are not specified. Therefore, the approxi-
mation is for the worst cases by considering the worst-case
behaviour to be feasibly scheduled by DM. If an algorithm A
for the studied problem has a speedup factor ρ, it guarantees to
always produce a feasible solution by speeding each processor
up to ρ times of the original speed in the platform, if task set
T can be feasibly scheduled (not restricted to DM) on the
original M identical processors. In other words, by taking
the negation of the above statement, we know that if the
algorithm A fails to feasibly partition the task set T on M
identical processors, there is no feasible task partition when
each processor runs 1

ρ times slower than the original platform
speed. For the rest of this paper, we use 1 to denote the original
platform speed. Therefore, running the platform at speed s
implies that the execution time of task τi becomes Ci

s . Note
that speedup factors are used for quantifying the behaviour
of the designed algorithm. This is useful, especially for the
negation part to quantify the error the algorithm makes when
it does not provide a feasible solution.

For fixed-priority scheduling, the speedup factors of DM
scheduling, with respect to the optimal uniprocessor EDF
scheduling, are 1

ln 2 , 1.76322, and 2 for implicit-deadline,
constrained-deadline, and arbitrary-deadline task sets [17],
respectively. To quantify the schedulability of the input task
set, we would need to know the necessary condition for
being schedulable at speed s on the M processors. The
necessary conditions maxτi∈T ∆i ≤ s and

∑
τi∈T

Ui
M ≤ s

are pretty straightforward. As we focus on arbitrary-deadline
and constrained-deadline sporadic task systems, we can also
quantify the necessary condition defined by the demand. Here,
we can release the first job of tasks synchronously (say, at
time 0), and the subsequent job arrivals should be as rapidly
as legally possible. A necessary condition to be schedulable is
to ensure that the total execution time of the jobs arriving no
earlier than a and with relative deadlines no later than d is no
more than M · (d− a) for any a < d. This is identical to the
well-known demand bound function dbf(τi, t), as in [6], of a
task τi within any time interval with length equal to t, defined
as

dbf(τi, t) = max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
× Ci. (1)

Therefore, as a necessary condition, to ensure the schedula-
bility on M processors, if a task set is schedulable for an
algorithm on M processors, then

∀t > 0,
∑
τi∈T

dbf(τi, t) ≤Mt. (2)

With the above discussions, we can conclude the following
lemma for the necessary condition to be schedulable by
any algorithm, which has also been utilized by Chen and
Chakraborty [13].

Lemma 1: A task set is not schedulable by any multipro-
cessor scheduling algorithm by running the M processors at
any speed s if

max

{
max
t>0

∑
τi∈T dbf(τi, t)

Mt
,

∑
τi∈T Ui

M
,max
τi∈T

∆i

}
> s.

(3)

For the rest of the paper, we will focus ourselves on the
negation part of the speedup factor analysis. That is, we are
only interested in the failure cases of the partitioning algorithm
and use Lemma 1 to quantify s for showing the speedup
factors. Note that Lemma 1 is also the necessary condition
for global multiprocessor scheduling. It may seem that we are
more pessimistic by comparing to the necessary condition of
global multiprocessor scheduling instead of that of partitioned
multiprocessor scheduling. However, in our tightness analysis,
comparing to partitioned scheduling and global scheduling
does not differ very much.

3 Deadline-Monotonic Partitioning
This section presents the deadline-monotonic partitioning

strategy, proposed by Baruah and Fisher [4], [5], [22], for the
multiprocessor partitioned scheduling problem. Note that such
a strategy works in general for fixed-priority scheduling (RM,
DM) and dynamic-priority scheduling (EDF), by adopting
proper schedulability tests. The speedup factor for EDF/DM
was shown to be 3− 1

M and 4− 2
M [4], [5], [22] for constrained-

deadline systems and arbitrary-deadline systems, respectively.
When considering EDF scheduling, Chen and Chakraborty
[15] improved the speedup factor to 2.6322− 1

M and 3− 1
M for

constrained-deadline systems and arbitrary-deadline systems,
respectively.

For completeness, we repeat the algorithm in [4], [5],
[22], in which the pseudo-code is presented in Algorithm 1.
Deadline-monotonic partitioning considers the given tasks

3

Algorithm 1 Deadline-Monotonic Partitioning
Input: set T of N tasks, M processors;

1: re-index (sort) tasks such that Di ≤ Dj for i < j;
2: T1 ← {τ1};Tm ← ∅, ∀m = 2, 3, . . . ,M ;
3: for k = 2 to N do
4: if ∃m ∈ {1, 2, . . . ,M} such that Tm ∪{τk} is schedulable by DM

fixed-priority scheduling then
5: choose m ∈ {1, 2, . . . ,M} by preference such that Tm ∪ {τk}

is schedulable by DM fixed-priority scheduling;
6: assign τk to processor m with Tm ← Tm ∪ {τk};
7: else
8: return “no feasible schedule is found”;
9: end if

10: end for
11: return feasible task partition T1,T2, . . . ,TM ;

from the shortest relative deadline to the longest relative
deadline for assignment. When a task τk is considered, a
processor m with m ∈ {1, 2, . . . ,M} is selected to assign
task τk, where Tm is the set of the tasks (as a subset of
{τ1, τ2, . . . , τk−1}), which have been assigned to processor
m before considering τk. If there is no feasible m that can
feasibly schedule τk and Tm on the processor, we return that
no feasible solution is found by this algorithm.

3.1 Fitting Strategy
The fitting strategy when we consider to assign task τk on

a processor m can be

• the first-fit strategy: by choosing the minimum m that is
feasible;

• the arbitrary-fit strategy: by choosing any m that is
feasible (this is also the case if the speedup factor analysis
is oblivious of the particular fitting strategy used);

• the best-fit strategy: by choosing the index m that has the
maximum workload-index;

• the worst-fit strategy: by choosing the index m that has
the minimum workload-index.

The workload-index can be defined as the total utilization or
other means. The analysis in the literature [4], [5], [15], [22]
works in general by using any fitting strategy listed above, even
though in several cases only the first-fit strategy was mentioned
in the descriptions [4], [5], [22].

3.2 Schedulability Tests for DM
Therefore, the remaining building block is to test whether

task τk can be feasibly scheduled on a processor m under
DM scheduling. This has been widely studied in the literature.
We will review some of these methods and explain their
corresponding speedup factors when they are adopted in Step
4 in Algorithm 1.

Constrained Deadline: To verify the schedulability of
constrained-deadline task τk under fixed-priority scheduling in
uniprocessor systems, the time-demand analysis (TDA) [28]
can be adopted. That is, if and only if

∃t with 0 < t ≤ Dk and Ck +
∑

τi∈Tm

⌈
t

Ti

⌉
Ci ≤ t, (4)

then task τk is schedulable under DM scheduling, where Tm is
the set of tasks with higher priority than task τk since we sort
the tasks according to their relative deadlines. TDA requires

pseudo-polynomial-time complexity, as all the points that lie
in (0, Dk] need to be checked for Eq. (4).

Fisher, Baruah, and Baker [22] approximate the test in
Eq. (4) by testing only

∃t with 0 < t ≤ Dk and Ck +
∑

τi∈Tm

(
1 +

t

Ti

)
Ci ≤ t.

(5)
Due to the linearity of the condition in Eq. (5), the test is
equivalent to the verification of whether

Ck +
∑

τi∈Tm

(
1 +

Dk

Ti

)
Ci ≤ Dk (6)

for constrained-deadline systems.

We can also approximate the schedulability test by using
utilization-based analysis as follows: We classify the task set
Tm into two subsets:

• T1
m consists of the higher-priority tasks with periods

smaller than Dk.
• T2

m consists of the higher-priority tasks with periods
larger than or equal to Dk.

The following theorem has been concluded recently by using
a utilization-based schedulability-test framework [16].

Theorem 1 (Chen, Huang, Liu [16]): Task τk in a spo-
radic task system with constrained deadlines is schedulable
by DM scheduling algorithm on processor m if

(
C ′k,m
Dk

+ 1)
∏

τj∈T1
m

(Uj + 1) ≤ 2. (7)

where C ′k,m is Ck +
∑
τi∈T2

m
Ci.

Arbitrary Deadline: For arbitrary-deadline systems, the exact
schedulability test is to use a busy-window concept to evaluate
the worst-case response time [27] by using TDA. The finishing
time Rk,h of the h-th job of task τk in the busy window is the
minimum t such that

hCk +
∑

τi∈Tm

⌈
t

Ti

⌉
Ci ≤ t.

Therefore, its response time is Rk,h − (h − 1)Tk. To test
the busy window length of task τk, the busy window of task
τk finishes on the h-th job if Rk,h ≤ hTk. The maximum
response time among the jobs in the busy window is the worst-
case response time [27]. The schedulability test is exact, but
this takes exponential time complexity, since the busy window
length can be up to the hyper-period, which is exponential of
the input size.

The approximation by Fisher, Baruah, and Baker [22] in
Eq. (5) remains feasible for analyzing the arbitrary-deadline
systems. This leads to test whether

Ck +
∑

τi∈Tm

(
1 +

Dk

Ti

)
Ci ≤ Dk and (8a)

Uk +
∑

τi∈Tm

Ui ≤ 1. (8b)

Eq. (8b) is important in arbitrary-deadline systems to ensure

4

that the approximation in Eq. (8a) does not underestimate the
workload after Dk.

Moreover, Bini et al. [9] provide a tighter analysis than
Eq. (8a). They show that the worst-case response time of task
τk is at most

Ck +
∑
τi∈Tm Ci −

∑
τi∈Tm UiCi

1−
∑
τi∈Tm Ui

.

Therefore, the schedulability condition in Eqs. (8a) and (8b)
can be rewritten as

Ck +Dk(
∑

τi∈Tm

Ui) +
∑

τi∈Tm

Ci −
∑

τi∈Tm

UiCi ≤ Dk, (9a)

Uk +
∑

τi∈Tm

Ui ≤ 1. (9b)

3.3 Time Complexity and Correctness

Since we use partitioned scheduling, as long as Algorithm 1
returns a task partition, it is guaranteed to be feasible if the test
in Step 4 is a sufficient schedulability test for task τk by using
DM scheduling. The time complexity of the algorithm depends
upon the time complexity of the schedulability test and the
fitting strategy. Suppose that the fitting strategy requires time
complexity O(F) for one task and the time complexity to test
whether task τk is schedulable on processor m is O(H). Then,
the overall time complexity is O(NMH+NF). All the fitting
strategies mentioned in Section 3.1 are in polynomial time.
Since H can be polynomial, pseudo polynomial, or exponential
of the input size, the time complexity is dominated by the
adopted schedulability test algorithm.

The main issue here is to answer what can be guaranteed
when Algorithm 1 returns failure in task partitioning. We will
quantify such failures by showing that s in Eq. (3) is also
sufficiently large to provide the speedup factor guarantee (by
using the negation arguments).

4 Analysis for Arbitrary-Deadline Systems

This section presents our analysis for arbitrary-deadline
systems. Our analysis is similar to the analysis by Fisher,
Baruah, and Baker [22], but is tighter. Here, we will mainly
analyze the property by using the schedulability condition
in Eqs. (8a) and (8b). At the end of this section, we will
explain why the analysis also works for arbitrary-deadline
TDA analysis by Lehoczky [27] and response time analysis
by Bini et al. [9].

Theorem 2: The speedup factor of Algorithm 1 is 3− 1
M

when adopting Eqs. (8a) and (8b) for DM schedulability test
under any fitting strategy.

Proof: Suppose that Algorithm 1 fails to find a feasible
assignment for task τk due to the failure when testing Eq. (8a)
or Eq. (8b). Let M1 be the set of processors in which Eq. (8a)
fails. Let M2 be the set of processors in which Eq. (8a)
succeeds but Eq. (8b) fails. Since task τk cannot be assigned
on any of the M processors, we have |M1|+ |M2| = M . By

the violation of Eq. (8a), we know that

|M1|Ck +
∑
m∈M1

∑
τi∈Tm

(
1 +

Dk

Ti

)
Ci > |M1|Dk

⇒|M1|
Ck
Dk

+
∑
m∈M1

∑
τi∈Tm

(
Ci
Dk

+ Ui

)
> |M1|. (10)

By the violation of Eq. (8b), we know that

|M2|Uk +
∑
m∈M2

∑
τi∈Tm

Ui > |M2|. (11)

Recall that ∆k is defined as max{Uk, CkDk }. By Eqs. (10)
and (11), we know that

|M1|
Ck
Dk

+ |M2|Uk +

k−1∑
i=1

Ui +
∑

m∈M1

∑
τi∈Tm

Ci
Dk

> M

⇒ M∆k +

k−1∑
i=1

Ui +

k−1∑
i=1

Ci
Dk

> M.

⇒ (M − 1)∆k +

k∑
i=1

Ui +

k∑
i=1

Ci
Dk

> M.

⇒ (1− 1

M
)∆k +

∑k
i=1 Ui

M
+

k∑
i=1

Ci
MDk

> 1.

⇒ (3− 1

M
) max

{
∆k,

∑k
i=1 Ui

M
,

k∑
i=1

Ci
MDk

}
> 1. (12)

Therefore, we know that either ∆k >
1

3− 1
M

, or
∑k
i=1 Ui
M >

1
3− 1

M

, or
∑k
i=1

Ci
MDk

> 1
3− 1

M

. Either of the former two
cases implies the unschedulability of any scheduling algorithm
with speed 1

3− 1
M

. The demand bound function at time Dk

is
∑N
i=1 dbf(τi, Dk) ≥

∑k
i=1 Ci. Therefore, by Eq. (2), we

know that the condition
∑k
i=1

Ci
MDk

> 1
3− 1

M

implies the
unschedulability of any scheduling algorithm with speed 1

3− 1
M

.

Therefore, by using Lemma 1, we reach the conclusion.

The following corollaries show that the speedup factor 3−
1
M holds for any schedulability tests discussed in Section 3 for
arbitrary-deadline sporadic task systems under DM scheduling.

Corollary 1: The speedup factor of Algorithm 1 is 3− 1
M

when adopting Eqs. (9a) and (9b) for DM schedulability test
under any fitting strategy.

Proof: By not considering the term −
∑
τi∈Tm UiCi in

Eq. (9a), the violation of Eq. (9a) leads to the same conclusion
in Eq. (10). Therefore, the speedup factor remains 3− 1

M .

Corollary 2: The speedup factor of Algorithm 1 is 3− 1
M

when adopting the exact schedulability test for DM scheduling
under any fitting strategy.

Proof: If task τk cannot pass the exact schedulability test,
it also does not pass the sufficient test by using Eqs. (8a) and
(8b). Therefore, we reach the same conclusion.

4.1 Tightness Analysis
The following theorem shows that the analysis in Theo-

rem 2 is asymptotically tight even for implicit-deadline systems
with first-fit strategy.

5

Theorem 3: The speedup factor of Algorithm 1 is at least
3 − 3

M+1 − γ when adopting Eqs. (8a) and (8b) for DM
schedulability test under the first-fit strategy, where γ is an
arbitrarily small positive number.

Proof: This theorem is proved by a concrete input task
system with N = 2M tasks. There are M light tasks with
execution time 1

3M and M heavy tasks with execution time
1+ε
3 , in which ε is a small positive real, i.e., ε > 0. The M

light tasks are all with period 1− δ and relative deadline 1− δ
with arbitrarily small and positive δ � ε. The M heavy tasks
are all with period 1 and relative deadline 1. Therefore, the
2M tasks are indexed such that

• Ci = 1
3M , Ti = Di = 1− δ, for i = 1, 2, . . . ,M , and

• Ci = 1+ε
3 , Ti = Di = 1, for i = M + 1,M + 2, . . . , 2M .

The setting of 0 < δ � ε is just to enforce the indexing. We
will directly take δ → 0 for the rest of the proof.1

By using Algorithm 1 for the above task set when adopting
Eqs. (8a) and (8b) for DM schedulability test under the first-fit
strategy, the M light tasks are assigned on processor 1. Then,
when task τk with k > M is considered, the condition in
Eq. (8a) always fails for any of the first k −M processors.
Therefore, task τk is assigned to processor k − M + 1, for
k = M + 1,M + 2, . . . , 2M − 1. It is then clear that task τ2M
cannot be assigned on any of the M processors. Therefore,
Algorithm 1 returns “no feasible solution is found”.

By the above setting, we have
∑2M
i=1 Ui = 1+M+Mε

3 . By
using Lemma 1, we know that the speedup factor of the above
task set is at least

1
1+M+Mε

3

=3− 3 + 3εM

M + 1 + εM
= 3− 3

M + 1
− γ

in which the factor γ = 3εM2

(M+1)(M+1+εM) becomes negligible
when ε is sufficiently small.

Such a factor can also be shown by a concrete partitioned
schedule. By the pigeonhole principle, the solution that min-
imizes the maximum utilization of a processor is to assign
a light task and a heavy task on a processor, in which the
utilization on the processor is 1+ε

3 + 1
3M . Therefore, the task

set is not schedulable on M processors only when the speed
is slower than 1+ε

3 + 1
3M , provided that δ is 0. As a result, we

reach the same conclusion.

It may seem at first glance that the speedup factor 3− 1
M

in Corollary 2 is pessimistic, since we do not actually use
any property in the exponential-time exact schedulability test.
However, the following theorem shows that the speedup factor
3− 1

M is asymptotically tight for an arbitrary fitting strategy, for
any schedulability tests used in Theorem 2, Corollary 1, and
Corollary 2. As a result, to improve the speedup factor, better
fixed-priority scheduling strategies or more precise analysis for
concrete fitting strategies are needed.

Theorem 4: The speedup factor of Algorithm 1 is at least
3 − 3

M+1 − γ under an arbitrary fitting strategy, for any
schedulability tests used in Theorem 2, Corollary 1, and
Corollary 2, where γ is an arbitrarily small positive number.

1That is, the tightness examples in Theorems 3, 4, and 9 hold even when δ
is 0 if the tasks are indexed in the specified order. Setting δ to an arbitrarily
small positive number is more precise mathematically, but this just complicates
the presentation of the proofs without any added value.

Proof: This theorem is proved by a concrete input task
system with 3M tasks. Let δ and ε be very small positive real
numbers, with δ � ε. There are M tasks with execution time
1

3M , period ∞, and relative deadline 1− δ. There are M tasks
with execution time ε

3 , period ε, and relative deadline 1. There
are M tasks with execution time 1+ε

3 , period ∞, and relative
deadline 1 + δ.

Therefore, the 3M tasks are indexed such that

• Ci = 1
3M , Ti =∞, Di = 1− δ, for i = 1, 2, . . . ,M , and

• Ci = ε
3 , Ti = ε, Di = 1, for i = M + 1,M + 2, . . . , 2M .

• Ci = 1+ε
3 , Ti =∞, Di = 1 + δ, for i = 2M + 1, 2M +

2, . . . , 3M .

Again, the setting of δ � ε is just to enforce the indexing.
We will directly take δ → 0 for the rest of the proof. Now, we
consider a feasible task assignment for the first 3M − 1 tasks,
in which

• τ1, τ2, . . . , τM+1 are assigned on processor 1, and
• τi and τi+M−1 are assigned on processor i−M for i =
M + 2,M + 3, . . . , 2M .

By using Algorithm 1 for task τ3M , we know that task
τ3M cannot be feasibly assigned on any of the M proces-
sors since ∀0 < t ≤ 1 and m = 1, 2, . . . ,M , we have
1+ε
3 +

∑
τi∈Tm

⌈
t
Ti

⌉
Ci > t. Therefore, Algorithm 1 returns

“no feasible solution is found”.

By the above setting, we know that (1)
∑3M
i=1 dbf(τi, t) = 0

for 0 < t < 1, (2)
∑3M
i=1 dbf(τi, 1) = 2εM+M+1

3 , and (3) for
1 < t,

3M∑
i=1

dbf(τi, t) ≤
1

3
+ (t− 1)

1

3
M +

1 + ε

3
M +

ε

3
M

=
2εM +Mt+ 1

3
.

As a result, maxt>0

∑3M
i=1 dbf(τi,t)

Mt =
1+2ε+ 1

M

3 , when ε is small
enough. Since maxτi∈T ∆i = 1+ε

3 and
∑3M
i=1

Ui
M = 1

3 , by
Lemma 1, the speedup factor of the above task set is

1
1

3M + 2ε
3 + 1

3

=
3M

M + 2εM + 1

=3− 3 + 6εM

M + 1 + 2εM
= 3− 3

M + 1
− γ,

in which the factor γ = 6εM2

(M+1)(M+1+2εM) becomes negligible
when ε is sufficiently small. The above analysis also works
for the specific task partitioning which assigns three tasks
τi, τi+M , and τi+2M on one processor for i = 1, 2, . . . ,M ,
and assigns the priority levels by using the optimal priority
assignment by Audsley et al. [2], i.e., τi+M has the lowest
priority on the processor.

5 Analysis for Constrained Deadlines
This section presents the analysis for constrained-deadline

sporadic real-time systems. By Theorem 3, we know that
the method by Fisher, Baruah, and Baker [22] leads to a
speedup factor 3 when M is sufficiently large even for implicit-
deadline systems. The reason is mainly due to the pessimism
of Eq. (6) in the schedulability test. To get better results, we

6

do need better tests. A more precise strategy is to simply use
the exact test for constrained-deadline systems by spending
pseudo-polynomial time complexity. We have already shown
(by Corollary 2 and Theorem 4) that spending more time
complexity does not help in arbitrary-deadline systems if the
analysis does not use the property of any specific fitting strat-
egy. Is this also the same for constrained-deadline systems?

We will first present the analysis by using TDA as the
schedulability test in Step 4 in Algorithm 1. We will conclude
later that such high time complexity also does not help reduce
the speedup factor, compared to the results by using the
hyperbolic bound in Theorem 1.

5.1 Speedup Factor by Adopting TDA
Now, suppose that task τk is the first task that fails to

be assigned on any of the M processors by using TDA
schedulability analysis in Step 4 in Algorithm 1. For notational
brevity, let T∗ be the set {τ1, τ2, . . . , τk−1} of the tasks

Therefore, we know that this leads to

∀m,∀t, with 0 < t ≤ Dk, Ck +
∑

τi∈Tm

⌈
t

Ti

⌉
Ci > t.

By taking a summation of all the m = 1, 2, . . . ,M inequalities
with respect to any t, we know that the unschedulability of task
τk by Algorithm 1 implies that

∀t with 0 < t ≤ Dk, MCk +
∑
τi∈T∗

⌈
t

Ti

⌉
Ci > Mt.

(13)

Therefore, by taking the negation, we know that if

∃t with 0 < t ≤ Dk, and Ck +
∑
τi∈T∗

⌈
t
Ti

⌉
Ci

M
≤ t, (14)

then Algorithm 1 by using TDA should succeed to assign task
τk on one of the M processors. This is basically very similar
to TDA with a minor difference by dividing the higher-priority
workload by M .

Testing the schedulability condition of task τk according
to Eq. (14) can be done by using the same strategy used in
the k2U framework [16] to prove Theorem 1 as follows.

We classify the k − 1 tasks in T∗ into two subsets.

• T∗1 consists of the tasks in T∗ with periods smaller than
Dk.

• T∗2 consists of the tasks in T∗ with periods larger than
or equal to Dk.

Now, let C ′k be defined as follows:

C ′k = Ck +
∑

τi∈T∗2

Ci
M
. (15)

Suppose that we have κ − 1 tasks in T∗1. Clearly, according
to the definition κ ≥ 1. Now, we can rewrite the condition in
Eq. (14) as follows: if

∃t with 0 < t ≤ Dk and C ′k +
∑

τi∈T∗1

⌈
t
Ti

⌉
Ci

M
≤ t, (16)

then Algorithm 1 by using TDA should succeed to assign task
τk on one of the M processors.

For completeness, we repeat the definition of the k2U
framework and the key Lemma (with some simplifications to
remove individual coefficients for each task τi) as follows.

Definition 1: A k-point effective schedulability test is a
sufficient schedulability test of a fixed-priority scheduling
policy by verifying the existence of tj ∈ {t1, t2, . . . tk} with
t1 ≤ t2 ≤ · · · ≤ tk such that

Ck +

k−1∑
i=1

αtiUi +

j−1∑
i=1

βtiUi ≤ tj , (17)

where Ck > 0, α > 0, Ui > 0, and β > 0 are dependent upon
the setting of the task models and task τi.

Lemma 2 (Chen, Huang, and Liu [16]): For a given k-
point effective schedulability test, defined in Definition 1, of a
scheduling algorithm, in which 0 < α 6=∞, and 0 < β 6=∞,
task τk is schedulable by the scheduling algorithm if the
following condition holds

Ck
tk
≤

α
β + 1∏k−1

j=1 (βUj + 1)
− α

β
. (18)

Proof: This comes from Lemma 1 in [16].

By adopting the k2U framework [16], we can conclude the
following theorem.

Theorem 5: If ∏
τi∈T∗1

(1 +
Ui
M

) ≤ 2

1 +
C′k
Dk

,

then task τk is schedulable under Algorithm 1 by using TDA.

Proof: In the proof, we will reindex the tasks to satisfy
the monotonicity of ti in Definition 1. That is, the κ−1 higher-
priority tasks in T∗1 are reindexed to form the corresponding
sequence τ1, τ2, . . . , τκ−1 for ensuring that the arrival times of
the last jobs no later than Dk are in a non-decreasing order.
For task τi in T∗1, we set ti as

⌊
Dk
Ti

⌋
Ti. Now, we reindex the

κ − 1 higher-priority tasks such that t1 ≤ t2 ≤ · · · ≤ tκ−1.
Moreover, let tκ be Dk.

Since Ti < Dk for any task τi in T∗1, we have ti ≥ Ti.
Therefore, for a given tj with j = 1, 2, . . . , κ, the demand
requested up to time tj in Eq. (16) is at most

Ck +

∑
τi∈T∗2 Ci +

∑
τi∈T∗1

⌈
tj
Ti

⌉
Ci

M

=C ′k +

∑κ−1
i=1

⌈
tj
Ti

⌉
Ci

M

≤C ′k +

∑κ−1
i=1

ti
Ti
Ci

M
+

∑j−1
i=1 Ci
M

,

where the inequality comes from the indexing policy defined
above, i.e.,

⌈
tj
Ti

⌉
≤ ti

Ti
+ 1 if j > i and

⌈
tj
Ti

⌉
≤ ti

Ti
if j ≤ i.

We only apply the test for these κ different ti values, which
is equivalent to the test of the existence of tj for j = 1, 2, . . . , κ

such that C ′k +
∑κ−1
i=1

ti
Ti
Ci

M +
∑j−1
i=1 Ci
M ≤ tj . This satisfies

7

Definition 1 (when k is κ) with α = 1
M and β = 1

M . Therefore,
by using Lemma 2, if

C ′k
Dk
≤ 1 + 1∏

τi∈T∗1(UiM + 1)
− 1,

then task τk is schedulable under Algorithm 1 by using TDA.
By reorganizing the above equation, we reach the conclusion.

The following corollary comes from the same proof of
Lemma 2 and Theorem 5, which shows that the schedula-
bility condition also implies a lower bound of the workload
C′k
Dk

+
∑
τi∈T∗1

tiUi

MDk
.

Corollary 3: If the schedulability condition in Theorem 5
is violated, i.e.,

∏
τi∈T∗1(1 + Ui

M) > 2

1+
C′
k

Dk

, then

C ′k
Dk

+

∑
τi∈T∗1

⌊
Dk
Ti

⌋
TiUi

MDk
>

∏
τi∈T∗1

(
1 +

Ui
M

)
.

Proof: This comes from the same proof as in Lemma 2
(Lemma 1 in [16]) by changing the objective from minimizing
C∗k to minimizing C∗k +

∑k−1
i=1 αtiUi to enforce the unschedu-

lability. This property has been provided by Chen, Huang, and
Liu [16] to prove the speedup factor of deadline-monotonic
scheduling in uniprocessor systems. Moreover, this condition
has also been exploited by von der Brüggen, Chen, and
Huang [32] to prove the speedup factor of non-preemptive DM
scheduling with respect to non-preemptive EDF scheduling.

The remaining proofs in this section require some mathe-
matical tools, which are provided in the following lemmas.

Lemma 3: Suppose that
∑
τi∈T1∗ Ui > 0 is fixed and Ui ≥

0 for each task τi. Then,
∏
τi∈T1∗

(
Ui
M + 1

)
is maximized when

U1 = U2 = · · · = U|T1∗|.

Proof: This can be easily proved by the fact that∏
τi∈T1∗

(
Ui
M + 1

)
is a concave function with respect to the

(non-negative) values of Ui.

Lemma 4: The infimum
∑
τi∈T1∗

Ui
M to enforce∏

τi∈T1∗

(
Ui
M + 1

)
> x is ln(x).

Proof: This can be derived by using Lagrange Multi-
plier Method to find the minimum

∑
τi∈T1∗

Ui
M such that∏

τi∈T1∗

(
Ui
M + 1

)
≥ x. By Lemma 3, it is clear that the

worst case is to have all the tasks with the same utilization.
Suppose that |T1∗| is n. We know that all the tasks are with
utilization M(x

1
n − 1), and the utilization bound

∑
τi∈T1∗

Ui
M

is n(x
1
n − 1). This converges to ln(x) when n approaches ∞.

With the above discussions, we can conclude the speedup
factor.

Theorem 6: The speedup factor of Algorithm 1 for
constrained-deadline task systems by using TDA is 1

W (0.5) ≈
2.84306, where W (z) is the Lambert W function, i.e., the
unique solution of z = W (z)eW (z).

Proof: If
∏
τi∈T∗1(UiM + 1) ≥ 2, we can already conclude

that
∑

τi∈T∗1
Ui
M ≥ ln 2 by using Lemma 4, and the speedup

factor is 1/ ln 2 < 2.84306 for such a case. We focus on

the other case with
∏
τi∈T∗1(UiM + 1) < 2. Suppose that σ

is 2∏
τi∈T∗1

(
Ui
M +1)

− 1, in which σ > 0.

If τk is not schedulable under Algorithm 1 by TDA, then

Ck
Dk

+

∑k−1
i=1 dbf(τi, Dk)

MDk

=
Ck
Dk

+

∑
τi∈T∗2 Ci

MDk
+

∑
τi∈T∗1 dbf(τi, Dk)

MDk

≥ C′k
Dk

+

∑
τi∈T∗1

⌊
Dk
Ti

⌋
TiUi

MDk

>1

∏
τi∈T∗1

(
1 +

Ui
M

)
=

1 + σ

2
,

where >1 is by Corollary 3. Suppose that Ck
Dk

is x. Therefore,
we know that ∑

τi∈T∗

dbf(τi, Dk)

M
>

1 + σ

2
− x. (19)

Moreover, with
∏
τi∈T∗1(1 + Ui

M) = 2
1+σ and the fact that

τk is not schedulable under Algorithm 1 by using TDA, by
Lemma 4, we have ∑

τi∈T∗1

Ui
M

> ln(
2

1 + σ
). (20)

For the rest of the proof, we consider two separate cases:2

Case 1 x ≥ σ: This is an easier case. We can conclude the
speedup factor by using Eq. (20)

max

{
Ck
Dk

,
∑
τi∈T∗

Ui
M

}
≥ max

{
σ, ln(

2

1 + σ
)

}
≥min
σ>0

{
max{σ, ln(

2

1 + σ
)}
}

=1
1

2.66793
,

where =1 holds when eσ(1 + σ) = 2.

Case 2 x < σ: There are two subcases

• Case 2a: If x > 1+σ
4 , we know that x > 1+σ

2 − x.
Therefore, by Eq. (19), max

{
Ck
Dk
,
∑
τi∈T∗

dbf(τi,Dk)
M

}
≥

x > 1+σ
4 . Hence,

max

{
Ck
Dk

,
∑
τi∈T∗

Ui
M
,
∑
τi∈T∗

dbf(τi, Dk)

M

}

>max

{
1 + σ

4
, ln(

2

1 + σ
)

}
≥ min

y≥0
max

{
y, ln

1

2y

}
=W (0.5) ≈ 1

2.84306
,

where = holds when yey = 0.5.
• Case 2b: If x ≤ 1+σ

4 , we know that x ≤ 1+σ
2 − x.

Therefore, by Eq. (19), max
{
Ck
Dk
,
∑
τi∈T∗

dbf(τi,Dk)
M

}
>

2These cases are concluded by the following trick: Suppose that g1(y) is
an increasing function and g2(y) is a decreasing function with respect to y
when y ≥ 0. Then, we know that the lower bound on max{g1(y), g2(y)}
is the intersection of these two functions, i.e., g1(y∗), where g1(y∗) =
g2(y∗) if such a value y∗ exists. That is, max{g1(y), g2(y)} ≥
miny≥0 max{g1(y), g2(y)} = g1(y∗).

8

1+σ
2 − x ≥

1+σ
4 . Hence,

max

{
Ck
Dk

,
∑
τi∈T∗

Ui
M
,
∑
τi∈T∗

dbf(τi, Dk)

M

}

>max

{
1 + σ

4
, ln

(
2

1 + σ

)}
≥ min

y≥0
max

{
y, ln(

1

2y
)

}
=W (0.5) ≈ 1

2.84306
,

where = holds when yey = 0.5.

Therefore, by all the above cases, we know that

max

Ck
Dk

,
∑
τi∈T∗

Ui
M
,
∑
τi∈T∗

dbf(τi, Dk)

M

 > W (0.5) ≈ 1

2.84306
,

which concludes the proof by applying Lemma 1.

5.2 Speedup Factor by Hyperbolic Bound
This subsection further presents the speedup factor of

Algorithm 1 when adopting the hyperbolic bound in Eq. (7)
for testing the schedulability of DM scheduling. The speedup
factor analysis in Theorem 6 for TDA schedulability analysis
relies only on the violation of the schedulability condition
in Theorem 5. We will show that adopting the hyperbolic
bound of Eq. (7) results in the same condition in Theorem 5.
Therefore, we can reach the same conclusion as in Theorem 6
by using the hyperbolic bound in polynomial time. We use the
same notations, e.g., T∗1, T∗2, κ, etc., as used in Section 5.1.

Theorem 7: If∏
τi∈T∗1

(
1 +

Ui
M

)
≤ 2

1 +
C′k
Dk

,

then task τk is schedulable under Algorithm 1 by using the
hyperbolic bound in Eq. (7), where C ′k is Ck +

∑
τi∈T∗2

Ci

M .

Proof: We prove this by contrapositive. Suppose that
task τk is not schedulable under Algorithm 1 by using the
hyperbolic bound in Eq. (7) . Therefore, for m = 1, 2, . . . ,M ,
we have(

Ck +
∑
τi∈T2

m
Ci

Dk
+ 1

) ∏
τi∈T1

m

(Ui + 1) > 2.

By multiplying the above M inequalities we reach

2M <

(
M∏
m=1

(
Ck +

∑
τi∈T2

m
Ci

Dk
+ 1

)) ∏
τi∈T∗1

(Ui + 1)

≤1

Ck +
∑
τi∈T∗2

Ci

M

Dk
+ 1

M ∏
τi∈T∗1

(
Ui
M

+ 1

)M ,

where ≤1 comes from Lemma 3 (for the first part) and from
the fact (1+Ui) ≤ (1+Ui/M)M when M is a positive integer
and Ui ≥ 0 (for the second part). Therefore, we conclude that
the unschedulability of task τk implies that

2 <

(
C ′k
Dk

+ 1

) ∏
τi∈T∗1

(
Ui
M

+ 1

) .

By contrapositive, we reach the conclusion.

Theorem 8: The speedup factor of Algorithm 1 by using
the hyperbolic bound in Eq. (7) is 1

W (0.5) ≈ 2.84306, where
W (z) is the Lambert W function, i.e., z = W (z)eW (z).

Proof: Since the schedulability condition remains the
same as in Theorem 5, the speedup factor is also the same
as in Theorem 6.

5.3 Tightness Analysis
We conclude this section by showing that the above

speedup factor analysis is tight when M is sufficiently large
under an arbitrary fitting strategy.

Theorem 9: For constrained-deadline task systems, the
speedup factor of Algorithm 1 is at least 1

W (0.5) ≈ 2.84306
when adopting TDA or the hyperbolic bound in Eq (7) for DM
schedulability test under an arbitrary fitting strategy, when M
is sufficiently large.

Proof: We prove this theorem by providing a concrete
task system by assuming that M is sufficiently large. There
are N = 2M2 + 1 tasks. Let f be 2

1
W (0.5)

≈ 0.7034674, i.e.,

ln(1
f) = f

2 . Let δ be an arbitrarily small positive number just
for enforcing the indexing:

• Ti = Di = f + (
⌈
i
M

⌉
− 1) 1−f

M−1 , Ci = 1−f
M−1 , for i =

1, 2, . . . ,M2,
• Ti = ∞, Di = 1 + δ, Ci = 1.5f−1

M ≈ 0.0552
M , for i =

M2 + 1,M2 + 2, . . . , 2M2, and
• TN = ∞, DN = 1 + 2δ, CN = 0.5f + ε, with N =

2M2 + 1, where ε is a positive small number.

We again simply take δ to 0 for the rest of the proof. Moreover,
1
M is also consider negligible for the simplicity of computation,
since M is assumed to be sufficiently large.

For an arbitrary fitting algorithm, consider the following
task assignment by assigning task τi+jM to processor i with
i = 1, 2, . . . ,M for every j = 0, 1, 2, . . . , 2M − 1. It is not
difficult to see that the above task assignment can be achieved
feasibly and results in a feasible task assignment for the first
2M2 tasks. The set of the tasks assigned on processor m is
denoted as Tm. Now, consider task τ2M2+1, i.e., τN to be
assigned on processor m. The overall execution time request
at time 0 is 0.5f + ε+ 1.5f − 1 + 1− f = f + ε on processor
m. Therefore, it can be easily seen that task Tm ∪ {τN} is
not schedulable under DM scheduling on processor m since
the TDA test in Eq. (6) fails. As a result, task τN cannot be
assigned on any processor.

In this input task set, the utilization of the individual task
and Ci

Di
are not more than f

2 +ε for each task τi. Moreover, the
overall task utilization is M

∑M−1
i=0

µ
f+iµ , where µ = 1−f

M−1 .
Due to the assumption that M is sufficiently large, the above
total utilization is a left Riemann sum, i.e., M

∑M−1
i=0

µ
f+iµ ≈

M
∫ 1−f
0

1
f+xdx = M ln(1

f). By the fact that ln(1
f) = f

2 , we
know that the total utilization is M f

2 when M is sufficiently
large.

Now, we examine maxt>0

∑N
i=1 dbf(τi,t)

Mt . By definition,

maxt>0

∑N
i=1 dbf(τi,t)

Mt > maxt>0

∑N−1
i=1 dbf(τi,t)

Mt . By the con-

9

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

2f 4f 5f 6f 8f 1 2 3 4 5 6

t

dbf
#
(t)

(a) dbf](t)

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

2f 4f 5f 6f 8f 1 2 3 4 5 6

t

dbf
#
(t)/t

(b) dbf](t)/t

Fig. 1: Functions dbf](t) and dbf](t)
t for the proof of Theo-

rem 9 with t in the range of [1, 6].

struction of the task set, we have (1)
∑N−1
i=1 dbf(τi,t)

Mt = 0 if

0 < t < 1, and (2)
∑N−1
i=1 dbf(τi,1)

M = f
2 if t = 1. Therefore,

we know that the speedup factor for this task set is purely
dominated by maxt>0

∑N−1
i=1 dbf(τi,t)

Mt .

However, proving that
∑N−1
i=1 dbf(τi,t)

Mt ≤ f
2 if t > 1 is pretty

complicated. The proof involves quite some mathematical
derivations, and is left in Appendix A. It should be clear that
we can ignore the M − 1 duplicated copies of the tasks by
considering only the tasks assigned on one processor (before
considering τN). The complete proof is Appendix A. The
proof strategy first makes an over-approximation, denoted as
dbf](t), of the sum

∑
τi∈Tm dbf(τi, t) of the demand bound

functions at time t (after removing the M − 1 duplicated
copies). Based on such an over-approximation, it can be shown
that maxt>0

dbf](t)
t happens when t is a positive integer for

Tm. It can then be proved that the maximum dbf](t)
t happens

when t = 1 or t =∞, in which both leads dbf](t)
t to f

2 .

Figure 1 draws the functions dbf](t) and dbf](t)
t in the

range of [1, 6]. Figure 2 provides an illustrative view of dbf](t)
t

from t = 1, 2, . . . , 4000. It can also be easily shown by
assigning τN to one processor alone, we can find a task
partition that requires a speedup factor asymptotically equal
to 2

f when M is sufficiently large.

 0.32

 0.325

 0.33

 0.335

 0.34

 0.345

 0.35

 0.355

 0 5 10 15 20 25 30

t

f/2
dbf

#
(t)/t

(a) 1 ≤ t ≤ 30

 0.3485

 0.349

 0.3495

 0.35

 0.3505

 0.351

 0.3515

 0.352

 500 1000 1500 2000 2500 3000 3500

t

f/2
dbf

#
(t)/t

(b) 30 ≤ t ≤ 4000

Fig. 2: dbf](t)
t when t is a positive integer number (the curve

is just for visualization) for the proof of Theorem 9, and the
reference point f

2 ≈ 0.3517337

6 Concluding Remarks

This paper provides detailed analysis for the deadline-
monotonic partitioning algorithm proposed by Fisher, Baruah,
and Baker [22] for multiprocessor partitioned fixed-priority
scheduling, by using exact schedulability tests and approxi-
mated schedulability tests. It may seem at first glance that
using exact schedulability tests is more precise, but the proof
shows that such exact tests are with the same speedup factors
as approximated tests. We show that the deadline-monotonic
partitioning algorithm has a speedup factor 3− 1

M when consid-
ering task systems with arbitrary deadlines. Such a factor holds
for polynomial-time schedulability tests and exponential-time
schedulability tests. Moreover, we also improve the speedup
factor to 2.84306 when considering constrained-deadline task
systems.

The speedup factor analyses in this paper are asymp-
totically tight if the analysis is oblivious of the particular
fitting strategy used. In all the tightness analyses, we only
take Lemma 1, which also implicitly implies the reference to
optimal global scheduling. The tasks are designed on purpose,
e.g., M2 tasks (instead of M tasks) with period ∞ in the
proof of Theorem 9, to show that such factors also hold
(asymptotically or with minor changes) for optimal partitioned
scheduling. However, this does not limit the potential to
have better speedup factors by adopting better fixed-priority
scheduling strategies or more precise analysis for concrete
fitting strategies.

10

Acknowledgements. This paper is supported by DFG, as part
of the Collaborative Research Center SFB876 (http://sfb876.tu-
dortmund.de/).

References
[1] K. Albers and F. Slomka. An event stream driven approximation for

the analysis of real-time systems. In ECRTS, pages 187–195, 2004.
[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.

Applying new scheduling theory to static priority pre-emptive schedu-
ling. Software Engineering Journal, 8(5):284–292, 1993.

[3] S. Baruah. The partitioned EDF scheduling of sporadic task systems.
In Real-Time Systems Symposium (RTSS), pages 116 –125, 2011.

[4] S. K. Baruah and N. Fisher. The partitioned multiprocessor scheduling
of sporadic task systems. In RTSS, pages 321–329, 2005.

[5] S. K. Baruah and N. Fisher. The partitioned multiprocessor scheduling
of deadline-constrained sporadic task systems. IEEE Trans. Computers,
55(7):918–923, 2006.

[6] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In IEEE Real-Time
Systems Symposium, pages 182–190, 1990.

[7] E. Bini. The quadratic utilization upper bound for arbitrary deadline
real-time tasks. IEEE Trans. Computers, 64(2):593–599, 2015.

[8] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic analysis:
the hyperbolic bound. Computers, IEEE Transactions on, 52(7):933–
942, 2003.

[9] E. Bini, T. H. C. Nguyen, P. Richard, and S. K. Baruah. A response-
time bound in fixed-priority scheduling with arbitrary deadlines. IEEE
Trans. Computers, 58(2):279–286, 2009.

[10] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New strategies for
assigning real-time tasks to multiprocessor systems. pages 1429–1442,
1995.

[11] S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability
analysis. In IEEE Real-Time Systems Symposium, pages 159–168, 2002.

[12] J. Chen. Partitioned multiprocessor fixed-priority scheduling of
sporadic real-time tasks. Computing Research Repository (CoRR),
abs/1505.04693, http://arxiv.org/abs/1505.04693, 2015.

[13] J.-J. Chen and S. Chakraborty. Resource augmentation bounds for
approximate demand bound functions. In IEEE Real-Time Systems
Symposium, pages 272 – 281, 2011.

[14] J.-J. Chen and S. Chakraborty. Partitioned packing and scheduling for
sporadic real-time tasks in identical multiprocessor systems. In ECRTS,
pages 24–33, 2012.

[15] J.-J. Chen and S. Chakraborty. Resource augmentation for uniprocessor
and multiprocessor partitioned scheduling of sporadic real-time tasks.
Real-Time Systems, 49(4):475–516, 2013.

[16] J.-J. Chen, W.-H. Huang, and C. Liu. k2U: A general framework from
k-point effective schedulability analysis to utilization-based tests. In
Real-Time Systems Symposium (RTSS), 2015.

[17] R. Davis, T. Rothvo, S. Baruah, and A. Burns. Quantifying the sub-
optimality of uniprocessor fixed priority pre-emptive scheduling for
sporadic tasksets with arbitrary deadlines. In Real-Time and Network
Systems (RTNS), pages 23–31, 2009.

[18] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput. Surv., 43(4):35, 2011.

[19] R. I. Davis, T. Rothvoß, S. K. Baruah, and A. Burns. Exact quantifi-
cation of the sub-optimality of uniprocessor fixed priority pre-emptive
scheduling. Real-Time Systems, 43(3):211–258, 2009.

[20] F. Eisenbrand and T. Rothvoß. Static-priority real-time scheduling:
Response time computation is NP-Hard. In Proceedings of the 29th
IEEE Real-Time Systems Symposium, RTSS 2008, Barcelona, Spain, 30
November - 3 December 2008, pages 397–406, 2008.

[21] N. Fisher and S. K. Baruah. A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary
relative deadlines. In ECRTS, pages 117–126, 2005.

[22] N. Fisher, S. K. Baruah, and T. P. Baker. The partitioned scheduling
of sporadic tasks according to static-priorities. In 18th Euromicro
Conference on Real-Time Systems, ECRTS’06, 5-7 July 2006, Dresden,
Germany, Proceedings, pages 118–127, 2006.

[23] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal of Applied Mathematics, 17(2):416–429, 1969.

[24] D. S. Hochbaum and D. B. Shmoys. Using dual approximation
algorithms for scheduling problems theoretical and practical results. J.
ACM, 34(1):144–162, 1987.

[25] A. Karrenbauer and T. Rothvoß. A 3/2-approximation algorithm for
rate-monotonic multiprocessor scheduling of implicit-deadline tasks. In

Workshop of Approximation and Online Algorithms WAOA, pages 166–
177, 2010.

[26] C.-G. Lee, L. Sha, and A. Peddi. Enhanced utilization bounds for qos
management. IEEE Trans. Computers, 53(2):187–200, 2004.

[27] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In RTSS, pages 201–209, 1990.

[28] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
Real-Time Systems Symposium, pages 166–171, 1989.

[29] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Perform. Eval., 2(4):237–250,
1982.

[30] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–
61, 1973.

[31] A. K. Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. Technical report, Cambridge, MA, USA,
1983.

[32] G. von der Bruggen, J.-J. Chen, and W. Huang. Schedulability
and optimization analysis for non-preemptive static priority scheduling
based on task utilization and blocking factors. In ECRTS, pages 90–101,
2015.

Appendix A
Proof of Theorem 9. The remaining part of the proof is
to show that

∑N−1
i=1 dbf(τi,t)

Mt ≤ f
2 for all t ≥ 1 in the input

instance. Since each task has M − 1 duplicated copies with
the same task characteristics, we will implicitly drop the M −
1 duplicated copies by considering only these 2M tasks in
Tm. We index these tasks according to their periods in a non-
decreasing order. Due to the setting of the task periods, we
know that Ti = f + i−1

M−1 for i = 1, 2, . . . ,M and Ti =∞ for
i = M + 1,M + 2, . . . , 2M .

For the rest of the proof, we will only analyze the demand
bound function of these 2M tasks on one processor, and our
objective is to show that

∑2M
i=1 dbf(τi,t)

t ≤ f
2 for all t ≥ 1.

Note that this is identical to the original N − 1 tasks on
M processors. Moreover, for the rest of the proof, we only
consider the arrival pattern that defines the demand bound
function of the system from time 0 on the processor.

For t = 1, we know that
∑2M
i=1 dbf(τi,1)

1 = f
2 . For t > 1, we

need to identify the demand of the M periodic tasks, whose
periods are not∞, more precisely. Here, we define some terms
for the simplicity of the explanations. We define a pile of jobs
as follows: The `-th job of task τi is placed in the `-th pile.
Therefore, by the definition, each pile has M jobs and has
total execution time equal to 1− f + 1−f

M−1 ≈ 1− f since M
is sufficiently large. Precisely, the absolute deadline and the
arrival time of the j-th job (from the earliest arrival) in the `-
th pile are ` · (f + j−1) and (`−1) · (f + j−1), respectively.
Therefore, the contribution of the jobs in the `-th pile to the
demand bound function at time t is at most

dbf]` (t) =

0 if t < ` · f
(t− ` · f) · 1` if ` · f ≤ t < `

1− f if t ≥ `
(21)

We can now define a safe upper bound dbf](t) of the
demand bound function of the 2M tasks for t ≥ 1 as follows:

dbf](t) = 1.5f − 1 +

∞∑
`=1

dbf]` (t). (22)

11

http://sfb876.tu-dortmund.de/
http://sfb876.tu-dortmund.de/
http://arxiv.org/abs/1505.04693

Based on such an over-approximation, dbf](t) is a piece-wise
linear function, which is differentiable. Figure 1 illustrates the
above definition of dbf](t) and dbf](t)

t .

We now prove that maxt≥1
dbf](t)

t happens when t is
a postive integer. For any positive number `, the func-
tion dbf](t) for t in the interval [`, ` + 1) can have ei-
ther two segments

[
`, (
⌊
`
f

⌋
+ 1)f

)
,
[
(
⌊
`
f

⌋
+ 1)f, `+ 1

)
or

three segments
[
`, (
⌊
`
f

⌋
+ 1)f

)
,
[
(
⌊
`
f

⌋
+ 1)f, (

⌊
`
f

⌋
+ 2)f

)
,[

(
⌊
`
f

⌋
+ 2)f, `+ 1

)
of linearly continuous functions. For ex-

ample, in Figure 1a, in interval [2, 3), there are three segments
and, in interval [3, 4), there are only two segments.

The case when ` is 1 is clear, since dbf](t) = 1.5f−1+1−
f = 0.5f when 1 ≤ t < 2f and dbf](t) = 0.5f + (t− 2f)/2
when 2f ≤ t < 2. Therefore, dbf](t)/t ≤ dbf](1) when
1 ≤ t < 2. Similarly, dbf](t)/t ≤ dbf](3)/3 when 2 ≤ t < 3,
as also illustrated in Figure 1b.

For a given t ≥ 3, by the definition that f ≈ 0.7034674,
we also know that

⌊
t
f

⌋
≥ btc + 1. Consider the case that

there are two linear segments of the function dbf](t) in
[`, ` + 1) for an integer ` ≥ 3. In this case, these two
segments are

[
`, (
⌊
`
f

⌋
+ 1)f

)
,
[
(
⌊
`
f

⌋
+ 1)f, `+ 1

)
. When

` ≤ t ≤ (
⌊
`
f

⌋
+ 1)f , we know that

dbf](t) = 1.5f − 1 + `(1− f) +

b tf c∑
i=`+1

(t− i · f) · 1

i

= dbf](`) + (t− `) ·
b `f c∑
i=`+1

1

i
. (23)

When (
⌊
`
f

⌋
+ 1)f ≤ t < `+ 1, we know that

dbf](t) = dbf](`) + (t− `) ·

⌊
`
f

⌋∑
i=`+1

1

i

+
t− (

⌊
`
f

⌋
+ 1)f⌊

`
f

⌋
+ 1

.

= dbf]
(

(

⌊
`

f

⌋
+ 1)f

)
+

(
t− (

⌊
`

f

⌋
+ 1)f

)
·

⌊
`
f

⌋
+1∑

i=`+1

1

i
.

(24)

For a linear segment started from t∗, we have dbf](t∗+x)
t∗+x =

dbf](t∗)+σx
t∗+x if x is no more than the length of the linear

segment, where σ is the slope of the linear function defined
in Eq. (23) or Eq. (24). Since the first order derivative of
dbf](t∗)+σx

t∗+x with respect to x is σt∗−dbf](t∗)
(t∗+x)2 , we know that the

function dbf](t∗+x)
t∗+x monotonically decreases, or monotonically

increases, or remains the same with respect to valid x values.
If, for contradiction, there exists a t with ` ≤ t < ` + 1 such
that dbf](t)

t > dbf](`)
` and dbf](t)

t > dbf](`+1)
`+1 , then dbf](t)

t

in the first segment must be increasing and dbf](t)
t in the

second segment must be decreasing. However, with Eq. (23)
and Eq. (24), it is rather clear that the slope of dbf](t) of the
second linear segment is larger than the slope of the first linear
segment when there are two linear segments in [`, `+ 1) and

` ≥ 3. Therefore, if dbf
](t)
t is an increasing function in the first

segment, it must be also an increasing function in the second
segment. Hence, dbf](t)/t ≤ max

{
dbf](`)

` , dbf
](`+1)
`+1

}
when

` ≤ t < `+1 for the case when there are two linear segments of
dbf](t) in [`, `+1). The same argument holds for the case with
three segments as well by examining the increasing slopes of
dbf](t) of these three segments. As a result, we can conclude
that maxt≥1

dbf](t)
t happens when t is a postive integer.

The remaining part of the proof is to show that the
maximum dbf](t)

t happens when t = 1 or t = ∞, in which
both lead dbf](t)

t to f
2 . We can easily evaluate dbf](t)

t for
t = 1, 2, 3, 4, 5 as follows:

• dbf](1)
1 = 1.5f − 1 + 1− f = 0.5f ≈ 0.3517337.

• dbf](2)
2 = 1.5f−1+2−2f

2 ≈ 0.3241.
• dbf](3)

3 = 1.5f−1+3−3f+(3−4f)/4
3 ≈ 0.3304.

• dbf](4)
4 = 1.5f−1+4−4f+(4−5f)/5

4 ≈ 0.3344.
• dbf](5)

5 = 1.5f−1+5−5f+(5−6f)/6+(5−7f)/7
5 ≈ 0.3357.

For any positive integer ` with ` ≥ 5, we can reformulate
Eq. (22) into the following equation:

dbf](`) =1.5f − 1 +
∑̀
i=1

(1− f) +

b`/fc∑
i=`+1

`− i · f
i

=1.5f − 1 + `− b`/fc f +

b`/fc∑
i=`+1

`

i
(25)

We can complete the proof by showing that dbf](`+1)
`+1 −

dbf](`)
` ≥ 0 for any positive integer ` ≥ 5. Such a fact can be

seen in Figure 2 based on numerical evaluations, but a formal
proof requires quite some effort due to the floor function. For
any positive integer ` with ` ≥ 5, we have

dbf](`+ 1)

`+ 1
−
dbf](`)

`

=
1.5f − 1 + `+ 1− b(`+ 1)/fc f

`+ 1
−

1.5f − 1 + `− b`/fc f
`

−
` 1
`+1

`
+

b(`+1)/fc∑
i=b`/fc+1

(`+ 1) 1
i

`+ 1

=−
1.5f − 1− b`/fc f

`(`+ 1)
−
f(b(`+ 1)/fc − b`/fc)

`+ 1

−
1

`+ 1
+

b(`+1)/fc∑
i=b`/fc+1

1

i
(26)

Since ` ≥ 5, the above equation is well-defined. Due to the
fact that f ≈ 0.7034674, we know that b(`+ 1)/fc is either
b`/fc+ 1 or b`/fc+ 2. Let `

f =
⌊
`
f

⌋
+ b where 0 ≤ b < 1.

If 0 ≤ b < 2− 1
f , then `+1

f <
⌊
`
f

⌋
+ 2− 1

f + 1
f =

⌊
`
f

⌋
+ 2,

which implies that b(`+ 1)/fc = b`/fc+1 for such a case. If
2− 1

f ≤ b < 1, then
⌊
`
f

⌋
+1+ 1

f >
`+1
f ≥

⌊
`
f

⌋
+2− 1

f + 1
f =⌊

`
f

⌋
+2, which implies that b(`+ 1)/fc = b`/fc+2 for such

a case. We now analyze these two cases individually.

Case 1: 0 ≤ b < 2 − 1
f : In this case, b(`+ 1)/fc =

12

b`/fc+ 1. Therefore, Eq. (26) becomes

Y1(b) =
(`f − b)f − 1.5f + 1

`(`+ 1)
− f + 1

`+ 1
+

1
`
f − b+ 1

. (27)

We take the first order derivative of Y1(b) with respect
to b. Since dY1(b)

db = −f
`(`+1) + 1

(`f−b+1)2
is an increas-

ing function with respect to b and −f
`(`+1) + 1

(`+1
f −1)2

=

f
(
−(`+1)2+2f(`+1)−f2+f(`+1)2−f(`+1)

`(`+1)(`+1−f)2

)
< 0, for a given

positive `, the function Y1(b) is at least Y1(2− 1
f). Since

Y1(2− 1

f
) =

`− 3.5f + 2

`(`+ 1)
− f + 1

`+ 1
+

1
`+1
f − 1

=
−f(`+ 1)− 2.5f + 2

`(`+ 1)
+

f

`+ 1− f

=
(`+ 1)(f2 + 2− 3.5f) + 2.5f2 − 2f

`(`+ 1)(`+ 1− f)

>0, [due to ` ≥ 5.]

we know that Y1(b) > 0 for any integer ` ≥ 5 and 0 ≤ b <

2− 1
f . Therefore, dbf

](`+1)
`+1 − dbf](`)

` > 0 for such a case.

Case 2: 2 − 1
f ≤ b < 1: In this case, b(`+ 1)/fc =

b`/fc+ 2. Therefore, Eq. (26) becomes

Y2(b) =
`− bf − 1.5f + 1

`(`+ 1)
− 2f + 1

`+ 1
+

1
`
f − b+ 1

+
1

`
f − b+ 2

.

(28)

We take the first order derivative of Y2(b) with respect to b.
Since dY2(b)

db = −f
`(`+1) + 1

(`f−b+1)2
+ 1

(`f−b+2)2
is an increasing

function with respect to b, and −f
`(`+1) + 1

(`+1
f −1)2

+ 1
(`+1
f)2

>

−f
`(`+1) + 2

(`+1
f)2

= f
(
−(`+1)+2f`
`(`+1)2

)
> 0, for a given ` ≥ 3, the

function Y2(b) is at least Y2(2− 1
f). Since

Y2(2− 1

f
) =

`− 3.5f + 2

`(`+ 1)
− 2f + 1

`+ 1
+

1
`+1
f − 1

+
1
`+1
f

=Y1(2− 1

f
) > 0, [due to ` ≥ 5.]

we know that Y2(b) > 0 for any integer ` ≥ 5 and 2 − 1
f ≤

b < 1. Therefore, dbf
](`+1)
`+1 − dbf](`)

` > 0 for such a case.

With the above two cases, we can conclude that dbf](`)
` ≤

dbf](∞)
∞ = f

2 for any positive integer ` ≥ 5, which concludes
the proof.

13

	1 Introduction
	2 System Models and Preliminary Results
	2.1 Task and Platform Model
	2.2 Problem Definition
	2.3 Speedup Factors/Bounds

	3 Deadline-Monotonic Partitioning
	3.1 Fitting Strategy
	3.2 Schedulability Tests for DM
	3.3 Time Complexity and Correctness

	4 Analysis for Arbitrary-Deadline Systems
	4.1 Tightness Analysis

	5 Analysis for Constrained Deadlines
	5.1 Speedup Factor by Adopting TDA
	5.2 Speedup Factor by Hyperbolic Bound
	5.3 Tightness Analysis

	6 Concluding Remarks
	References

