N

N

Automated Evaluation of Network Intrusion Detection
Systems in IaaS Clouds
Thibaut Probst, Eric Alata, Mohamed Kaaniche, Vincent Nicomette

» To cite this version:

Thibaut Probst, Eric Alata, Mohamed Ka&niche, Vincent Nicomette. Automated Evaluation of Net-
work Intrusion Detection Systems in IaaS Clouds. 11th European Dependable Computing Conference
(EDCC 2015), Sep 2015, Paris, France. hal-01212064

HAL Id: hal-01212064
https://hal.science/hal-01212064
Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01212064
https://hal.archives-ouvertes.fr

Automated Evaluation of Network Intrusion
Detection Systems in [aaS Clouds

T. Probst!?, E. Alata', M. Kaéniche'**, V. Nicomette'-3
ICNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, INP de Toulouse, LAAS F-31400 Toulouse, France

3Univ de Toulouse, INSA de Toulouse, LAAS F-31400 Toulouse, France
4Univ de Toulouse, LAAS, LAAS F-31400 Toulouse, France
{probst,ealata,kaaniche,nicomett} @laas.fr

Abstract—This paper describes an approach for the auto-
mated security evaluation of operational Network Intrusion De-
tection Systems (NIDS) in Infrastructure as a Service (IaaS) cloud
computing environments. Our objective is to provide automated
and experimental methods to execute attack campaigns and
analyze NIDS reactions, in order to highlight the ability of the
NIDS to protect clients’ virtual infrastructures and find potential
weaknesses in their placement and configuration. To do so, we
designed a three-phase approach. It is composed of the cloning
of the target client’s infrastructure to perform the subsequent
audit operations on a clone, followed by the analysis of network
access controls to determine the network accessibilities in the
cloned infrastructure. Using evaluation traffic we modeled and
generated, the last phase of the approach, presented in this paper,
focuses on executing attack campaigns following an optimized
algorithm. The NIDS alerts are analyzed and evaluation metrics
are computed. Our approach is sustained by a prototype and
experiments carried out on a VMware-based cloud platform.

Keywords—security, evaluation, attacks, cloud, NIDS.

I. INTRODUCTION

In cloud computing environments, providers offer various
resources as services, including infrastructures, platforms and
applications. These services are subscribed by clients willing to
reduce the deployment and operation costs of their traditional
on-premise business. The IaaS cloud service model allows the
creation and management of entire virtualized infrastructures,
bringing together virtual datacenters (vDCs) hosting virtual
machines (VMs), networks and storage. In addition, network
security mechanisms are deployed to protect the data hosted on
virtualized infrastructures from network attacks. Firewalls are
responsible for packet filtering to control the network access.
On the other hand, NIDS are in charge of detecting attacks
occurring on communication paths.

The objective of security administrators (either on the
provider side or the client side) is to prevent and detect
attacks, while not disturbing the rest of the cloud com-
puting environment (for example, avoid the consumption of
too much resources by the security mechanisms). Making
firewalls and NIDS work efficiently is not an easy task.
Indeed, the deployed products have to be kept constantly up-
to-date, properly configured, and correctly positioned in the
network. In addition, cloud environments constantly evolve
over time. Existing clients may add or remove VM instances
and networks, or modify configurations in their vDCs; new
clients subscribe to services and create new infrastructures;

providers also administrate and modify some components in
the cloud. This dynamicity could have negative impacts on the
cloud security. Therefore, it is important for the client and the
provider to monitor and analyze at a regular basis the security
level of cloud infrastructures, in order to adapt and improve
the deployment of the security tools.

Our goal is to be able to highlight the aforementioned
issues by conducting automated evaluations of cloud network
security mechanisms. These evaluations would aim at analyz-
ing network access controls within a given client’s virtual in-
frastructure, and also assessing NIDS efficiency in monitoring
and protecting this infrastructure. Because we want to conduct
exprimentally-driven audits but cannot afford to disturb the
target client’s business, we chose to perform the audits using
a clone of the client’s infrastructure. However, we chose not to
copy the client’s VM instances into the cloned infrastructure
for the following reasons: 1) we want to preserve the client’s
privacy; 2) we are not interested in assessing the VMs security
but the network security; 3) we need to handle the VMs
to perform network audit operations. Instead, only the entire
network configuration and firewalls of the initial infrastructure
are cloned, and the initial VMs are replaced with customized
ones, imported from a template we built and thus provided with
the necessary audit tools. The imported VMs are provided with
the same network configuration as the original ones. Next, we
decided to perform the analysis of network access controls
before the evaluation of NIDS. Indeed, we need to know
the network communication paths, so-called accessibilities, in
order to execute attack campaigns on these paths to assess
the NIDS reaction. The network accessibility analysis is done
both statically, by parsing the cloud components configuration
and using the retrieved information in a logic engine; and
dynamically, by sending network packets. The results offered
by both methods can be compared to look for discrepancies in
the configuration and implementation of access controls. This
work has already been presented in [?]. This paper focuses on
the generation and execution of attack campaigns for NIDS
assessments using the network accessibilities. Hence, our main
contribution, presented in this paper, is an experimental method
to perform automated network attack campaigns in cloud
environments with different possible parameters, and monitor
the NIDS reaction. As an outcome, we are able to generate
traditional evaluation metrics and highlight potential weak-
nesses in NIDS deployments. Moreover, the cloning followed
by the analysis of access controls and the evaluation of NIDS
constitute a three-phase audit approach. We leverage cloud

Preparation of infrastructure

Analysis of network access controls

Evaluation of NIDS

Client’s information
nfrastructure
cloning

Attack dictionary
|User defmed acce55|blllt|es| :i
o <
analysis acceSS|b|I|t|es
Cloned Analy5|s of S
infrastructure Dynamic Observed discrepancies _® S
analy5|s acceSS|b|I|t|es

NIDS
alerts
Computation
of metrics

. Execution of Attacks
attack campaigns results
Report

| Client’s infrastructure |

Fig. 1: Overall process of the three-phase approach

benefits to perform quicker and deeper audits, and to make
the process fully automated.

The rest of the paper is organised as follows. Section II
gives an overview of our three-phase approach. Section III
presents how we model, generate and use the evaluation traffic
utilized in the attack campaigns execution, presented in Section
IV. Section V presents a VMware-based testbed environment
used to validate our approach, along with the experimental
results. Section VI discusses related work. Finally, conclusion
and future work are provided.

II. OVERVIEW OF THE APPROACH

In this section, we recap the main assumptions we consider
in our approach, and then we explain its principles.

A. Main assumptions

1) Target environment: Our approach focuses on the virtual
infrastructure level, that is why the considered cloud service
model is TaaS. A virtual infrastructure is defined as a set of
vDCs, where a vDC includes VMs, networks, and firewalls.

We assume that the firewalls apply stateful packet inspec-
tion, and we consider two different types of virtual firewalls
commonly found in the cloud:

e Edge firewall: gateway for client’s virtual networks that
routes, filters and translates inbound or outbound traffic.
It is generally controlled by the client.

e Hypervisor-based firewall: introspects the traffic sent and
received by VMs disregarding the network topology. It
is generally controlled by the provider. However, some
rules can be configured by the clients on their network
scopes, which can give them a partial control on it.

As for the NIDS, even if some approaches ([?], [?]) already
suggested a concept of IDS as a service offered to the clients,
we assume that the NIDS are deployed and controlled by the
provider, in charge of detecting the attacks run from, to, and
within the clients’ networks. We also assume that NIDS apply
signature-based detection techniques.

2) Use cases: Our system is designed to evaluate network
security of small-sized to medium-sized virtualized infrastruc-
tures (< 50 VMs). The security analysis should not disturb the
client’s business. Also, it is intended to be fully automated (it
requires the minimum of human intervention), and the related
audit operations are run on behalf of the provider, therefore
using administrator privileges on the cloud components. More-
over, provided results correspond to the state of the system at
the time when the audit is run. This paper focuses mainly

(%l\

Evaluallon Analyse des
------ controles ------

des NIDS
d acces reseau

Fournisseur

Auditeur

Fig. 2: Use cases of the system

on the approach itself, and we do not constrain the usage
of the audit system to specific actors. Indeed, it depends on
the Service Level Agreement (SLA) between the provider and
its clients. However, considering three possible actors (client,
provider and auditor), we recommend to use the features of our
system as shown in Figure 2. The client can ask for an analysis
of network access controls of its infrastructure (which entails
the cloning of it). The provider can conduct an evaluation
of NIDS towards a client’s infrastructure (which requires an
analysis of network access controls, and thus a cloning). As
a third-party actor, the auditor can require an evaluation of
NIDS, as well as an analysis of network access towards any
client’s infrastructure.

3) Compliance: We believe that our approach helps imple-
menting the Cloud Security Alliance (CSA) recommendations
in terms of security assessments [?]. Among the topics ad-
dressed in this document, our approach provides assistance in
the following areas :

Network and System Vulnerability Assessments.
Network/Security System Compliance Assessments.
Virtual Infrastructure Assessment.

Web Application Security Assessments.
Internal/External penetration testing.

Security Controls Assessments.

B. Principles

Our approach is a three-phase approach, illustrated in
Figure 1. Even if this paper focuses on the last phase, we
sum up the first two phases, preliminary to the last one.

The first phase consists in cloning the client’s virtual
infrastructure so the client’s privacy is preserved, i.e., its
production instances are not accessed, used and disturbed in
the following steps. Nevertheless, for the reasons developed
in the Introduction, we do not copy the initial VMs instances
into the cloned infrastructure. Instead, VMs are imported from

a predefined template!. They are placed in the same network
location and with the same network configuration as copies of
the initial ones would be. The newly created VMs are equipped
with our audit tools and ready to run attack campaigns as
explained further on. Note that whereas it is aimed at copying
a client’s infrastructure, the creation of a cloned infrastructure
can also be assimilated to the arrival of a new laaS client in
the cloud. It can be summarized as follows:

1) Fetch the necessary configuration information from the
client’s vDCs: IP addressing, network connections, fire-
walls configuration, etc.

2) From the fetched configuration information, create new
vDCs ready to host new networks, firewalls and VMs.

3) From the fetched configuration information, create new
networks and firewalls in the newly created vDCs.

4) From the fetched configuration information and our tem-
plate, create new VMs in the newly created vDCs.

The second phase analyzes network access controls statically
and dynamically to generate a security analysis report contain-
ing the end-to-end network accessibilities (between the VMs,
and between the VMs and external networks) found by both
methods. This phase has been presented in [?]. The static
analysis parses the cloud configuration (VMs, networks and
firewalls configuration), and translates this information into
predicates. These predicates are used in an optimized logic
engine running an algorithm able to determine the config-
ured network accessibilities. The dynamic analysis consists
in sending network packets between the VMs, following an
algorithm that performs as many network exchanges in parallel
as possible, to be as fast as possible, in order to determine the
observed network accessibilities. The accessibilities found by
both methods are compared with each other, and also with the
user-defined accessibilities to identify potential discrepancies
in the results. The network accessibilities are essential because
they are used in the third and last phase, which consists in
performing attack campaigns. Indeed, no network attack would
be possible on a blocked path, that is why we need to know
the accessibilities.

The last phase deals with the evaluation of NIDS by
executing attack campaigns over the virtual infrastructure
protected by the NIDS. The associated algorithm uses three
main elements:

e The network accessibitilies as an accessibility matrix:
the allowed communication paths derived from dynamic
analyis of network access controls. We chose results from
dynamic rather than static analysis as they are ascertained
from packets sendings, which is more foolproof and
reveals the actual network reachability.

e An attack dictionary: a database containing necessary
information about the attacks.

e A data set of malicious and legitimate evaluation traffic,
with tools to replay this traffic.

After the execution of the attacks, the NIDS alerts are analyzed
to compute evaluation metrics. As it is the core contribution
of this paper, this phase is developed in details in the next
sections.

The template used in our prototype is detailed at the end of Section V-A.

III. EVALUATION TRAFFIC MODEL

Assessing the efficiency of NIDS deployed in the cloud im-
plies executing network attack campaigns that involves sending
specific network evaluation traffic. Model-based approaches
are well suited to automate this process. We chose to model
this evaluation traffic (malicious and legitimate) with a certain
level of abstraction, representing it as a set of automata. This
abstraction is helpful to conviniently: 1) generate the automata
in an offline stage, prior to the carrying out of the audit process
and execution of attack campaigns; 2) replay them easily in a
different context during the attack campaigns.

A. Modeling of traffic as automata

A traffic is defined as a sequence of network packets
exchanged, being either malicious or legitimate. To conduct
attack campaigns as explained later on, we plan to send ma-
licious and legitimate traffic targeting vulnerable applications.
Therefore, the VMs in the cloned infrastructure have to be able
to send and receive this traffic. Several challenges arise. First,
we cannot surmise what applications might be deployed any
time in the virtual infrastructures. Thus, we cannot surmise
what kind of attacks might be executed and so which have
to be covered by the NIDS. Hence, we need a solution to
model any evaluation traffic for any application. Another issue
we faced is that many targeted applications are Windows-
based, which would require a Windows license for every
VM hosting those applications. Furthermore, one cannot run
several applications listening on the same network port at the
same time. Thus, the whole process of acquiring, installing,
starting and stopping applications is expensive, tedious and
hard to automate. Instead, we decided to model and replay
some network behaviors of applications, in order to be able to
respond to the exploits requests without installing and running
the real applications. We are not interested in modelling com-
plete automata representing entire specifications of network
protocols. Indeed, we only model and replay some network
flows: the malicious utilization of the application, along with
some legitimate usages of it.

So far, we only considered application-based network at-
tacks, running above TCP or UDP. We model the network
exchanges between the attacking host and the target application
as a finite-state automaton, where each state is represented as
a sextuple including:

e The direction of the packet: received or sent by the
application.

The protocol: TCP or UDP.

The port number.

The identifier of the application.

The TCP or UDP payload.

Pointers to the child states.

The initial state of the automaton has empty values. Figure 3
shows an example of an automaton representing the network
behavior of a FTP server application with two usages: a
malicious one (in red) and a legitimate one (in green). The
automaton actually merges two automata : the malicious one
and the legitimate one. They could be merged because they
are related to the same application, so the identical states
(generally the first ones) are combined, as we can see on
the figure, where the two behaviors share several states before

Protocol
Port
Identifier
Payload

21 \ ,' Tcp \\J
[P \

24875
USER user,

Sent .
{ 21 Tce \ 21
4 - 21 |
24875
PASS user,

24875
331 User login O,
waiting for
password,

220 CesarfTP
0.99g Server
Welcome |

Received
TCP
21
24875
Quit

Received
TCp
21
24875

Fig. 3: Example of automaton modelling network exchanges of a legitimate (in green)
and a malicious (in red) usage of a FTP application

splitting up. The shared states are related to the login to the
FTP server, and the next legitimate states are basic legitimate
FTP commands, whereas the malicious state corresponds to a
command buffer overflow.

B. Generating the automata

Although it requires a human effort, the process of gener-
ating an automaton remains much less tedious than deploying
applications on the fly, as it has to be done once and for
all. To generate a set of automata, we set up a quite simple
platform with two VMs directly connected. The target VM
hosts the vulnerable applications and captures the network
traffic, while the attacker VM is responsible for generating
the requests to the application. The target is either a Windows-
based VM or a Linux-based VM (depending on the application
to model) running Wireshark [?] to capture network traffic.
The attacker is a Linux-based VM, running Metasploit [?] and
some command-line programs to generate network requests:

e wget and curl as HTTP clients.
e ftp as FTP client.
e telnet as SMTP and IMAP client.

We use Shell scripts to generate several requests (done by
wget or curl) for non interactive network protocols like
HTTP. On the other hand, for interactive ones like FTP, SMTP
or IMAP, we use autoexpect [?] to record the interactive
sessions (conducted using ftp or telnet) and generate
associated Expect scripts. The generation process is quite easy:

1) Install the application on the target and launch it.

2) Run Wireshark on the target and filter the capture.

3) Execute the exploit using Metasploit on the attacker.

4) Save the Wireshark capture file and use it to generate a
pickle file automaton with our Python generation tool.

5) Execute the legitimate scripts on the attacker.

6) Save the Wireshark capture file and use it to generate a
pickle file automaton with our Python generation tool.

Figure 4 illustrates the process of generating automata on
our platform. The Python generation tool reads packets in
the PCAP files using the Scapy [?] Python API, and creates
automata as Python lists. These lists are saved as pickle files
that could be easily loaded and merged as shown in the
example of Figure 3.

C. Replaying the automata

Our goal is to get rid of the installation and configuration
of the initial vulnerable application by replaying attacks and

metasploit —
v S 3 Client — Vulnerable
Y programs %application
Requests /
N P I | Target VM
= Responses §,
Attacker
VM

h

OPOPOPO —
Automaton

generator pickle file

PCAP file

Fig. 4: Automata generation process

legitimate usages we already performed in the generation
process. To do so, we designed a second Python tool (called
the automata player), very lightweight and easily executable in
any VM, which listens for incoming network packets to send
the appropriate responses, according to the automata it loaded.
Thus, we allow the exploit programs to send as many network
requests as they did during the generation process, and as they
would if targeting the real applications.

The automata player tool first reads the pickle files and
loads the automata of the application, stored in the pickle files.
Then it creates two threads:

e The first one creates a TCP socket to listen for incoming
connections, and spawns a new thread everytime a new
TCP connection is initiated. Those threads listen for
incoming packets within their connection.

e The second one listens for incoming UDP packets.

The principle of response selection, applied upon the arrival
of a request by calling the select_responses() function, is
illustrated in Algorithm 1. The current state of the automaton
is initialized to the initial state, and updated during the exe-
cution of the algorithm. Given a received payload, the goal
is to match this received payload with the closest one from
the current state or initial state of the automaton (function
find_payload()), and to look for the next response to send
(function find_next_payload()). Note that the research of the
closest payload in the automata is performed on the child states
of the current state so that we can follow the packet exchanges.
It is also performed on the child states of the initial state so that
we can react to a new usage of the application. Therefore, we
do not need to reload the automata every time a new behavior
(legitimate or malicious) of an application is requested.

A received payload is delivered by a socket, and could
come from one UDP packet, or several TCP packets. Indeed,
the payload can be split over several packets in the case of
TCP. Unlike a message-oriented protocol like UDP, TCP is a

Algorithm 1 Selection of responses

Require: initial_state_automaton: pointer to the initial state of the loaded automaton.
Require: current_state_automaton: pointer to the current state of the loaded automaton, initialized to the initial state.
1: function PAYLOAD_MATCH(state, previous_match_score, payloadl, payload?2)

2: return (levenshtein(payloadl, payload2) > previous_match_score 7 levenshtein(payloadl, payload2) : False)
3: end function

4: function FIND_PAYLOAD(state, payload, previous_match_score, tcp)

5: score « previous_match_score

6: for s € state[”child_states”] do

7 if s["received’] and s[”’proto”] == tcp then

8 concat_payloads + s[’ payload”]

9: last_state < s

10: if s["proto”] then (last_state, concat_payloads) < concat_tcp_payloads(s, concat_payloads) end if
11: match_score < payload_match(score, concat_payloads, payload)

12: if match_score then

13: score < match_score

14: current_state_automaton < last_state

15: end if

16: else

17: score + find_payload(s, payload, score, tep)

18: end if

19: end for

20: return score

21: end function

22: function FIND_NEXT_PAYLOAD_TO_SEND(state, previous_selected_payload, tcp)

23: payload_to_send < previous_selected_payload

24: for s € state[”child_states”] do

25: if s["proto”] == tcp and ! s["received”] then

26: payload_to_send < s[”payload”]

27: current_state_automaton < s

28: else if ! s["proto”] == tcp then

29: payload_to_send < find_next_payload(s, payload_to_send, tcp)
30: end if

31: end for

32: return payload_to_send

33: end function
34: function SELECT_RESPONSES(received_payload, tcp)

35: score <+ 0 ; responses <+ () ; next_payload < "”

36: score <+ find_payload(current_state_automaton, received_payload, score, tep)

37: score < find_payload(initial_state_automaton, received_payload, score, tcp)

38: if | automaton_finished(current_state_automaton) then

39: next_payload < find_next_payload_to_send(current_state_automaton, next_payload, tcp)
40: while next_payload do

41: responses < responses U next_payload

42: next_payload ="

43: if | automaton_finished(current_state_automaton) then

44: next_payload + find_next_payload_to_send(current_state_automaton, next_payload, tcp)
45: end if

46: end while

47: end if

48: return responses

49: end function

byte-oriented protocol that does not respect the initial payload
message boundary and can fragment it in several packets.
Thus, we considered two cases for selecting a response upon
receiving a payload.

In the case of UDP, the received payload is compared with
the payload of the child states of the current state, and also with
the payload of the child states of the initial state. Then, from

the state containing the matched payload, the next contiguous
payloads of the same protocol (UDP) and sent in the opposite
direction (packet sent by the application) are selected and sent
as a response in UDP packets.

In the case of TCP, as long as the direction is the same
(packet received by the application), the contiguous payloads
of the child states of the current state and those of the initial

state are concateneted and compared with the received payload.
Then, from the state containing the last matched concateneted
payload, the next contiguous payloads of the same protocol
(TCP) and sent in the opposite direction (packet sent by the
application) are selected and sent as a response in a TCP flow.

Eventually, once a TCP or UDP response is sent, the cur-
rent state of the automaton is updated to the state containing the
last payload sent, and the automaton is checked to know if it
has reached its final state. Note that we used an implementation
[?] of the Levenshtein distance to compare the payloads.

In addition to be portable and command-line oriented, we
believe that the implemented automata player tool is adequate
for our needs. A string metric algorithm (like the Levenshtein
distance) is sufficient to identify the payloads even if some
elements of the received payload vary in the matched payload
(i.e., the similarity is not perfect). As for binary protocols, the
string metric algorithm applied to binary data payloads gives
a fairly good performance from what we experimented. The
recognition of the payload is quite simple given the restricted
number of states in the automata, as we do not model entire
network protocols. Also, from those we studied, the exploit
codes do not perform a strong response analysis, that is why
we do not conduct an analysis and modification of the payloads
sent as responses according to the context of the execution.
As for the NIDS, the signatures are generally triggered by the
requests. Besides, even in the cases where the responses raised
the alerts, we observed that variable parameters (timestamps,
IP addresses, hostnames, versions, etc.) in the responses do not
affect the way to trigger the alerts. This is actually coherent
as signatures cannot depend on the context.

IV. ATTACK CAMPAIGNS

This section presents our method to execute attack cam-
paigns within the virtual infrastructure in an automated fashion.
We first introduce the attack dictionary used in the algorithm
presented subsequently. Then, we explain how IDS evaluation
metrics are computed following the execution of attacks.

A. Attack dictionary

We needed an attack dictionary to store the necessary
information about the attacks we are able to launch. An attack
is characterized by the exploit used, its date, the targeted
vulnerability, the associated network protocol and port, and
its description. Thus, we implemented the attack dictionary
as a simple SQLite database with one table, defined in by
the attributes of Table I. To fill the data into the dictionary,
we requested the free Exploit Database [?] website which
allows us to get all the information we needed, sometimes
along with the vulnerable application itself. The automata
field is the only field we update manually after the generation
of automata associated to the application (cf. Section III). Note
that exploit_id is used to name the automata (the pickle files).

B. Attack sessions

An attack campaign consists of a set of attack sessions.
An attack session is the set of attacks executable between
two hosts. An attack is the execution of an exploit from a
host targeting another host on a given protocol and port. It is
feasible if there is an accessibility between the two hosts on the

given port, and if the exploit and the automaton are available.
Attack sessions are accessibility-driven, so no attacks are
launched if the network does not allow them, which regulates
the total execution time of attack sessions. A standard attack
is an attack occurring on a port the vulnerable application is
generally supposed to run, for instance a Web attack targeting
a Web server on port 80. A non-standard attack is an attack
occurring on a port the vulnerable application is generally not
supposed to run, for instance a Web attack targeting a Web
server on port 67.

Different strategies of attack campaigns can be considered,
by defining the proportion of standard and non-standard attacks
executed on the accessibilities found. Thus, the current proto-
type provides three attack modes for the execution of standard
attacks or non-standard attacks:

e Launch all the available standard/non-standard attacks per
accessibility.

e Launch the R most recent available standard/non-standard
attacks per accessibility.

e Launch R randomly chosen available standard/non-
standard attacks per accessibility.

An attack session between two VMs (controlled by the hyper-
visor API) is performed by running, for each accessibility and
following the attack modes, the standard and non standard at-
tacks, as well as the legitimate scripts, between the attacker and
the target. The VMs are synchronized : when the attacker VM
is ready to execute an exploit or execute legitimate scripts, the
automata player is launched to load the associated automata.
The attacker runs a Ruby script in charge of: 1) looking in
the attack dictionary for the exploits to execute according to
the protocol, port and the attack modes; 2) waiting for signals
before executing each exploit with Metasploit; 3) notifying
when each exploit is done. The hypervisor API allows us to
launch the programs embedded inside the VMs, and retrieve
the results of the attacks: the completed exploits (where the
automaton reached its final state).

C. Attack campaign algorithm

The attack campaign algorithm, illustrated in Algorithm 2,
consists in running as many attack sessions (i.e., execute the
run_attacks() function for each accessibility of the session)
in parallel as possible, while respecting some constraints so
as not to compromise the correct execution of the attacks.
Indeed, a VM can be part of only one attack session at the
same time (i.e., attacker or target of the session), otherwise the
embedded tools would overlap and disturb one another. To do
so, threads are spawned to continuously parse the accessibility
matrix (set of all the accessibilities) and look for available
attack sessions (at least one accessibility between two VMs).
‘When an attack session is found, if the VMs are available, the

Name Type Description

exploit_id Integer Identifier of the exploit

cve String Identifier of the vulnerability
proto String Associated network protocol
port Integer Associated network port

date Date Date of the exploit

description | String Description of the vulnerability
automata Boolean Indicates if automata are available

TABLE I: Attributes of the attack dictionary

Algorithm 2 Attack campaigns execution

Require: AM: the accessibility matrix.

Require: nb_sessions: the total number of attack sessions according to the accessibility matrix.
Require: attack_modes: the attack modes for standard and non-standard attacks.

Require:

sessions: shared variable to record the done sessions and the sessions in progess, initialized to §.

Require: S: shared binary semaphore manipulated with traditional P() and V() operations, initialized to 1.

1: still_sessions < True
2: while still_sessions do

3: still_sessions < False

4: P (S)

5: if sessions.length == nb_sessions then still_sessions < True end if
6: V(S)

7: n <0

8: for attacker € AM.keys() do

9: for target € AM [attacker].keys() do

10: for ip € AM|attacker][target].keys() do

11: session_available = False

12: for proto € AM attacker|[target][ip].keys() do

13: if AM |attacker][target][ip][proto] then

14: session_available < True ; n+ n+1

15: end if

16: end for

17: if session_available then

18: P(S)

19: for s € sessions do

20: if s["n”] # n or (s[”in_progr”] and ((attacker or target) € (s[”attacker”] or s[’target”])) then
21: session_available < False

22: end if

23: end for

24: if session_available then

25: sessions < sessions U {"num” : n,” attacker” : attacker, "target” : target}
26: V(S)

27: for proto € AM [attacker|[target][ip].keys() do

28: for port € AMlattacker][target][ip][proto] do

29: run_attacks(attacker, target, proto, port, attack_modes)
30: end for

31: end for

32: P(S)

33: for s € sessions do

34: if s["n”] == n then s[”in_progr”] + False end if
35: end for

36: V(S)

37: else

38: V(S)

39: end if

40: end if

41: end for

42: end for

43: end for

44: end while

session is executed following the attack modes provided. If the
VMs are already busy, it looks for another attack session to
run, until all the attack sessions are done.

D. Computation of evaluation metrics

Building a system able to automatically compute accurate
evaluation metrics for IDS is quite arduous in practice. The
associated theory, based on confusion matrices, is straightfor-
ward to understand, and provides many performance metrics,

as summarized in [?]. Nevertheless, the values of metrics can
vary considerably according to the way to compute them. The
four metrics traditionally used in the evaluation of IDS are:

e True Positive (TP): malicious activity classified as mali-
cious (raised an alert).

e False Positive (FP): legitimate activity classified as mali-
cious (raised an alert).

e True Negative (TN): legitimate activity classified as legit-
imate (did not raise any alert).

e False Negative (FN): malicious activity classified as le-
gitimate (did not raise any alert).

Moreover, one can compute the Detection Rate (DR), noted

as: DR = TPT_F%, and the Precision (PR), noted as: PR =
TPZ_%. In practice, automatically associating an alert to the

corresponding attack (i.e., find a TP) is not an easy task, even
manually. According to the alerts we studied from several
NIDS products, the information provided often consists of: the
date of the alert, the IP addresses, protocol, ports, the identifier
of the associated signature, and a textual description. To know
whether every attack executed in the campaigns raised an alert,
the audit system should retrieve and parse the file containing
the alerts generated during the campaign. An alert is associated
to an attack if the following conditions are satisfied:

e Considering the clocks synchronized, the delay between
the date of the alert and the date of the attack is shorter
than a given duration. We call this delay the detection
accuracy tolerance window (denoted W).

e The IP addresses, protocol and ports involved in the alert
are also present in the attack.

Optionally, the following conditions can also be taken into
account to validate a TP:

e The alert is a severe alert.
e The CVEs referenced in the signature of the alert include
the CVE of the attack.

Therefore, the number of TP strongly depends on the good
synchronization of the clocks and the detection accuracy
tolerance window. The two optional conditions are activated
depending on the user that has to consider the evaluated NIDS
deployment. Indeed, users of the audit system might want to
only consider severe alerts. In addition, some NIDS do not
reference CVEs in their signatures, or do not reference the
same CVEs as those referenced in our attack dictionary. Note
that several alerts may be associated to an attack. The FP are
deduced by looking at alerts that are not part of a TP and affect
the IP addresses involved in the attack campaign. The FN are
determined by checking the attacks that are not part of a TP.

As we know the detected and non detected attacks, we are
able to identify the non detected attacks that used the same
exploits as detected attacks involving other IP addresses or
ports. This is important to highlight, because it can result from
a misconfiguration of the NIDS.

So far, we developed JSON and CSV alert parsers for
Suricata [?] and Snort [?] IDS products.

V. TESTBED ENVIRONMENT AND EXPERIMENTS

In this section, we present the VMware-based environment
we used to host experiments in order to validate the first
prototype which implements our approach. Then, we provide
details on the data set of attacks we used in these experiments.
Finally, the experimental results are presented and discussed.

A. Experimental platform

To validate the feasibility and efficiency of our approach,
we run our experiments on a cloud platform based on VMware,
which is widely used for the deployment of IaaS clouds.

This platform includes two physical rack servers (Dell Pow-
erEdge R620 with 2 Intel Xeon E5-2660 and 64GB of RAM)
connected on a physical network switch (HP 5120-24G EI).
The servers run VMware vCloud Suite (VMware’s IaaS solu-
tion). The latter includes a hypervisor (VMware ESXi), cloud
management software (vCenter, vCloud Director, Microsoft
SQL Server) and cloud security management sofware (vShield
Manager). A distributed virtual switch connects all the VMs
of the platform. Virtual networks are represented as port
groups on the virtual switch. Hence, there is a port group
for every client’s virtual network. In addition, there is one
virtual network, the management network, that interconnects
the cloud management VMs and the gateway of every client’s
network. On a powerful VM with 4 CPUs and 8GB of
RAM, we deployed two open-source NIDS solutions: Suricata
2.0.5 and Snort 2.9.2.2. The NIDS VM is connected to the
management network. We kept the default configuration of
the NIDS products (we just configured them to monitor the
right network), and populated them with the latest set of rules
from [?]. On the virtual switch, we applied port mirroring to
duplicate all the traffic to and from the clients’ VMs and send
it to the NIDS VM.

For our experiments, we deployed and configured a small-
sized virtual infrastructure for a hypothetical client, composed
of 1 vDC, 3 virtual networks, 2 virtual Edge firewalls and
3 VMs (2 VMs with 1 network interface, 1 VM with 2
network interfaces). The audit VM (4 CPUs and 4GB of RAM)
orchestrates the audit operations of our three-phase approach.
It is placed on the management network so it can interact
with VMware APIs and the NIDS. Note that the clocks of the
NIDS VM and the audit VM are synchronized through NTP.
Moreover, the audit VM is external to the client’s networks,
and thus it can turn into an attacker and target so we can verify
the accessibilities and try attacks to and from its location.
As the first phase of our approach, we automatically cloned
the deployed client’s virtual infrastructure to obtain the corre-
sponding cloned virtual infrastructure that will be used in the
next phases. The template we use to import VMs in the cloned
infrastructure is a lightweight Open Virtualization Appliance
(OVA) package, provided with 1 CPU and 1GB of RAM,
and the following tools : Python, the dynamic accessibility
analysis Python tools, the Python automata player, Metasploit,
Ruby, the Ruby script that uses Metasploit, SQLite3, and the
attack dictionary as a SQLite3 database. Our platform with
this deployment is illustrated on Figure 5.

B. Evaluation traffic data set

In our first prototype, we focused on four different pro-
tocols: HTTP, FTP, SMTP and IMAP. We chose 16 exploits
from the Exploit Database that are also available in Metas-
ploit and target available applications. The selection covers a
mixture of vulnerabilities published between 2002 and 2014.
We generated the associated automata following the process
presented in Section III-B, as well as the associated scripts
in charge of sending legitimate requests. We manually tested
their functioning to make sure that we would be able to replay
them during the attack campaigns. Table II shows the related
entries in the attack dictionary, along with the number of states
of the generated legitimate automaton (noted as N;) and the
number of states of the generated malicious automaton (noted
as N,,,). Note that the number of states of the automata is

Cloned
virtual infrastructure

Client’s
virtual infrastructure

vm-372 :
i3 vm-375
172.16.2.0/26 <
afs
.62 &
.150
vShield Edge
J10
vCenter vCloud Director ~ Microsoft SQL Server vShield Manager Audit VM NIDS
vShield App! ! ! ! vShield App
ogm - Tommt o
Dell PowerEdge R620
Fig. 5: Experimental platform
exploit_id cve proto | port date description Ng; Nem
35660 2014-9567 TCP 80 2014-12-02 | ProjectSend Arbitrary File Upload 3 3
34926 2014-6287 TCP 80 2014-09-11 Rejetto HttpFileServer Remote Command Execution 12 12
33790 N/A TCP 80 2014-05-20 | Easy File Management Web Server Stack Buffer Overflow 7 8
25775 2013-2028 TCP 80 2013-05-07 | Nginx HTTP Server 1.3.9-1.4.0 - Chuncked Encoding Stack Buffer Overflow 3 8
16970 2002-2268 TCP 80 2010-12-26 Kolibri 2.0 - HTTP Server HEAD Buffer Overflow 2 2
16806 2007-6377 TCP 80 2007-12-10 | BadBlue 2.72b PassThru Buffer Overflow 9 3
16772 2004-2466 TCP 80 2007-08-14 | EFS Easy Chat Server Authentication Request Handling Buffer Overflow 4 10
28681 N/A TCP 21 2013-08-20 | freeFTPd PASS Command Buffer Overflow 11 4
24875 N/A TCP 21 2013-02-27 Sami FTP Server LIST Command Buffer Overflow 11 3
17355 2006-6576 TCP 21 2011-01-23 | GoldenFTP 4.70 PASS Stack Buffer Overflow 13 7
16742 2006-3952 TCP 21 2006-07-31 | Easy File Sharing FTP Server 2.0 PASS Overflow 11 6
16713 2006-2961 TCP 21 2006-06-12 | Cesar FTP 0.99¢ MKD Command Buffer Overflow 11 6
16821 2007-4440 TCP 25 2007-08-18 Mercury Mail SMTP AUTH CRAM-MDS5 Buffer Overflow 9 8
16822 2004-1638 TCP 25 2004-10-26 TABS MailCarrier 2.51 - SMTP EHLO Overflow 6 6
16476 2006-1255 TCP 143 2006-03-17 | Mercur 5.0 - IMAP SP3 SELECT Buffer Overflow 7 4
16474 2005-4267 TCP 143 2005-12-20 Qualcomm WorldMail 3.0 IMAPD LIST Buffer Overflow 2 2

TABLE II: Entries in the attack dictionary and number of states of the generated automata

quite limited (less or equal to 13).

C. Experiments, results and discussion

On the cloned virtual infrastructure illustrated in Figure
5, we performed the dynamic analysis’> of network access
controls and obtained an accessibility matrix, represented by its
accessibility graph shown in Figure 6. A total of 13 observed

0.0.0.0

192.168.1.20

UDP [67]

__TCP [80, 8080
-

- UDP [67]
% -
/ e

vm-5796
192.168.1.13

vm-5792 vm-5793

|
UDP [67]

17216266)4’ 1O 211 @
TCP [25, 143]——
—

AN __—
T——TCP[21]UDP[67,68— ___—
Sl -
—UDP [67, 68]—

-

Fig. 6: Accessibility graph generated from dynamic analysis

2We tested 587 known services from the DARPA Internet network, com-
monly found under the /etc/services file in Linux-based distributions

accessibilities were found, implying 8 possible attack sessions.
From the accessibility matrix, we performed some attack cam-
paigns to evaluate the deployment of the NIDS solutions, using
our prototype and applying different parameters. Remember
that our objective is to analyze the feasibility of our approach,
and not to provide a benchmark evaluation of some NIDS
products. To execute diversified attacks, we used the following
attack modes (cf. Section IV-B):

e Launch all the standard attacks per accessibility.
e Launch R randomly chosen non-standard attacks per

accessibilitiy.

The different parameters of the attack campaigns are listed as:

W: the NIDS detection accuracy tolerance window (in
seconds).

S: if only severe NIDS alerts are treated or not.

R: the number of randomly chosen non-standard attacks
per accessibility.

e N,: the total number of standard attacks launched.

Parameters

S

R

N

Nn

N

Efficiency

NC

20

31

43

55

66

79

89

<]

95.24%

91.18%

91.49%

91.67%

90.41%

91.86%

89.9%

Duration

Smn4ls

11mn57s

16mn16s

22mn18s

23mn37s

29mn22s

30mn09s

Suricata

of TP

8

11

15 10

19 13

22 17

22 18

of FN

12

13 20

28 33

36 42

P 19

57 61

of FP

1

)

7 2

11 6

11 5

13 8

40%

35.48%

34.88% | 23.26%

23.64%

25.76%

22.78%

19.1%

88.89%

73.33%

68.18% | 83.33%

68.42%

77.27%

69.23%

53.13%

29

34

50

55

103

143

36.71%

38.20%

21.97%

25.5%

TABLE III: Experimental results of attack campaigns for different parameters

e N,,: the total number of non-standard attacks launched.
e N;: the total number of attack and legitimate activity pairs
launched.

As a result, we are interested in first analyzing the efficiency
of our prototype system, characterized by:

e N.: the total number of attack and legitimate activity pairs
completed, those where the associated automata reached
their final state.

e (' the completeness ratio given by %

e The duration of each attack campaign.

Then, we report the evaluation metrics to assess the efficiency
of the NIDS. We executed 7 different attack campaigns,
increasing the value of R from 0 to 6. The value of N remains
constant as we always launch all the available standard attacks
per accessibility. The values of NV,,, N; and N, increase as
R is increased. W depends on the target environment. The
smaller W, the higher the risk to miss alerts. The larger W,
the higher the risk to increase the number of false alarms.
In our environment, given the extra time needed to perform
network port mirroring and packets transmission to the NIDS,
and the time needed for the NIDS to process every packet and
report the alerts, we chose 10 seconds for WW. It is large enough
so no alert is missed, and not too large so no additional false
alert is taken into account. We did not apply CVE reference
verification not to be too restrictive in the treatment of the
alerts. However, for each attack campaign, we changed the
value of S to process only severe alerts or all alerts. Note that
Snort does not provide a severity indicator in its alerts and
that is why they are all considered as severe ones. The overall
results of the experiments are presented in Table III.

From our results, we can see that our prototype system is
able to conduct attack campaigns with a good efficiency and an
acceptable duration. Indeed, C' is always at least above 89.9%,
so only less than 10.1% of the attacks launched failed. Over the
different campaigns, the failed attacks were always different
ones. Indeed, as we also manually ran the attack sessions to
verify their possible execution, we know that the few failures
were due to random software crashes, either from the VMware
API (that we request intensively) or the Metasploit framework.
Also, our prototype is able to execute approximately 3 to 4

attacks per minute. Overall, the attack campaigns have a linear
duration that depends on N.. This is encouraging, considering
that we did not make the time performance a priority when
implementing the first prototype.

We observe that overall and for both NIDS products,
increasing IR makes TP and F'P increase, and thus makes
DR decrease. Note that the false positives are generated
by the legitimate activities we generated, but also by other
existing background traffic. Also, less T'P and F'P are reported
when considering only severe alerts for Suricata, and thus
DR decreases. In fact, the detection rate is lowered as the
number of non-standard attacks is increased, which is due to
the configuration of the NIDS we deployed. Indeed, as we kept
the default configuration, we know that some alerts are only
raised for certain standard network ports. As for the precision,
PR tends to decrease for both NIDS when R is increased.
It is lowered because the number of false alarms increases
faster than the number of true positives. Globally, Suricata
exhibited a lower detection capability than Snort, but is much
more precise. These observations are illustrated on Figure 7
and Figure 8. Although the goal of this paper is not to provide
a thorough evaluation of Snort and Suricata NIDS products,
we were surprised by the values of DR and PR. After having
manually run the attacks and checked the results, we know that
this is mainly due to the lack of signatures (only about half
of the malicious payloads sent by the exploits we chose are
actually related to a NIDS signature). Note that low detection
rates and precision rates for NIDS products including Snort
were also reported in other works (e.g., [?], [?], [?]).

100

Suricata - only saver akrts ——
Suncata-all akrts —<—
Snort-allakits —%—

-

20 31 43 55 66 79 89
Nc

Fig. 7: Detection Rate values of the NIDS

DR (%)

100

Suficata -So'nlg severe aers —+—
i ata- i ers ——
nort - ers —¥—

20 31 43 55 66 79 89
Nc
Fig. 8: Precision values of the NIDS

PR (%)

VI. RELATED WORK

The work we present in this paper is associated to two main
research fields. The first one is protocol reverse engineering,
and this is related to the modeling, generation and replay of
evaluation traffic. Although we designed and implemented a
convenient, lightweight and portable tool to replay network
flows in the attack campaigns, we do not claim to propose
an full protocol reverse engineering solution, and it is not
our main contribution. However, we needed to know the
existing tools and understand the problem of protocol reverse
engineering to design our own. Thus, we provide an overview
of some relevant existing tools we studied and also explain
why they do not exactly meet our needs, although having
generally rigorous formal models and working solutions. The
second research field is the evaluation of IDS, related to our
main contribution, about the injection of attack campaigns and
computation of evaluation metrics. Moreover, considering the
general topic of cloud security audits, we can mention the
approaches presented in ([?], [?]), and the recommandations
and guidance on security assessments from the CSA [?].

A. Protocol reverse engineering

Protocol reverse engineering is generally used to infer pro-
tocol specifications by observing and analyzing the behavior of
entities using this protocol. The inferred specifications can then
be used to replay traffic and simulate application behaviors.
A common application of traffic replay is the evaluation of
NIDS. According to the survey in [?], the lightweight tools we
designed to generate and replay application traffic are classified
in the network-based category. This category includes the tools
that analyze network traces to infer protocols.

Among such tools, we can cite Netzob [?], a well-
documented tool that infers network communication protocols
from network traffic. It also proposes a simulation module
to generate traffic from the inferred protocol and spawns the
associated client and server instances. The goal of this tool
is to infer entire communication protocols, which is not our
objective (we are only interested in some network flows of
the applications needed to run the exploits). Furthermore, the
simulation module does not provide independent lightweight
client and server instances, or any scriptable API easy to
control and automate as we want.

Interesting precursor in this field, Scriptgen [?] aims
at automatically inferring unknown protocol vocabulary to
populate the scripts used in the Honeyd [?] project. From
honeypot traffic, the sequence of messages are analyzed to
derive the corresponding state machine then translated into
a script. The proposed approach is dedicated to the Honeyd
project, which is not publicly updated anymore, and thus does

not cover recent attacks. Similar to Scriptgen, PRISMA [?]
infers stateful markov models of botnet protocols from network
traffic captures using a probabilistic approach.

Some application-based tools, i.e., analyzing the execution
of the application to infer protocols, also propose interesting
formal definitions. In particular, Replayer [?] proposes a formal
definition of the replay problem, along with a solution using
dynamic binary analysis to replay application dialogs.

The work done in [?] explores the problem of network
attack injection, from the generation of protocol specifications
to the injection of attack campaigns on target servers and
their monitoring. Again, the goal is to infer entire protocol
specifications, while we just model and replay some specific
flows. From these specifications, they generate various network
attacks in order to discover new vulnerabilities.

B. Evaluation of IDS

There are two main categories of evaluation meth-
ods: 1) white-box description and analysis-based evaluation;
2) black-box test-based experimental evaluation. There also
exist some hybrid approaches. Since we evaluate NIDS in-
stances in production, our work falls into the second category.

The experimental evaluation of IDS has been addressed
in several works, considering different application targets,
for instance in [?], or by the Defense Advanced Research
Projects Agency (DARPA) and the Lincoln Lab ([?], [?]),
though criticized on several aspects in [?]. However, no up-to-
date data sets are publicly available, and traditional evaluation
approaches need to be extended to take into account the
specific constraints and the complex operational characteristics
of cloud environments.

The methodology presented in [?] is a starting point when
one wants to elaborate a strategy to assess IDS. They defined
three test procedures: one to measure the detection ability,
one to measure the resource usage, and one to check if the
IDS functions correctly under stressful conditions. Moreover,
in their experimental platform, they used Expect as well, to
write and run scripts that simulate user’s activity to test IDS.

The authors in [?] provide a strategy to address the lack
of documented data sets for the evaluation of IDS, along with
a tool showing its usage. However, unlike us, their evaluation
approach is an off-line one. Moreover, their framework does
not really assess FP. Indeed, as their work only deals with
malicious traffic, they categorize FP as alarms that are raised
when the associated attacks failed. They do not execute legit-
imate traffic to thoroughly measure FP.

The work presented in [?] is about the generation of traffic
for signature-based NIDS. The authors explain that they are
able to generate application-specific traffic from a workload
model, and present a capacity estimation method.

In [?], the authors create their set of attacks by applying a
combinatorial generation of test cases, or recycling test cases
from several sources. The attacks are injected to discover
new vulnerabilities and thus are not necessarily successful,
while we exploit known vulnerabilities. Indeed, we assess the
network protection mechanisms and not the security of the
targeted hosts. If we take a closer look at their attack campaign
injection methods, we see that they faced the same issues as
we did, but working in a traditional environment unlike us,
these issues remain present. For instance, the attacks cannot
always be run on production systems, as well as the recovery

and backup features they adopted to mitigate this problem.
Also, it is more difficult for the monitor of the attacks to
be well located and work efficiently when the targets are not
controlled, while we can easily follow the attack processes in
our automata.

VII. CONCLUSION AND PERSPECTIVES

We have elaborated and presented our approach to au-
tomatically evaluate NIDS deployed in cloud computing en-
vironments and in charge of protecting the clients’ virtual
infrastructures. The first phase of this approach consists in
cloning the targeted client’s infrastructure while preserving its
privacy. Indeed, although the network configuration and equip-
ments are cloned, the new VMs are imported from a template
into the cloned infrastructure, instead of copying its VMs.
The second phase includes the static and dynamic analysis
of network access controls managed by the virtual firewalls.
The accessibilities determined by both methods are compared
in order to look for discrepancies. The last phase, presented
in details in this paper, aims at performing network attack
campaigns using the accessibilities found within the cloned
infrastructure and allowing different parameters. We modeled
and generated evaluation traffic to easily simulate malicious
and legitimate network exchanges. As an outcome, evaluation
metrics are computed using the evaluated NIDS output alerts.
Experiments have been carried out on a VMware-based cloud
platform to illustrate its feasibility. The results are encouraging
and sustain the first prototype that implements our approach.
They validate the combined use of network accessibilities,
attack dictionary and automata in our approach to conduct
automated attack campaigns in cloud virtual infrastructures.

Based on our generic approach, we can plan to extend
our VMware-based prototype to other IaaS solutions, and be
able to assess other kind of deployed NIDS products. This
would result in the customization of the use of provided
APIs to manipulate the cloud resources, and the development
of adapted NIDS alert parsers. Ongoing work also includes
the generation of new automata to be able to execute more
exploits in the attack campaigns. We are aware that it requires
a certain human effort, but this would just be a community
engineering effort like the populating of exploits in Metasploit
or signatures in the NIDS. Furthermore, although our first
prototype provided good results on our testbed, we intend to
make it scalable for larger virtual infrastructures.

ACKNOWLEDGMENT

This research is partially funded by the Secured Virtual
Cloud (SVC) project of the French program Investissements
d’Avenir on Cloud Computing.

