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Abstract—The use of Static Analysis Tools (SATs) is 

mandatory when developing secure software and searching for 

vulnerabilities in legacy software. However, the performance of 

the various SATs concerning the detection of vulnerabilities and 

false alarm rate is usually unknown and depends on many 

factors. The simultaneous use of several tools should increase the 

detection capabilities, but also the number of false alarms. In 

this paper, we study the problem of combining several SATs to 

best meet the developer needs. We present results of analyzing 

the performance of diverse static analysis tools, based on a 

previously published dataset that resulted from the use of five 

diverse SATs to find two types of vulnerabilities, namely SQL 

Injections (SQLi) and Cross-Site Scripting (XSS), in 132 plugins 

of the WordPress Content Management System (CMS). We 

present the results based on well-established measures for 

binary classifiers, namely sensitivity and specificity for all 

possible diverse combinations that can be constructed using 

these 5 SAT tools. We then provide empirically supported 

guidance on which combinations of SAT tools provide the most 

benefits for detecting vulnerabilities with low false positive rates. 

Keywords— diversity analysis; security analysis; quantitative 

assessment; static analysis tools 

I.  INTRODUCTION  

Static analysis tools are used to inspect software looking 
for vulnerabilities, without executing the code. Since they can 
cover all the source code effectively, they are a valuable tool 
to help security researchers to automate the task of 
vulnerability discovery. However, as with any other binary 
decision system, SATs also suffer from false negative (FN) 
errors (missing vulnerabilities in the code they inspect) and 
false positive (FP) errors (incorrectly labelling code as 
containing a vulnerability when in fact it does not).  

There are many SATs available, and each one has its own 
strengths and weaknesses. Rather than using just one tool, 
several diverse SATs can be used for finding vulnerabilities to 
reduce the probability of vulnerabilities remaining undetected. 
However, for diversity to be effective, the SATs should be 
diverse in their design. This way, a vulnerability undetected 
by one SAT should, with high probability, be detected by 
another one, while at the same time not increasing 
prohibitively the number of false positives. 

The important questions are whether a specific set of SATs 
would improve vulnerability detection more than another set; 
quantifying these gains; and quantifying the false positives. 

In this paper, we provide empirical results to help with the 
problem of deciding which combination of SATs to use. We 
present results of analyzing the performance of diverse SAT 
configurations based on a previously published dataset by 
three of the authors of this paper [19]. The dataset consists of 

five SATs that were individually used to find two types of 
vulnerabilities, namely SQL Injection (SQLi) and Cross-Site 
Scripting (XSS), in 134 plugins of the WordPress Content 
Management System (CMS). WordPress powers 30% of the 
web and represents 60% of all CMSs [1]. According to the 
Hacked Website Report, WordPress is the most infected CMS 
[9]: it accounted for 74% of all CMS infections in Q3 of 2016, 
and 83% of all CMS infections in 2017. 

In this paper, we study all the possible diverse 
configurations that we can build with the five individual 
SATs: 10 diverse pairs, 10 diverse triplets, five diverse 
quadruples and one diverse quintet SAT system. We 
considered various configurations for the adjudicator: 1-out-
of-N (raise an alarm for a vulnerability when any of N SATs 
in the diverse configuration does so); N-out-of-N (raise an 
alarm for a vulnerability only when all N SATs in the diverse 
configuration do so); and simple majority (raise an alarm for 
a vulnerability when the majority of the N SATs in a diverse 
configuration do so).  

Results are presented using the well-established measures 
for binary classifiers: sensitivity (measures the performance of 
the SAT to find vulnerabilities) and specificity (measures the 
performance of the SAT to not raise false alarms). These 
measures capture well the main requirements of practitioners 
when selecting SATs: a tool that finds most vulnerabilities 
without raising too many false alarms.    

In summary, the contributions of the paper are as follows: 

- We analyzed the measures for all possible two-, three-, 
four- and five-SAT diverse configurations. We found that 
none of the SATs, or combinations of SATs, was able to 
find all the vulnerabilities in the target plugins. But, we 
found that some of the SATs exhibit considerable diversity 
in their ability to detect the vulnerabilities analyzed.  

- We provide empirically supported guidance on which 
combination of SATs provide the most benefits in the 
ability to detect vulnerabilities, with a reduced false 
positive rate. Hence, this paper provides a significant new 
contribution compared with our previous work [19] on 
which we only analyzed 1-out-of-N configurations. 1-out-
of-N systems raise an alarm as long as any one of the SATs 
in the system raises an alarm.  

- One limitation of these configuration is the potential 
increase of FPs, which may be unacceptable in many 
situations. In the present work, we look at all the possible 
N-out-of-N and majority voting configurations. This way 
a security researcher has more evidence on the interplay 
between FPs and FNs in diverse SAT configurations.  
The rest of the paper is organized as follows: Section II 

introduces background and related work. Section III describes 
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the dataset used to perform the diversity analysis. Section IV 
outlines the analysis methodology. Section V provides the 
main results of the diversity analysis. Finally, Section VI 
presents the conclusions, limitations and provisions for further 
work. 

II. BACKGROUND RELATED WORK  

Information is one of the most important assets in almost 
all organizations. Information security vulnerabilities are 
weaknesses that expose an organization to risk. The number 
of vulnerabilities in applications is increasing and the attackers 
are exploiting them faster than ever before [14]. Thus, security 
researchers need to be proactive about finding and removing 
vulnerabilities before attackers can find and exploit them.  

The OWASP provides the top ten most critical web 
application security risks. SQL Injection (SQLi) and Cross-
Site Scripting (XSS) vulnerabilities are in the list, and are 
particularly damaging [10], [5]. An SQLi vulnerability occurs 
when untrusted data flowing from entry points (EPs, e.g., user 
input) with inadequate validation (i.e., input validation: 
analyze the data against a predefined pattern; sanitizing: 
cleaning, filtering input data; escaping: stripping out 
unwanted data) [2] is used for constructing SQL queries. An 
attacker may explore these data flows and execute queries not 
expected by the application developer or may access sensitive 
data without proper authorization [5]. These vulnerabilities 
occur whenever data input coming into applications from 
untrusted EPs is not validated, sanitized or escaped and flows 
through the application reaching sensitive sinks (SSs) (see Fig. 
1). A SS is a call of a function that exposes private data to 
external systems. An example for SQLi is the PHP 
mysql_query function, which executes a SQL query and 

returns the results. The PHP print function that outputs 
HTML/JavaScript to the browser is an example of a SS for 
XSS. XSS vulnerabilities occur whenever an application 
includes untrusted data in a new web page without proper 
validation, sanitization or escaping [5]. The attacker can 
exploit the vulnerabilities by injecting malicious scripts in the 
new web page. The browser renders the page and executes the 
scripts in the victim’s machine as a trusted script which can 
hijack user sessions, deface web sites, or redirect the user to 
malicious sites [5].  
  

 
  

Figure 1 – Data flow vulnerabilities. 

A. Examples of SQLi and XSS vulnerabilities 

To explain how SQLi vulnerabilities occur, and how they 
can be exploited, we use a PHP script example (Fig. 2).  The 
script inserts contacts data (name and phone) in a database 
without any validation. In this script, there are two EPs, 

($_POST array at lines 1 and 2) and one SS (line 4). The data 
flowing from the EPs to the SS are not validated, so there is 
one SQLi vulnerability in line 4.    

1 $name  = $_POST['name']; EP 
2 $phone = $_POST['phone']; EP 
3 $sql = "INSERT INTO Contacts (name, phone) 

VALUES ('$name', '$phone')"; 
4 $result = mysqli_query($connection, $sql); SS 

Figure 2 –PHP code for inserting contacts in a database. 

The PHP script in Fig. 3 shows an example of a XSS 

vulnerability. It searches contacts by name in the database and 
displays the results in an HTML page. The user provides the 

name (EP, line 1) to be searched through the $_GET array 
parameter. The script outputs the value of the parameter 
without any proper escaping (line 2). In this case, there is one 
reflected or first order XSS vulnerability. In reflected XSS the 
untrusted data coming from the user is immediately written 
back. The exploitation of this class of vulnerabilities requires 
some kind of social engineering by the attacker to convince 
the victim to click in the crafted URL. In line 3, the script 
makes use of the same parameter ($name) to build the SQL 
query to be sent to the database server (line 4). In this case, 
there is also one SQLi vulnerability. Similarly to the data 
flowing from the user input, the database is also a source of 
untrusted data due to inappropriate validation when inserted 
in the database, as shown in Fig. 2. In fact, any attacker can 
insert in the database malicious code instead of a valid contact 
name. Therefore, the PHP statement in line 7 is an EP in the 
application that retrieves untrusted data from the database. 
These data are outputted in lines 9 and 10 without any 
escaping, hence two stored or second order XSS 
vulnerabilities exist. This class of vulnerabilities is especially 
dangerous because it does not require any kind of social 
engineering to trick the victim and a single malicious code 
stored in the database can be executed in the browser of all 
users visiting the website.  

1 $name = $_GET['name']; EP 
2 print("<h1>Your search for: $name</h1>"); SS  
3 $sql="SELECT * FROM Contacts where name like '%$name%'";
4 $result=mysqli_query($connection, $sql); SS 
5 echo '<table><tr><th>Name</th><th>Phone</th></tr>'; 
6 $n=0;  
7 while($row = mysqli_fetch_array($result)) {  EP  
8   echo '<tr>';  
9   echo '<td>' . $row[name] . '</td>'; SS 
10   echo "<td>{$row['phone']}</td>"; SS  
11   echo '<tr>'; $n++;  
12 } 
13 printf("Total records: %d", $n); SS 

Figure 3–PHP code for searching contacts in a database. 

For a given class of vulnerability one line of code (LOC) 
is potentially vulnerable if it contains an SS function call with 
at least one parameter [19]. A vulnerable line of code (VLOC) 
is a LOC with a SS and a variable with data coming from EPs 
without any validation. A non-vulnerable line of code 
(NVLOC) is a LOC with a SS where all variables are sanitized 
[13][21][7]. Lines 2, 4, 9 and 10 of the script in Fig. 3 are 
examples of VLOCs and line 13 is an example of a NVLOC.   

B. Related Work 

Rutar et al. [20] studied five well-known SATs on a small 
set of Java programs with different sizes and from various 
domains. They concluded that the results of each tool are 
highly correlated with the techniques used for finding bugs, 
and that no single tool can be considered the best to detect 
defects. They proposed a meta-tool to automatically combine 
and correlate SATs’ outputs. This meta-tool is based on a set 
of scripts that combine the results of the various tools in a 
common format. The bugs found were not manually reviewed, 
thus, there is no distinction between True Positives (TP) and 
False Positives (FP). The metric used to evaluate and compare 
the tools was the number of bugs that each SAT found.  

Meng et al. [17] proposed an approach to merge the results 
of multiple SATs. The user specifies the programs to be 
analyzed and chooses the classes of bugs to be scanned. After 
determining which tools can search for the specified class of 
bugs, the authors generated the necessary tools’ 
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configurations, ran the tools, combined the outputs in a single 
report, and applied two prioritizing policies to rank the results. 
This approach has been used to shown that developers could 
benefit by using more than one SAT. However, SAT outputs 
were not classified as TP and FP.  

Wang et al. [22] proposed an approach that combines 
multiple SATs in a simple Web Service. The user has the 
possibility to upload the source code and auxiliary information 
such as the programming language and the classes of bugs to 
be scanned. The tools perform the analysis of the source code 
and the results are merged in a way that the same defect is 
reported only once. The experiments had just a single Java test 
case, and the approach was evaluated in terms of the running 
time when combining two SATs, lacking the validation of the 
effectiveness of the vulnerability detection.rti 

The NSA CAS specified a methodology, the CAS Static 
Analysis Tool Study Methodology, that measures and rates the 
effectiveness of SATs and combinations of SATs in a standard 
and repeatable manner [15]. The metrics used are precision, 
Recall, F-Score, and Discrimination Rate (DR). A 
discrimination occurs if a SAT reports a vulnerability in a 
vulnerable test case (TP) and keeps quiet in a non-vulnerable 
test case (TN). The CAS created a collection over 81,000 
synthetic C/C++ and Java programs with known flaws, which 
was called the Juliet Test Suite [4]. Each test case is a slice of 
code having exactly one flaw and at least one non-flaw 
construct similar to the vulnerability. In 2011, the CAS 
conducted a study with the purpose of determining the 
capabilities of five SATs for C/C++ and Java [3]. In this study, 
they proposed the combination of two SATs to show that 
adding a second SAT might complement the first one. 
However, the evaluation of the combinations is limited 
because it is based on the Recall and DR metrics. The problem 
is that Recall does not consider the number of FP reported, and 
DR severely penalizes the SATs that report both many 
vulnerabilities and many FP. Also, from all possible SAT 
combinations, they only tested five, which is an important 
limitation of the study.    

III. DATASET 

A standard way to evaluate and compare the effectiveness 
of SATs is to make them search for vulnerabilities in a set of 
applications (i.e., the workload), followed by the computation 
of the evaluation metrics. The workload strongly determines 
the results, so it should be representative of all applications. 
Unfortunately, this is very hard to attain. To make the problem 
treatable, the workload can be built for a particular domain. 
However, the selection of a set of representative applications 
in a given domain is still a difficult task. Another difficulty is 
the characterization of the applications in the workload 
(especially if they are real applications) concerning the 
vulnerable (VLOC) and non-vulnerable (NVLOC) lines of 
code (LOC). Moreover, the computation of several evaluation 
metrics requires the outputs of all the tools to be classified into 
FP, FN (False Negatives), TP and TN (True Negatives). To 
compare the results of two or more SATs we need their 
outputs to be in a common format with detailed data about the 
vulnerabilities such as the LOC, the SS, the vulnerable 
variables, the chains of data/control dependencies of the 
vulnerable variables from the EPs to the SS to prove that the 
user input reaches the SS. Unfortunately, SATs report the 
vulnerabilities they find in different formats with varying 
degrees of detail. For example, some SATs report data in 
HTML pages and others in a GUI. Although these data are 

human readable, they need to be converted to a common 
format. To accomplish this in a seamlessly way we developed 
a tool able to automate the process.    

In our work, we used a workload developed by three of the 
authors of the current paper in a previous work [19]. In that 
work, we proposed an approach to select applications based 
on public repositories of vulnerabilities that include confirmed 
vulnerabilities in real software. We applied this methodology 
to the domain of WordPress plugins and for SQLi and XSS 
vulnerabilities based on the online WPScan Vulnerability 
Database (WPVD) [6]. The workload is a set of 134 plugins 
composed of 4,975 PHP files, 1,339,427 LOC and where each 
plugin has at least one SQLi and/or one XSS VLOC (i.e., a 
LOC with at least one vulnerable SS). As identifying all 
VLOCs and NVLOCs (i.e., a LOC with all SSs non-
vulnerable) in the workload is a hard task that requires a 
thorough review by security experts, our approach to find 
more VLOCs than those present in the WPVD was based on 
searching for further vulnerabilities in the workload with one 
or more SATs, followed by a manual review to confirm if they 
are TPs or FPs. The merge of all TPs with the vulnerabilities 
of the WPVD becomes the list of VLOCs in the workload 
(which is, nevertheless, a best-effort subset of all of them). 
Therefore, the list of NVLOCs is obtained from all LOCs with 
a SS with at least one variable, excluding those that were 
reported by the tools and confirmed manually as TP. 

To detect the SQLi and XSS vulnerabilities in the plugins, 
the following five SATs were used: RIPS v0.55 [8], Pixy 
v3.03(2007) [12], phpSAFE [18], WAP v2.0.1 [16], and 
WeVerca v20150804 [11]. RIPS performs static taint analysis 
and string analysis. RIPS and Pixy are two of the most 
referenced PHP SATs in the literature, but they are not ready 
for Object Oriented Programming (OOP) analysis. RIPS has 
been developed as open source until 2014, and only its 
recently released commercial version is able to fully analyze 
OOP code.  WAP, phpSAFE, and WeVerca are recent tools 
under active development and they are prepared for OOP code.  

Static analysis is a complex task, and the tools may be 
unable to fully process some files of the workload. Overall, 
phpSAFE was unable to analyze 130 files, RIPS could not 
analyze 2179 files, Pixy did not process 1473 files, and 
WeVerca was not able to analyze a total of 20 files. To make 
the analysis comparable we consider only the results obtained 
from files that could be successfully analyzed by all five tools. 

Overall, the plugins contain 713,456 LOC and 402,218 
logical LOC (LLOC, i.e. commented and whitespace lines are 
excluded), as can be seen in Table I. The counting of the LOC 
and LLOC was performed using the phploc tool 
(https://phar.phpunit.de/phploc.phar). Since programming 
orientation may be relevant for the performance of the SATs, 
Table I also shows the LLOCs that have POP (Procedure 
Oriented Programming) code and those that have OOP 
(Object Oriented Programming) code. 

TABLE I.  PLUGIN INFORMATION. 

SQLi XSS 

  LLOC   LLOC 

Plug. Files POP OOP Plug. Files POP OOP 

117 2168 120917 46617 130 3401 175747 58937 

Table II shows the VLOCs and NVLOCs for SQLi and 
XSS for the workload in Table I. In this, we can see more XSS 
than SQLi data, but that is also usual in real life applications.  



4 

 

TABLE II.  DATASET: COUNTS AND PERCENTAGES  (IN BRACKETS) 

Vulnerability Code Type  VLOC NVLOC Total 

SQLi POP 138 (18.6) 605 (81.4) 743 
 OOP 509 (8.4) 5574 (91.6) 6083 

 Total 647 (9.5) 6179 (90.5) 6826 

XSS POP 965 (41.3) 1370 (58.7)  2335 

 OOP 3384 (15.4) 18525 (84.6) 21909 

 Total 4349 (17.9) 19895 (82.1) 24244 

IV. ANALYSIS METHODOLOGY 

We can classify the decisions of a SAT into four classes 
(same as for any other binary decision system): 

- For code that is not vulnerable: 
- False Positive (FP): the SAT incorrectly determines 

that the code is vulnerable; 
- True Negative (TN): the SAT correctly determines that 

the code is not vulnerable. 
- For code that is vulnerable: 

- False Negative (FN): the SAT incorrectly determines 
that the code is not vulnerable; 

- True Positive (TP): the SAT correctly determines that 
the code is vulnerable. 

The conventional statistical measures for the performance 

of a binary classification test that we have used, sensitivity 

and specificity, are summarized in Table III. There are many 

other measures available, however, we used these as they are 

the most widely used in literature on decision systems. Other 

measures can be derived either from these or directly from 

the FN, FP, TN, and TP counts.  

TABLE III.  THE FORMULAS AND DEFINITIONS FOR SENSITIVITY, AND 

SPECIFICITY MEASURES 

Statistical Measure Equation Definition 

Sensitivity (True 

Positive Rate TPR) 

TP / (TP+FN) The rate of detecting a 

vulnerability 

Specificity SPC (True 

Negative Rate TNR)  

TN / (TN+FP) The rate of remaining silent 

when no vulnerability exists 

Table IV presents the five SATs, the labels (in brackets) 
we use to refer to them in the rest of the paper, and the FP, TN, 
FN and TP counts respectively, for each of the two classes of 
vulnerabilities. Table V presents the Sensitivity, and 
Specificity measures for each SAT. 

TABLE IV.  THE 5 SATS AND THE FP, TN, FN AND TP COUNTS 

SAT 
SQLi XSS 

FP TN FN TP FP TN FN TP 

phpSAFE (A) 53 6126 268 379 213 19682 2293 2056 

RIPS (B) 116 6063 465 182 454 19441 1469 2880 

WAP (C) 0 6179 492 155 25 19870 3964 385 

Pixy (D) 31 6148 583 64 172 19723 3313 1036 

WeVerca (E) 4 6175 608 39 24 19871 3488 861 

 

TABLE V.  THE 5 SATS AND THE SENSITIVITY (SENS.) AND 

SPECIFICITY (SPEC.) MEASURES FOR EACH SAT 

SAT 
SQLi XSS 

Sens. Spec. Sens.  Spec. 

phpSAFE (A) 0.586 0.991 0.473 0.989 

RIPS (B) 0.281 0.981 0.662 0.977 

WAP (C) 0.240 1.000 0.089 0.999 

Pixy (D) 0.099 0.995 0.238 0.991 

WeVerca (E) 0.060 0.999 0.198 0.999 

 

In the present paper, we extend the analysis of [19] from 
the viewpoint of diversity. From the 5 SAT configurations, we 
can build a total of:  
- 10 two-version combinations (5C2), 
- 10 three-version combinations (5C3), 
- 5 four-version combinations (5C4), and 
- 1 five-version combination (5C5).  

When using diverse SAT systems, the decision on whether 
to flag code as vulnerable or not depends on the adjudication 
of outputs from the individual SATs. We looked at three 
common configurations for adjudication: 
- 1-out-of-N (abbreviated 1ooN): code is labelled as 

vulnerable as long as any one of N SATs has labelled it as 
vulnerable;   

- Majority voting: code is labelled as vulnerable as long as 
the majority of SATs in a given configuration of N SATs 
(e.g. 2 out of 3, 3 out of 4, 3 out of 5 etc.) have labelled it 
as vulnerable; 

- N-out-of-N (abbreviated NooN): code is labelled as 
vulnerable only if all N SATs in a given configuration of 
N SATs label the code as vulnerable. 
Decision makers also frequently use the Receiver 

Operating Characteristic (ROC) curves for each system of 
interest when analyzing the decisions of a binary classifier. 
ROC curves are used to determine how a threshold should be 
set for a decision system to get an optimal configuration that 
maximizes the TP and minimizes the FP rates (what is 
“optimal” for a give system will inevitably depend on the 
relative cost that the decision maker assigns to the FP and FN 
failures). However, since the systems in our case are already 
pre-configured, the ROC plots show only a point for each 
system. By showing all the points for the single and diverse 
systems in the same plot, we can visualize which systems are 
configured most optimally for a given application.  

In summary, in our analysis we performed the following 
steps for each application in the workload: 

- We calculated the FP, FN, TP, and TN counts for each 
diverse configuration; 

- We calculated the measures of interest (see Table III) for 
each diverse configuration; 

- We generated the ROC plots showing all the diverse 
configurations and the individual SATs; and  

- We calculated the differences in the measures of interest 
between diverse configurations and individual systems to 
measure the possible improvements or deteriorations from 
switching to a diverse system. 

V. RESULTS 

In this section, we present the results of our analysis of the 
diversity in the SAT tools. 

A. Visualising Diversity 

We begin our analysis with a simple visualization that 
shows the commonality and diversity of the tools on the 
vulnerable and non-vulnerable code. Figure 4 contains these 
plots for the two classes of vulnerabilities. We will use figure 
1(a) to illustrate what each plot shows: 

- The x-axis lists the five SAT tools; 
- The y-axis lists the VLOCs (647 in total for SQLi); 
- A green cell in the plot shows for each SAT whether they 

detected the vulnerable code as such (i.e. the green cells 
represent true alarms (TPs); the white cells represent no 
alarms (in this case, FNs)).
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   Vulnerability detected by SAT 

(a) SQLi (VLOC: 647) (b) XSS (VLOC: 4349) 

  

   False alarm for non-vulnerabilities 

(c) SQLi (NVLOC: 6179, of which 200 in the y-axis below for 
NVLOCs with FPs for at least one of the SATs. The rest had no 

FPs on any SAT) 

(d) XSS (NV: 19, 895, of which 700 in the y-axis below for 
NVLOCs with FPs for at least one of the SATs. The rest had no 

FPs on any SAT) 

  
Figure 4 - Diversity between SATs for SQL Injection and Cross Site Scripting (XSS)  

Figure 4(b) is the same but for the XSS vulnerabilities. 
Figures 4(c) and 4(d) are similar but in these plots we visualize 
the responses from SATs on code that was not vulnerable – 
NVLOC (hence an alarm is a false positive (FP) represented by 
a red colored cell; no alarms are again represented as white cells 
(in this case they are TNs)) for the SQLi and XSS vulnerabilities, 
respectively. In 4(c) and 4(d) we show only the NVLOCs on 
which at least one of the SATs reports an FP. 

From these plots, we can observe that there is noticeable 
diversity between some of the SATs (e.g. considerable diversity 
for both SQLi and XSS between phpSAFE and RIPS, as is 
evident by the limited overlap in their alarms in the graphs). 

B. Sensitivity, Specificity and ROCs for Diverse SATs 

We then proceeded to calculate the sensitivity and specificity 
for each of the diverse combinations with the five SATs, for the 
three types of adjudication setups considered (namely 1ooN, 
simple Majority vote (2oo3, 3oo4 and 3oo5) and NooN). Table 
VI presents the results of this analysis for all the possible two-
version, three-version, four-version and five version 
combinations for SQLi. Table VII shows the results for XSS. 

From Tables VI and VII we can see some patterns emerging: 
the 1ooN systems are better at finding vulnerabilities (better 
sensitivity), compared with the best individual SATs; on the 
other hand, NooN systems are better at correctly labelling non-
vulnerable code (higher specificity). This is to be expected since: 

- 1ooN systems will in all cases perform: 
- better or equal to the best single SAT in the diverse 

combination N for vulnerable code, as any “alarm” from 
any of the N SATs systems will lead to an alarm in a 
1ooN system;  

- equal or worse than the worst single SAT in the diverse 
combination N for non-vulnerable code, as any “alarm” 
from any single SAT will lead to this code being 
incorrectly labelled as vulnerable.  

- NooN systems will in all cases perform: 
- better or equal to the best single SAT for non-vulnerable 

code as the NooN system only raises an “alarm” for non-
vulnerable code if ALL the SATs in the diverse 
configuration do so; 

- equal or worse than the worst single SAT system in the 
diverse configuration N for vulnerable code, as the NooN 
system will only label code as vulnerable if ALL the 
single SATs in the diverse configuration do so. 

- Majority voting setups usually balance out these extremes, 
as they are not as “trigger happy” as 1ooN setups in raising 
alarms, but also not as conservative as NooN setups in 
remaining silent.  
What is important to understand is how much better, or how 

much worse, would a diverse configuration perform in these 
setups, and the results in Tables VI and VII provide us with some 
interesting observations. 
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TABLE VI.  SENSITIVITY (SENS. ) AND SPECIFICITY (SPEC) FOR THE 

1OON, MAJORITY VOTE AND NOON CONFIGURATIONS FOR 

N BETWEEN 2 AND 5 FOR SQLI 

SQLi 
1ooN Majority  NooN 

Sens. Spec. Sens. Spec. Sens. Spec. 

(a, b) 0.782 0.976 - - 0.085 0.996 

 (a, c) 0.770 0.991 - - 0.056 1.000 

 (a, d) 0.655 0.987 - - 0.029 0.999 

 (a, e) 0.624 0.991 - - 0.022 1.000 

 (b, c) 0.444 0.981 - - 0.077 1.000 

 (b, d) 0.289 0.981 - - 0.091 0.995 

 (b, e) 0.297 0.981 - - 0.045 0.999 

 (c, d) 0.280 0.995 - - 0.059 1.000 

 (c, e) 0.277 0.999 - - 0.023 1.000 

 (d, e) 0.111 0.995 - - 0.048 0.999 

(a, b, c) 0.901 0.976 0.193 0.999 0.012 1.000 

(a, b, d) 0.787 0.976 0.153 0.998 0.026 0.999 

(a, b, e) 0.796 0.976 0.111 0.994 0.020 1.000 

(a, c, d) 0.784 0.987 0.138 0.999 0.003 1.000 

(a, c, e) 0.787 0.991 0.097 0.999 0.002 1.000 

(a, d, e) 0.668 0.987 0.056 0.998 0.022 1.000 

(b, c, d) 0.447 0.981 0.119 0.998 0.045 1.000 

(b, c, e) 0.457 0.981 0.102 0.994 0.022 1.000 

(b, d, e) 0.301 0.981 0.094 0.994 0.045 0.999 

(c, d, e) 0.292 0.995 0.083 0.998 0.023 1.000 

(a, b, c, d) 0.901 0.976 0.087 1.000 0.003 1.000 

(a, b, c, e) 0.913 0.976 0.051 1.000 0.002 1.000 

(a, b, d, e) 0.799 0.976 0.053 0.998 0.020 1.000 

(a, c, d, e) 0.796 0.987 0.045 1.000 0.002 1.000 

(b, c, d, e) 0.459 0.981 0.079 0.998 0.020 1.000 

(a, b, c, d, e) 0.913 0.976 0.094 0.998 0.000 1.000 

 

Sensitivity: Combining SATs phpSAFE (A), RIPS (B) and 
WAP (C) in a 1ooN setup (meaning we identify code as 
vulnerable as soon as any one of these tools identifies it as such) 
gives very large gains in sensitivity for both SQL Injection and 
XSS. Sensitivity for the best of these tools for SQL injection is 
0.56. 1oo3 configuration of these three tools (as listed in the row 
(a,b,c)) is 0.9. Adding the remaining two SATs (Pixy and 
WeVerca) improves sensitivity a little bit more (to 0.91) in a 
1oo5 setup (row (a,b,c,d,e)). For XSS, phpSAFE (A) and RIPS 
(B) in a 1oo2 setup have a sensitivity score of 0.96 (individually 
RIPS (B) had the best sensitivity at 0.66). Combining all 5 tools 
in a 1oo5 setup meant all the XSS vulnerabilities in the plugins 
we considered were detected. As we would expect, we see large 
deteriorations in sensitivity for NooN setups. We also observe 
poor sensitivity results for majority voting setups. 

Specificity: We see gains in specificity in NooN setups 
(meaning we only label code as vulnerable if all N tools in the 
setup agree that the code is vulnerable). Many configurations 
never raise false alarms in these configurations. However, they 
also have very poor sensitivity values. As expected, majority 
voting setups do better for sensitivity compared with NooN, but 
worse for specificity. 

 

TABLE VII.  SENSITIVITY (SENS. ) AND SPECIFICITY (SPEC) FOR THE 

1OON, MAJORITY VOTE AND NOON CONFIGURATIONS 

FOR N BETWEEN 2 AND 5 FOR XSS 

XSS 
1ooN Majority NooN 

Sens. Spec. Sens. Spec. Sens. Spec. 

(a, b) 0.963 0.970 - - 0.172 0.9963 

(a, c) 0.522 0.989 - - 0.040 0.9991 

(a, d) 0.631 0.982 - - 0.080 0.9985 

(a, e) 0.586 0.988 - - 0.084 0.9997 

(b, c) 0.687 0.977 - - 0.064 0.9990 

(b, d) 0.683 0.976 - - 0.218 0.9921 

(b, e) 0.733 0.977 - - 0.127 0.9989 

(c, d) 0.271 0.991 - - 0.056 0.9995 

(c, e) 0.251 0.998 - - 0.035 0.9998 

(d, e) 0.334 0.991 - - 0.102 0.9994 

(a, b, c) 0.981 0.970 0.208 0.996 0.034 0.9992 

(a, b, d) 0.967 0.970 0.342 0.989 0.064 0.9991 

(a, b, e) 0.986 0.970 0.309 0.995 0.037 0.9998 

(a, c, d) 0.655 0.982 0.113 0.998 0.032 0.9997 

(a, c, e) 0.613 0.988 0.133 0.999 0.013 0.9999 

(a, d, e) 0.681 0.982 0.189 0.998 0.039 0.9998 

(b, c, d) 0.702 0.976 0.236 0.991 0.051 0.9996 

(b, c, e) 0.751 0.977 0.169 0.998 0.029 0.9998 

(b, d, e) 0.747 0.976 0.257 0.991 0.095 0.9995 

(c, d, e) 0.357 0.990 0.143 0.999 0.025 0.9999 

(a, b, c ,d) 0.981 0.970 0.088 0.998 0.031 0.9997 

(a, b, c, e) 0.998 0.970 0.073 0.999 0.013 0.9999 

(a, b, d, e) 0.990 0.970 0.139 0.998 0.032 0.9999 

(a, c, d, e) 0.696 0.982 0.071 0.999 0.012 1.0000 

(b, c, d, e) 0.759 0.976 0.125 0.999 0.025 0.9999 

(a, b, c, d, e) 0.998 0.970 0.154 0.998 0.003 1.0000 

 

ROC plots also help a decision maker to visualize these 
results and compare the performance of the different systems. 
Figure 5 shows the eight ROC plots, one for each vulnerability 
(SQLi and XSS), and for each configuration of N, 2≤N≤5. In 
addition to the 1ooN, simple majority (1oo3, 3oo4 and 3oo5), 
and NooN setups that we showed in Tables VI and VII, we also 
calculated the remaining voting setups (2oo4, 2oo5, 4oo5) not 
shown in those tables. 

The most optimal system in an ROC plot is one that appears 
on the top right-hand corner (i.e. one that has both sensitivity and 
specificity of 1, since it detects all vulnerabilities and never 
raises an alarm for code that does not contain vulnerabilities). 
We have no such system in the configurations in our examples. 
As we have seen from the results in Tables VI and VII, most of 
the results in our configurations have extremes of high 
sensitivity (1ooN) or high specificity (NooN). The ROC plots 
make it easier to identify configurations that lie between these 
extremes.  

C. Averages for Different Diverse Setups 

We conclude our analysis with a summary table (Table VIII) 
showing the average Sensitivity and Specificity for non-diverse 
setups (abbreviated “1v” in the first row of the table) compared 
with the averages for the different diverse configurations. These 
results confirm the observations we have shown so far: 
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- For 1ooN systems: more than 70% improvements in 
sensitivity on average in a 1oo2 setup compared with average 
individual SATs. More than three times the improvements in 
sensitivity on average on a 1oo5 setup compared with 
individual SATs. However, this comes at a correspondingly 
high deterioration in specificity. 

- For NooN systems: almost perfect specificity can be 
achieved when using NooN setups (especially for 

configurations of N > 2). But this comes at a large 
deterioration in sensitivity.  

- Simple majority voting setups on average lead to a 
deterioration in sensitivity (of between 30-65%) but with 
some improvements in specificity.  

 

 

 SAT phpSAFE RIPS WAP Pixy WeVerca 

SAT Label A B C D E 

N SQLi XSS 

N=2, 

5C2 = 10 

 

 

 

  

N=3, 

5C3= 10 

 

 
 

  

N=4, 

5C4 = 5 

 

 
 

  

N=5, 

5C5 = 1 

 

 
 

  

Figure 5 -  ROC plots for the different diverse combinations and the two classes of 

vulnerabilities. 
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VI. CONCLUSIONS AND FURTHER WORK 

In this paper, we presented results of analyzing the 
performance of diverse Static Analysis Tools (SATs) 
configurations. The analysis is performed using a previously 
published dataset, where five SATs were used for finding two 
types of vulnerabilities, SQL Injections (SQLi) and Cross-Site 
Scripting (XSS), in 134 WordPress plugins. From the five 
individual SATs, we built 10 diverse pairs, 10 diverse triplets, 
5 diverse quadruples and one diverse quintet SAT system. 
When analyzing the results, we considered various 
configurations of the adjudicator: 1ooN (raise an alarm for a 
vulnerability when any of N SATs in the diverse configuration 
do so); NooN (raise an alarm for a vulnerability only when all 
N SATs in the diverse configuration do so); and simple 
majority (raise an alarm for a vulnerability when the majority 
of the N SATs in a diverse configuration do so). We presented 
the results using the well-established measures for binary 
classifiers: sensitivity and specificity. The main conclusions 
from our analysis are:  

- For 1ooN systems: improvements in sensitivity compared 
with individual SAT are from 70% on average for 1oo2 
systems, to more than 300% for 1oo5 systems, but come 
with a corresponding specificity deterioration on average. 
The largest improvements in sensitivity, with the least 
deterioration in specificity are from combining phpSAFE 
with WAP SATs in a diverse 1oo2 configuration.  

- For NooN systems: specificity can be perfect in most 
setups, but with severe deterioration in sensitivity on 
average. 

- For simple majority voting setups: average deterioration 
in sensitivity (of between 30-65%) but with some 
improvements in specificity.  

For organizations primarily interested in detecting 
vulnerabilities (improved sensitivity) and that are willing to 
invest resources in sifting through alarms to separate out the 
false alarms from true alarms, diverse setups in a 1ooN 
adjudication setup can be very beneficial. In particular, 
phpSAFE, RIPS and WAP SATs exhibit considerable 
diversity in vulnerability detection. 

We plan to investigate in more detail the types of 
vulnerabilities that are detected by the different tools so that 
we can provide more tailored advice to decision makers on 

ways in which they can configure the tools. We also plan to 
investigate optimal adjudication setups that allow us to 
improve both the sensitivity and specificity depending on 
types of code that is inspected by these tools. Optimal 
adjudicators are known to perform much better than 
conventional 1ooN, majority or NooN setups. 
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TABLE VIII.  AVERAGE SENSITIVITY AND SPECIFICITY 

FOR EACH DIVERSE VERSION AND EACH 

CLASS OF VULNERABILITIES  

 SQLi XSS 

 Sens. Spec. Sens. Spec. 

1v 0.25 0.99 0.33 0.99 

1oo2 0.45 0.99 0.57 0.98 

1oo3 0.62 0.98 0.74 0.98 

1oo4 0.77 0.98 0.89 0.97 

1oo5 0.91 0.98 0.99 0.97 

2oo2 0.05 0.99 0.10 0.99 

3oo3 0.02 0.99 0.04 0.99 

4oo4 0.01 1.00 0.02 0.99 

5oo5 0.00 1.00 0.003 0.99 

2oo3 0.11 0.99 0.21 0.99 

2oo4 0.17 0.99 0.32 0.99 

2oo5 0.21 0.99 0.43 0.99 

3oo5 0.09 0.99 0.15 0.99 

4oo5 0.04 1.00 0.06 0.99 


