
The ADAPT Tool:

From AADL Architectural Models to Stochastic Petri Nets
through Model Transformation

Ana-Elena Rugina, Karama Kanoun and Mohamed Kaâniche
LAAS-CNRS, University of Toulouse

7 avenue Colonel Roche
31077 Toulouse Cedex 4, France

Phone: +33(0)5 61 33 62 00, Fax: +33(0)5 61 33 64 11
e-mail: ana-elena.rugina@astrium.eads.net; {kanoun, kaaniche}@laas.fr

Abstract

ADAPT is a tool that aims at easing the task of
evaluating dependability measures in the context of
modern model driven engineering processes based on
AADL (Architecture Analysis and Design Language).
Hence, its input is an AADL architectural model
annotated with dependability-related information. Its
output is a dependability evaluation model in the form
of a Generalized Stochastic Petri Net (GSPN). The
latter can be processed by existing dependability
evaluation tools, to compute quantitative measures
such as reliability, availability, etc.. ADAPT interfaces
OSATE (the Open Source AADL Tool Environment) on
the AADL side and SURF-2, on the dependability
evaluation side. In addition, ADAPT provides the
GSPN in XML/XMI format, which represents a
gateway to other dependability evaluation tools, as the
processing techniques for XML files allow it to be
easily converted to a tool-specific GSPN.

1. Introduction

The increasing complexity of new-generation
systems raises major concerns in various critical
application domains, in particular with respect to the
validation and analysis of performance, timing and
dependability-related requirements. Model-driven
engineering (MDE) approaches aimed at mastering this
complexity during the development process have
emerged and are being increasingly used in industry.
They address the problem of complexity by promoting
reuse and partial or total automation of certain phases
of the development process. These engineering

approaches must be supported by languages and tools
that provide means to ensure that the implemented
system complies with its specifications. In particular,
the automatic derivation of models allowing the
analysis of quality attributes1 (such as dependability
and performance) from modeling languages used in
MDE is of primary interest.

The AADL (Architecture Analysis and Design
Language) is considered in a number of projects
aiming at defining and implementing tool support for
MDE. It has received a growing interest from the
embedded safety-critical industry (e.g., Honeywell,
Rockwell Collins, Lockheed Martin, the European
Space Agency, Astrium, Airbus) and has been
standardized in 2004 under the auspices of the
International Society of Automotive Engineers [1].
AADL provides a standardized textual and graphical
notation for describing software and hardware system
architectures and their functional interfaces. The
serious consideration of AADL by the embedded
safety-critical industry is justified by the AADL’s
advanced support for modeling reconfigurable
architectures and for analyzing quality attributes [2].

Several tools have been implemented so far in order
to support various analyses based on AADL models.
[3] reports the implementation of a tool that
automatically translates an AADL model into the real
time process algebra ACSR (Algebra of
Communicating Shared Resources), for schedulability
analysis. Schedulability and memory requirements can
be analyzed by simulation and feasibility tests with the
Cheddar tool [4]. The Open Source AADL Tool

1 Quality attributes are also referred to as non-functional properties

in the literature.

Environment (OSATE)2 supports resource allocation
analysis, while the Ocarina toolset3 allows searching
for deadlocks and un-initialized variables. As far as
quantitative dependability analyses are concerned, to
the best of our knowledge, the only tool reported in the
literature is a fault tree generator prototype, proprietary
of Honeywell [5]. It only targets reliability and safety
measures and is not well suited for obtaining other
dependability measures, such as availability, if the
components’ behaviors are not stochastically
independent. Our prototype tool ADAPT (from AADL
Architectural models to stochastic Petri nets through
model Transformation), which is presented in this
paper, aims at facilitating the evaluation of various
dependability measures (such as reliability and
availability) from AADL models. It is based on model
transformation rules, from AADL to Generalized
Stochastic Petri Nets (GSPNs). The use of GSPNs has
several advantages: (1) they can be automatically
converted into Markov chains that are very powerful in
capturing stochastic dependencies between
components and in the evaluation of dependability
measures, (2) they allow modular and hierarchical
modeling for component-based systems, similarly to
AADL, and (3) they provide means for structural
verification of the model. Such verification support
facilities are very useful when dealing with large
models. The AADL architectural model given as input
to ADAPT can be used unmodified for several
complementary analyses, such as those mentioned
above, which enables making tradeoffs during system
design with respect to various view points.

The remainder of this paper is structured as follows.
Section 2 gives a brief overview of AADL. Section 3 is
dedicated to the principles that guided the definition of
the model transformation rules from AADL to GSPN.
Section 4 presents ADAPT from the developer’s and
from the user’s perspective. Section 5 summarizes the
paper and presents perspectives for improving
ADAPT.

2. About AADL

In the AADL, systems are modeled as hierarchical
collections of interacting application components
(processes, threads, subprograms, data) and a set of
execution platform components (processors, memory,
buses, devices). The application components are bound
to the execution platform. Dynamic aspects of system
architectures are captured with the AADL operational
mode concept.

2 http://www.aadl.info/OpenSourceAADLToolEnvironment.html
3 http://ocarina.enst.fr

The analysis-related information is described
separately and then plugged into the architectural
model. In particular, the AADL Error Model Annex [6]
has been defined and standardized to complement the
AADL core language in support to describing
dependability-related information (such as faults, fault
propagation, repair, fault-tolerance strategies). The
AADL architectural model is annotated with error
model constructs in order to describe the behavior of
components and connections in the presence of faults.

An error model is a stochastic automaton declaring
states, events, propagations and transitions between
states. Transitions are triggered by events or
propagations, which are directional (in or out).
Events and propagations are characterized by
Occurrence properties (fixed probabilities or
distributions). An outgoing propagation of a
component is matched to an incoming propagation of
another component if the components are connected or
bound at the architectural level. When an error model
is associated with a component, it is possible to
customize it by setting component-specific values for
the occurrence for error events and error propagations
declared in the error model. It is also possible to filter
propagations by using Guard properties.

The behavior of the system is obtained by
composing the individual behaviors of components,
according to dependency rules specified in the AADL
Error Model Annex [6]. Such dependencies may result
for example from fault propagations between
components, or from functional of structural
interactions. The tool ADAPT traverses the AADL
architectural model to search for error models and uses
these dependency rules to establish correspondences
between out propagations of a particular component
and name-matching in propagations or Guard
properties of other components.

3. On the model transformation

ADAPT supports the modeling framework
published in [7]. This framework is formed of an
iterative modeling approach with modeling guidelines,
reusable patterns for fault-tolerant architectures and a
model transformation from AADL to GSPN that
allows obtaining dependability measures from the
AADL model. ADAPT implements the set of
transformation rules from AADL to GSPN presented
and formalized in [8]. The set of model transformation
rules has been designed to be automated. Also, the
definition of the rules favors the modularity of the
GSPN. Indeed, the resulting GSPN is structured as a
set of subnets: component subnets that model the
behavior of components in the presence of their own

faults and repair events, and dependency subnets that
model the dependencies.

We defined two sets of transformation rules. The
first set is devoted to the transformation of the AADL
models of the components, to create the component
subnets: the components' error models are processed
by taking into account their states and transitions,
triggered by events. The second set of rules is related
to the transformation of the dependencies between the
system components (i.e., functional, structural,
maintenance and fault-tolerance). To this end, we have
identified all AADL constructs necessary for
describing dependability-related dependencies, and we
have defined modeling rules for each type of
dependency. We have then defined transformation
rules for all these constructs. Thus, the resulting set of
rules is necessary and sufficient for obtaining a GSPN
describing all the identified types of dependencies.

Dependencies are usually described by name-
matching in - out propagations. In a first step, out
propagations are identified. Then, for each out
propagation, the AADL architectural model is
traversed in order to find in propagations in other
components that occur as effects of the out
propagation. The name-matching in - out
propagations are then transformed to obtain
dependency subnets.

The subsequent rules are devoted to transforming
propagation filtering and masking mechanisms (i.e.,
Guard_In and Guard_Out properties), mechanisms
for connecting error states to operational modes (i.e.,
Guard_Event and Guard_Transition
properties, activate/deactivate transitions)
and hierarchical models (i.e., abstract and
derived error models).

4. Overview of ADAPT

ADAPT interfaces the Open Source AADL Tool
Environment (OSATE4) on the AADL side and
SURF-2 [9] on the GSPN side. OSATE is the most
used AADL modeling tool. From a developer’s point
of view, OSATE provides useful methods for
traversing and processing the AADL architectural
model. In addition to OSATE, we also base our tool on
the set of plug-ins developed at the Carnegie Mellon
Software Engineering Institute that allow parsing the
Error Model Annex5 constructs.

4 http://www.aadl.info/OpenSourceAADLToolEnvironment.html
5 http://www.aadl.info/downloads/errormodel-1.1.6/osate-

errormodel-frontend-1.1.6-08142007.zip

4.1. A developer’s perspective

ADAPT is built in the Java programming language
on top of the Eclipse IDE6 (integrated development
environment). This implementation choice is due to the
fact that we interfaced our tool with OSATE. Other
implementation alternatives are recent metamodel-
based transformation languages such as ATL [10],
MOLA [11], MTL7 or GReAT [12]. Model
transformation techniques supported by them are
compared in [13]. ADAPT consists of 10 kilo lines of
code, half of which are automatically generated from
an Ecore8 metamodel using the Eclipse Modeling
Framework (EMF) [14]. EMF is a modeling
framework and code generation facility for building
tools and other applications based on a structured data
model. From a metamodel specification described in
XMI or Ecore, EMF provides tools and runtime
support to produce a set of Java classes for the model.
We have used this facility to automatically generate the
Java classes for handling GSPN elements (see Section
4.1.1).

Figure 1 presents an overview of ADAPT: its
structure and interfaces with AADL and GSPN tools
respectively. ADAPT is depicted in dark gray together
with its outputs. The AADL and GSPN tools it
interfaces are shown in light gray. The black dotted
arrows represent interactions of type “depends on”,
e.g., ADAPT depends on OSATE and the Error Model
Annex plug-ins.

ADAPT is structured as a set of three Eclipse plug-
ins:
1) gspnModel plug-in: contains methods for the

creation and handling of GSPN objects.
2) dependency plug-in: contains methods for

identifying the existence of dependencies in the
AADL model.

3) aadl2gspn plug-in: implements our transformation
rules. This is the main plug-in of ADAPT. It
depends on the methods implemented in the
dependency plug-in to handle the AADL model
and identify possible dependencies. It also
depends on the gspnModel plug-in to build the
GSPN.

The generated GSPN is saved in two forms: a
generic XML/XMI file and a tool-specific file
complying with the file format of the dependability
evaluation tool SURF-2. Both files are obtained from
the same GSPN object model, internal to ADAPT. The
tool-specific file may also be obtained directly from

6 http://www.eclipse.org/
7 http://modelware.inria.fr/article66.html
8 Ecore is a small and simplified subset of UML, used in the Eclipse

Modeling Framework.

the XML/XMI file. Possible interfaces with other
GSPN-based dependability evaluation tools are
represented with dashed arrows.

Figure 1. Overview of ADAPT

The three plug-ins forming our model
transformation tool are described successively in
subsections 4.1.1, 4.1.2 and 4.1.3.

4.1.1. gspnModel plug-in: Ecore metamodel. This
plug-in offers all the methods necessary for creating
and customizing GSPN elements (places, transitions
and arcs) and for traversing a GSPN model. The code
of this plug-in has been automatically generated from
an Ecore metamodel of GSPN using the EMF. The
GSPN built by ADAPT is compliant with this
metamodel. An XML/XMI schema is also generated
from the Ecore metamodel. ADAPT saves the GSPN
under XML/XMI format, which is compliant with this
schema.

Figure 2 shows the Ecore metamodel used by the
Eclipse Modeling Framework to generate the code.
PetriNet object contains several Arcs and several
PlaceOrTransition elements. Arcs are described by a
weight while PlaceOrTransition elements are
identified by names. Arcs and PlaceOrTransition
elements cannot be instantiated directly (they are
abstract). Concrete arcs of types PlaceToTransition
and TransitionToPlace can be instantiated and inherit

from the Arc elements. Place and Transition elements
inherit from the PlaceorTransition elements. A Place
is characterized by an initial marking. A Transition is
characterized by an Occurrence type and a parameter.
Associations are established between the
TransitionToPlace / PlaceToTransition arcs and Place
and Transition elements.

4.1.2. dependency plug-in. This plug-in is a library
of methods aimed at identifying possible dependencies
between components of the AADL model. The details
of this library are presented in [15]. From a practical
point of view, this plug-in implements the elementary
dependency rules specified by the AADL Error Model
Annex. They determine the possible dependencies
between error models associated with components and
connections, based on the various interactions in the
architectural model. Besides a few special cases, most
of the interactions fall into the three following
categories:
1) They may be due to the fact that application

components run on top of platform components.
For example, out propagations declared in an error
model associated with a processor are visible in all
threads bound to that processor.

2) They may be due to the fact that application
components interact through connections, accesses
to shared data and calls to services provided by
other components. For example, out propagations
declared in an error model associated with a
component can impact all components reachable
through connections.

3) They may be due to the fact that platform
components are connected to each other through
shared access to buses. For example, out
propagations declared in an error model associated
with a bus arrive to all components accessing the
bus.

The methods implemented in this plug-in allow
identifying receiver and sender components or
connections for a given error propagation declared in
an error model associated with a component or a
connection of the system instance. Once the
dependencies are identified, the aadl2gspn plug-in
takes over to perform the model transformation.

Figure 2. Ecore metamodel for GSPN

4.1.3. aadl2gspn plug-in. This is the main plug-in
of our tool. It performs the transformation of error
model elements into GSPN elements, according to the
rules presented in [8]. It implements a metamodel-
based transformation. It uses the metamodels of the
AADL [16] and of the AADL Error Model Annex [17]
as a source and of the GSPN as a target.

The transformation is performed iteratively. First,
the model transformation rules for independent
components are applied. Then possible dependencies
are identified and the transformation rules for
dependencies are applied.

4.2. A user’s perspective

An OSATE user installs ADAPT as an Eclipse
feature and a set of plug-ins. ADAPT requires that the
Error Model Annex support plug-ins, provided by the
Carnegie Mellon Software Engineering Institute, be
installed too. In order to run the AADL to GSPN
transformation tool, the user must instantiate an AADL
system model, and select the resulting system instance.
The system instance must have an associated
Derived_State_Mapping expression that we use
to derive the state partitions necessary to the
dependability evaluation tool, to evaluate measures. A
Derived_State_Mapping expression represents
the behavior of a component in the presence of faults
in terms of global states as a logic expression of the
states of its subcomponents.

The Derived_State_Mapping expression
associated with the system instance must explicitly
define the Failed global state of the system instance as
a Boolean expression of states of its components. If

safety is among the targeted measures, a Catastrophic
global state must also be defined.

The ultimate goal is to obtain quantitative
dependability measures. Thus, ADAPT requires that all
events and propagations have Occurrence properties
(fixed probabilities or Poisson distributions). If an
event or a propagation does not have an Occurrence
property specified, ADAPT assumes it is immediate of
probability 1.

The GSPN obtained after transformation is saved in
two files with different formats:
- a generic XML/XMI file, which is a gateway for

interfacing other dependability evaluation tools
with a minimum amount of effort.

- a tool-specific file that can be imported in the
dependability evaluation tool SURF-2. SURF-2
allows the user to customize the model by giving
particular values or value ranges to model
parameters corresponding to symbolic Occurrence
properties coming from the AADL model. The
user is also required to define rewards and the
measures of interest.

5. Summary and future work

This paper presented ADAPT, a model
transformation tool whose input is an AADL
architectural model annotated with dependability-
related information and whose output is a
dependability evaluation model in the form of a GSPN.
The tool interfaces OSATE on the AADL side and
SURF-2 on the dependability evaluation side. Also, it
can be easily interfaced with other GSPN-based
dependability evaluation tools as it generates a GSPN

in a generic XML/XMI format. It is noteworthy that
ADAPT is available upon request as open-source, so
that it can be reused for further AADL-related
developments.

ADAPT is built as a set of plug-ins on top of the
Eclipse platform. In the current prototype, all
transformation rules presented in [8] are implemented,
except for the rules for activate/deactivate
transitions and derived error models. As a
consequence, it is assumed that the behavior of the
system in the presence of faults is identical in all
operational modes. Future work includes the
implementation of the remaining rules.

We have used the current ADAPT prototype to
transform the AADL dependability model of a
subsystem of the French Air Traffic Control System
including two hardware components sharing a
repairman, a fault-tolerant software unit and eight
dependencies of several types.

Finally, it is worth to mention that PNML (Petri Net
Markup Language) [18] is intended to become an
extensible interchange standard for Petri nets. Our
work can be easily extended by using the PNML
instead of the rather simple meta model for GSPN
illustrated in Figure 2.

Acknowledgements. This work is partially supported
by 1) the European Commission (ReSIST Network of
Excellence No. IST 026764), 2) the European Social
Fund and 3) Zonta International Foundation.

6. References

[1] SAE-AS5506, "SAE Architecture Analysis and Design
Language (AADL)," International Society of Automotive
Engineers, Warrendale, PA, USA November 2004.
[2] J.-P. Blanquart, A. Rossignol, and D. Thomas, "Toward
Model-Based Engineering for Space Embedded Systems and
Software," presented at 3rd European Congress on
Embedded Real Time Software, Toulouse, France, 2006.
[3] O. Sokolsky, I. Lee, and D. Clarke, "Schedulability
Analysis of AADL Models," presented at 20th Parallel and
Distributed Processing Symposium, Rhodes Island, Greece,
2006.
[4] F. Singhoff, J. Legrand, L. Nana, and L. Marcé,
"Scheduling and Memory Requirements Analysis with
AADL," presented at SIGAda Int. Conf. on Ada, Atlanta,
GE, USA, 2005.
[5] A. Joshi, S. Vestal, and P. Binns, "Automatic Generation
of Static Fault Trees from AADL Models," presented at
Workshop on Architecting Dependable Systems of The 37th
Annual IEEE/IFIP Int. Conference on Dependable Systems
and Networks, Edinburgh, UK, 2007.
[6] SAE-AS5506/1, "SAE Architecture Analysis and Design
Language (AADL) Annex Volume 1, Annex E: Error Model

Annex," International Society of Automotive Engineers,
Warrendale, PA, USA June 2006.
[7] A. E. Rugina, K. Kanoun, and M. Kaâniche, "A System
Dependabiliy Modeling Framework using AADL and
GSPNs," in Architecting Dependable Systems IV, vol. 4615,
LNCS, R. de Lemos, C. Gacek, and A. Romanovsky, Eds.:
Springer-Verlag, 2007, pp. 14-38.
[8] A. E. Rugina, "Dependability Modeling and Evaluation -
From AADL to Stochastic Petri Nets," in Systèmes
Informatiques. Toulouse: PhD dissertation, Institut National
Polytechnique de Toulouse, November 2007, pp. 151.
[9] C. Béounes, M. Aguéra, J. Arlat, S. Bachmann, C.
Bourdeau, J.-E. Doucet, K. Kanoun, J.-C. Laprie, S. Metge,
J. M. d. Souza, D. Powell, and P. Speisser, "Surf-2: a
program for dependability evaluation of complex hardware
and software systems," presented at 23rd IEEE Int.
Symposium on Fault Tolerant Computing, Toulouse, France,
1993.
[10] F. Jouault and I. Kurtev, "Transforming Models with
ATL," presented at Model Transformaion in Practice
Workshop at ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Montego Bay,
Jamaica, 2005.
[11] A. Kalnins, J. Barzdins, and E. Celms, "Model
Transformation Language MOLA," in Model Diven
Architecture, vol. 3599/2005, LNCS, U. Asmann, M. Aksit,
and A. Rensink, Eds.: Springer, 2005, pp. 62-76.
[12] A. Agrawal, G. Karsai, and F. Shi, "Graph
Transformations on Domain-Specific Models," Institute for
Software Integrated Systems, Vanderbilt University,
Nashville, Technical Report 2003.
[13] K. Czarnecki and S. Helsen, "Classification of Model
Transformation Approaches," presented at Workshop on
Generative Techniques in the Context of Model-Driven
Architecture of ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Anaheim, CA, USA, 2003.
[14] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and
T. Grose, Eclipse Modeling Framework: Addison-Wesley,
2004.
[15] M. Bruffa and A. E. Rugina, "A Library Implementing
Propagation Rules defined in the AADL Error Model Annex
" LAAS-CNRS, Toulouse 07001, February 2007.
[16] SAE-AS5506/1, "SAE Architecture Analysis and
Design Language (AADL) Annex Volume 1, Annex C:
AADL Meta-Model and Interchange Formats," International
Society of Automotive Engineers, Warrendale, PA, USA
June 2006.
[17] P. H. Feiler, "Error Model Meta Model and Plug-in,"
Pittsburgh, PA, USA May 2007,
http://la.sei.cmu.edu/aadl/downloads/errormodel-
1.1.6/ErrorModelPlugin52007.pdf.
[18] ISO/IEC, "Software and Systems Engineering - High-
level Petri Nets, Part 2: Transfer Format," International
Standard 15909-2 WD Version 0.9.0 June 2005.

