

City, University of London Institutional Repository

Citation: Algaith, A., Nunes, P., Fonseca, J., Gashi, I. & Viera, M. (2018). Finding SQL

Injection and Cross Site Scripting Vulnerabilities with Diverse Static Analysis Tools. In: 2018
14th European Dependable Computing Conference (EDCC). (pp. 57-64). IEEE. ISBN 978-
1-5386-8060-5 doi: 10.1109/EDCC.2018.00020

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/20065/

Link to published version: https://doi.org/10.1109/EDCC.2018.00020

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Finding SQL Injection and Cross Site Scripting

Vulnerabilities with Diverse Static Analysis Tools
Areej Algaith1, Paulo Nunes2, José Fonseca2, Ilir Gashi1, Marco Vieira3

1Centre for Software Reliability, City, University of London, UK
2CISUC, University of Coimbra, UDI, Polytechnic Institute of Guarda, Portugal

3University of Coimbra, Portugal

areej.algaith.1@city.ac.uk; pnunes@ipg.pt; josefonseca@ipg.pt; ilir.gashi.1@city.ac.uk; mvieira@dei.uc.pt

Abstract—The use of Static Analysis Tools (SATs) is

mandatory when developing secure software and searching for

vulnerabilities in legacy software. However, the performance of

the various SATs concerning the detection of vulnerabilities and

false alarm rate is usually unknown and depends on many

factors. The simultaneous use of several tools should increase the

detection capabilities, but also the number of false alarms. In

this paper, we study the problem of combining several SATs to

best meet the developer needs. We present results of analyzing

the performance of diverse static analysis tools, based on a

previously published dataset that resulted from the use of five

diverse SATs to find two types of vulnerabilities, namely SQL

Injections (SQLi) and Cross-Site Scripting (XSS), in 132 plugins

of the WordPress Content Management System (CMS). We

present the results based on well-established measures for

binary classifiers, namely sensitivity and specificity for all

possible diverse combinations that can be constructed using

these 5 SAT tools. We then provide empirically supported

guidance on which combinations of SAT tools provide the most

benefits for detecting vulnerabilities with low false positive rates.

Keywords— diversity analysis; security analysis; quantitative

assessment; static analysis tools

I. INTRODUCTION

Static analysis tools are used to inspect software looking
for vulnerabilities, without executing the code. Since they can
cover all the source code effectively, they are a valuable tool
to help security researchers to automate the task of
vulnerability discovery. However, as with any other binary
decision system, SATs also suffer from false negative (FN)
errors (missing vulnerabilities in the code they inspect) and
false positive (FP) errors (incorrectly labelling code as
containing a vulnerability when in fact it does not).

There are many SATs available, and each one has its own
strengths and weaknesses. Rather than using just one tool,
several diverse SATs can be used for finding vulnerabilities to
reduce the probability of vulnerabilities remaining undetected.
However, for diversity to be effective, the SATs should be
diverse in their design. This way, a vulnerability undetected
by one SAT should, with high probability, be detected by
another one, while at the same time not increasing
prohibitively the number of false positives.

The important questions are whether a specific set of SATs
would improve vulnerability detection more than another set;
quantifying these gains; and quantifying the false positives.

In this paper, we provide empirical results to help with the
problem of deciding which combination of SATs to use. We
present results of analyzing the performance of diverse SAT
configurations based on a previously published dataset by
three of the authors of this paper [19]. The dataset consists of

five SATs that were individually used to find two types of
vulnerabilities, namely SQL Injection (SQLi) and Cross-Site
Scripting (XSS), in 134 plugins of the WordPress Content
Management System (CMS). WordPress powers 30% of the
web and represents 60% of all CMSs [1]. According to the
Hacked Website Report, WordPress is the most infected CMS
[9]: it accounted for 74% of all CMS infections in Q3 of 2016,
and 83% of all CMS infections in 2017.

In this paper, we study all the possible diverse
configurations that we can build with the five individual
SATs: 10 diverse pairs, 10 diverse triplets, five diverse
quadruples and one diverse quintet SAT system. We
considered various configurations for the adjudicator: 1-out-
of-N (raise an alarm for a vulnerability when any of N SATs
in the diverse configuration does so); N-out-of-N (raise an
alarm for a vulnerability only when all N SATs in the diverse
configuration do so); and simple majority (raise an alarm for
a vulnerability when the majority of the N SATs in a diverse
configuration do so).

Results are presented using the well-established measures
for binary classifiers: sensitivity (measures the performance of
the SAT to find vulnerabilities) and specificity (measures the
performance of the SAT to not raise false alarms). These
measures capture well the main requirements of practitioners
when selecting SATs: a tool that finds most vulnerabilities
without raising too many false alarms.

In summary, the contributions of the paper are as follows:

- We analyzed the measures for all possible two-, three-,
four- and five-SAT diverse configurations. We found that
none of the SATs, or combinations of SATs, was able to
find all the vulnerabilities in the target plugins. But, we
found that some of the SATs exhibit considerable diversity
in their ability to detect the vulnerabilities analyzed.

- We provide empirically supported guidance on which
combination of SATs provide the most benefits in the
ability to detect vulnerabilities, with a reduced false
positive rate. Hence, this paper provides a significant new
contribution compared with our previous work [19] on
which we only analyzed 1-out-of-N configurations. 1-out-
of-N systems raise an alarm as long as any one of the SATs
in the system raises an alarm.

- One limitation of these configuration is the potential
increase of FPs, which may be unacceptable in many
situations. In the present work, we look at all the possible
N-out-of-N and majority voting configurations. This way
a security researcher has more evidence on the interplay
between FPs and FNs in diverse SAT configurations.
The rest of the paper is organized as follows: Section II

introduces background and related work. Section III describes

2

the dataset used to perform the diversity analysis. Section IV
outlines the analysis methodology. Section V provides the
main results of the diversity analysis. Finally, Section VI
presents the conclusions, limitations and provisions for further
work.

II. BACKGROUND RELATED WORK

Information is one of the most important assets in almost
all organizations. Information security vulnerabilities are
weaknesses that expose an organization to risk. The number
of vulnerabilities in applications is increasing and the attackers
are exploiting them faster than ever before [14]. Thus, security
researchers need to be proactive about finding and removing
vulnerabilities before attackers can find and exploit them.

The OWASP provides the top ten most critical web
application security risks. SQL Injection (SQLi) and Cross-
Site Scripting (XSS) vulnerabilities are in the list, and are
particularly damaging [10], [5]. An SQLi vulnerability occurs
when untrusted data flowing from entry points (EPs, e.g., user
input) with inadequate validation (i.e., input validation:
analyze the data against a predefined pattern; sanitizing:
cleaning, filtering input data; escaping: stripping out
unwanted data) [2] is used for constructing SQL queries. An
attacker may explore these data flows and execute queries not
expected by the application developer or may access sensitive
data without proper authorization [5]. These vulnerabilities
occur whenever data input coming into applications from
untrusted EPs is not validated, sanitized or escaped and flows
through the application reaching sensitive sinks (SSs) (see Fig.
1). A SS is a call of a function that exposes private data to
external systems. An example for SQLi is the PHP
mysql_query function, which executes a SQL query and

returns the results. The PHP print function that outputs
HTML/JavaScript to the browser is an example of a SS for
XSS. XSS vulnerabilities occur whenever an application
includes untrusted data in a new web page without proper
validation, sanitization or escaping [5]. The attacker can
exploit the vulnerabilities by injecting malicious scripts in the
new web page. The browser renders the page and executes the
scripts in the victim’s machine as a trusted script which can
hijack user sessions, deface web sites, or redirect the user to
malicious sites [5].

Figure 1 – Data flow vulnerabilities.

A. Examples of SQLi and XSS vulnerabilities

To explain how SQLi vulnerabilities occur, and how they
can be exploited, we use a PHP script example (Fig. 2). The
script inserts contacts data (name and phone) in a database
without any validation. In this script, there are two EPs,

($_POST array at lines 1 and 2) and one SS (line 4). The data
flowing from the EPs to the SS are not validated, so there is
one SQLi vulnerability in line 4.

1 $name = $_POST['name']; EP
2 $phone = $_POST['phone']; EP
3 $sql = "INSERT INTO Contacts (name, phone)

VALUES ('$name', '$phone')";
4 $result = mysqli_query($connection, $sql); SS

Figure 2 –PHP code for inserting contacts in a database.

The PHP script in Fig. 3 shows an example of a XSS

vulnerability. It searches contacts by name in the database and
displays the results in an HTML page. The user provides the

name (EP, line 1) to be searched through the $_GET array
parameter. The script outputs the value of the parameter
without any proper escaping (line 2). In this case, there is one
reflected or first order XSS vulnerability. In reflected XSS the
untrusted data coming from the user is immediately written
back. The exploitation of this class of vulnerabilities requires
some kind of social engineering by the attacker to convince
the victim to click in the crafted URL. In line 3, the script
makes use of the same parameter ($name) to build the SQL
query to be sent to the database server (line 4). In this case,
there is also one SQLi vulnerability. Similarly to the data
flowing from the user input, the database is also a source of
untrusted data due to inappropriate validation when inserted
in the database, as shown in Fig. 2. In fact, any attacker can
insert in the database malicious code instead of a valid contact
name. Therefore, the PHP statement in line 7 is an EP in the
application that retrieves untrusted data from the database.
These data are outputted in lines 9 and 10 without any
escaping, hence two stored or second order XSS
vulnerabilities exist. This class of vulnerabilities is especially
dangerous because it does not require any kind of social
engineering to trick the victim and a single malicious code
stored in the database can be executed in the browser of all
users visiting the website.

1 $name = $_GET['name']; EP
2 print("<h1>Your search for: $name</h1>"); SS
3 $sql="SELECT * FROM Contacts where name like '%$name%'";
4 $result=mysqli_query($connection, $sql); SS
5 echo '<table><tr><th>Name</th><th>Phone</th></tr>';
6 $n=0;
7 while($row = mysqli_fetch_array($result)) { EP
8 echo '<tr>';
9 echo '<td>' . $row[name] . '</td>'; SS
10 echo "<td>{$row['phone']}</td>"; SS
11 echo '<tr>'; $n++;
12 }
13 printf("Total records: %d", $n); SS

Figure 3–PHP code for searching contacts in a database.

For a given class of vulnerability one line of code (LOC)
is potentially vulnerable if it contains an SS function call with
at least one parameter [19]. A vulnerable line of code (VLOC)
is a LOC with a SS and a variable with data coming from EPs
without any validation. A non-vulnerable line of code
(NVLOC) is a LOC with a SS where all variables are sanitized
[13][21][7]. Lines 2, 4, 9 and 10 of the script in Fig. 3 are
examples of VLOCs and line 13 is an example of a NVLOC.

B. Related Work

Rutar et al. [20] studied five well-known SATs on a small
set of Java programs with different sizes and from various
domains. They concluded that the results of each tool are
highly correlated with the techniques used for finding bugs,
and that no single tool can be considered the best to detect
defects. They proposed a meta-tool to automatically combine
and correlate SATs’ outputs. This meta-tool is based on a set
of scripts that combine the results of the various tools in a
common format. The bugs found were not manually reviewed,
thus, there is no distinction between True Positives (TP) and
False Positives (FP). The metric used to evaluate and compare
the tools was the number of bugs that each SAT found.

Meng et al. [17] proposed an approach to merge the results
of multiple SATs. The user specifies the programs to be
analyzed and chooses the classes of bugs to be scanned. After
determining which tools can search for the specified class of
bugs, the authors generated the necessary tools’

3

configurations, ran the tools, combined the outputs in a single
report, and applied two prioritizing policies to rank the results.
This approach has been used to shown that developers could
benefit by using more than one SAT. However, SAT outputs
were not classified as TP and FP.

Wang et al. [22] proposed an approach that combines
multiple SATs in a simple Web Service. The user has the
possibility to upload the source code and auxiliary information
such as the programming language and the classes of bugs to
be scanned. The tools perform the analysis of the source code
and the results are merged in a way that the same defect is
reported only once. The experiments had just a single Java test
case, and the approach was evaluated in terms of the running
time when combining two SATs, lacking the validation of the
effectiveness of the vulnerability detection.rti

The NSA CAS specified a methodology, the CAS Static
Analysis Tool Study Methodology, that measures and rates the
effectiveness of SATs and combinations of SATs in a standard
and repeatable manner [15]. The metrics used are precision,
Recall, F-Score, and Discrimination Rate (DR). A
discrimination occurs if a SAT reports a vulnerability in a
vulnerable test case (TP) and keeps quiet in a non-vulnerable
test case (TN). The CAS created a collection over 81,000
synthetic C/C++ and Java programs with known flaws, which
was called the Juliet Test Suite [4]. Each test case is a slice of
code having exactly one flaw and at least one non-flaw
construct similar to the vulnerability. In 2011, the CAS
conducted a study with the purpose of determining the
capabilities of five SATs for C/C++ and Java [3]. In this study,
they proposed the combination of two SATs to show that
adding a second SAT might complement the first one.
However, the evaluation of the combinations is limited
because it is based on the Recall and DR metrics. The problem
is that Recall does not consider the number of FP reported, and
DR severely penalizes the SATs that report both many
vulnerabilities and many FP. Also, from all possible SAT
combinations, they only tested five, which is an important
limitation of the study.

III. DATASET

A standard way to evaluate and compare the effectiveness
of SATs is to make them search for vulnerabilities in a set of
applications (i.e., the workload), followed by the computation
of the evaluation metrics. The workload strongly determines
the results, so it should be representative of all applications.
Unfortunately, this is very hard to attain. To make the problem
treatable, the workload can be built for a particular domain.
However, the selection of a set of representative applications
in a given domain is still a difficult task. Another difficulty is
the characterization of the applications in the workload
(especially if they are real applications) concerning the
vulnerable (VLOC) and non-vulnerable (NVLOC) lines of
code (LOC). Moreover, the computation of several evaluation
metrics requires the outputs of all the tools to be classified into
FP, FN (False Negatives), TP and TN (True Negatives). To
compare the results of two or more SATs we need their
outputs to be in a common format with detailed data about the
vulnerabilities such as the LOC, the SS, the vulnerable
variables, the chains of data/control dependencies of the
vulnerable variables from the EPs to the SS to prove that the
user input reaches the SS. Unfortunately, SATs report the
vulnerabilities they find in different formats with varying
degrees of detail. For example, some SATs report data in
HTML pages and others in a GUI. Although these data are

human readable, they need to be converted to a common
format. To accomplish this in a seamlessly way we developed
a tool able to automate the process.

In our work, we used a workload developed by three of the
authors of the current paper in a previous work [19]. In that
work, we proposed an approach to select applications based
on public repositories of vulnerabilities that include confirmed
vulnerabilities in real software. We applied this methodology
to the domain of WordPress plugins and for SQLi and XSS
vulnerabilities based on the online WPScan Vulnerability
Database (WPVD) [6]. The workload is a set of 134 plugins
composed of 4,975 PHP files, 1,339,427 LOC and where each
plugin has at least one SQLi and/or one XSS VLOC (i.e., a
LOC with at least one vulnerable SS). As identifying all
VLOCs and NVLOCs (i.e., a LOC with all SSs non-
vulnerable) in the workload is a hard task that requires a
thorough review by security experts, our approach to find
more VLOCs than those present in the WPVD was based on
searching for further vulnerabilities in the workload with one
or more SATs, followed by a manual review to confirm if they
are TPs or FPs. The merge of all TPs with the vulnerabilities
of the WPVD becomes the list of VLOCs in the workload
(which is, nevertheless, a best-effort subset of all of them).
Therefore, the list of NVLOCs is obtained from all LOCs with
a SS with at least one variable, excluding those that were
reported by the tools and confirmed manually as TP.

To detect the SQLi and XSS vulnerabilities in the plugins,
the following five SATs were used: RIPS v0.55 [8], Pixy
v3.03(2007) [12], phpSAFE [18], WAP v2.0.1 [16], and
WeVerca v20150804 [11]. RIPS performs static taint analysis
and string analysis. RIPS and Pixy are two of the most
referenced PHP SATs in the literature, but they are not ready
for Object Oriented Programming (OOP) analysis. RIPS has
been developed as open source until 2014, and only its
recently released commercial version is able to fully analyze
OOP code. WAP, phpSAFE, and WeVerca are recent tools
under active development and they are prepared for OOP code.

Static analysis is a complex task, and the tools may be
unable to fully process some files of the workload. Overall,
phpSAFE was unable to analyze 130 files, RIPS could not
analyze 2179 files, Pixy did not process 1473 files, and
WeVerca was not able to analyze a total of 20 files. To make
the analysis comparable we consider only the results obtained
from files that could be successfully analyzed by all five tools.

Overall, the plugins contain 713,456 LOC and 402,218
logical LOC (LLOC, i.e. commented and whitespace lines are
excluded), as can be seen in Table I. The counting of the LOC
and LLOC was performed using the phploc tool
(https://phar.phpunit.de/phploc.phar). Since programming
orientation may be relevant for the performance of the SATs,
Table I also shows the LLOCs that have POP (Procedure
Oriented Programming) code and those that have OOP
(Object Oriented Programming) code.

TABLE I. PLUGIN INFORMATION.

SQLi XSS

 LLOC LLOC

Plug. Files POP OOP Plug. Files POP OOP

117 2168 120917 46617 130 3401 175747 58937

Table II shows the VLOCs and NVLOCs for SQLi and
XSS for the workload in Table I. In this, we can see more XSS
than SQLi data, but that is also usual in real life applications.

4

TABLE II. DATASET: COUNTS AND PERCENTAGES (IN BRACKETS)

Vulnerability Code Type VLOC NVLOC Total

SQLi POP 138 (18.6) 605 (81.4) 743
 OOP 509 (8.4) 5574 (91.6) 6083

 Total 647 (9.5) 6179 (90.5) 6826

XSS POP 965 (41.3) 1370 (58.7) 2335

 OOP 3384 (15.4) 18525 (84.6) 21909

 Total 4349 (17.9) 19895 (82.1) 24244

IV. ANALYSIS METHODOLOGY

We can classify the decisions of a SAT into four classes
(same as for any other binary decision system):

- For code that is not vulnerable:
- False Positive (FP): the SAT incorrectly determines

that the code is vulnerable;
- True Negative (TN): the SAT correctly determines that

the code is not vulnerable.
- For code that is vulnerable:

- False Negative (FN): the SAT incorrectly determines
that the code is not vulnerable;

- True Positive (TP): the SAT correctly determines that
the code is vulnerable.

The conventional statistical measures for the performance

of a binary classification test that we have used, sensitivity

and specificity, are summarized in Table III. There are many

other measures available, however, we used these as they are

the most widely used in literature on decision systems. Other

measures can be derived either from these or directly from

the FN, FP, TN, and TP counts.

TABLE III. THE FORMULAS AND DEFINITIONS FOR SENSITIVITY, AND

SPECIFICITY MEASURES

Statistical Measure Equation Definition

Sensitivity (True

Positive Rate TPR)

TP / (TP+FN) The rate of detecting a

vulnerability

Specificity SPC (True

Negative Rate TNR)

TN / (TN+FP) The rate of remaining silent

when no vulnerability exists

Table IV presents the five SATs, the labels (in brackets)
we use to refer to them in the rest of the paper, and the FP, TN,
FN and TP counts respectively, for each of the two classes of
vulnerabilities. Table V presents the Sensitivity, and
Specificity measures for each SAT.

TABLE IV. THE 5 SATS AND THE FP, TN, FN AND TP COUNTS

SAT
SQLi XSS

FP TN FN TP FP TN FN TP

phpSAFE (A) 53 6126 268 379 213 19682 2293 2056

RIPS (B) 116 6063 465 182 454 19441 1469 2880

WAP (C) 0 6179 492 155 25 19870 3964 385

Pixy (D) 31 6148 583 64 172 19723 3313 1036

WeVerca (E) 4 6175 608 39 24 19871 3488 861

TABLE V. THE 5 SATS AND THE SENSITIVITY (SENS.) AND

SPECIFICITY (SPEC.) MEASURES FOR EACH SAT

SAT
SQLi XSS

Sens. Spec. Sens. Spec.

phpSAFE (A) 0.586 0.991 0.473 0.989

RIPS (B) 0.281 0.981 0.662 0.977

WAP (C) 0.240 1.000 0.089 0.999

Pixy (D) 0.099 0.995 0.238 0.991

WeVerca (E) 0.060 0.999 0.198 0.999

In the present paper, we extend the analysis of [19] from
the viewpoint of diversity. From the 5 SAT configurations, we
can build a total of:
- 10 two-version combinations (5C2),
- 10 three-version combinations (5C3),
- 5 four-version combinations (5C4), and
- 1 five-version combination (5C5).

When using diverse SAT systems, the decision on whether
to flag code as vulnerable or not depends on the adjudication
of outputs from the individual SATs. We looked at three
common configurations for adjudication:
- 1-out-of-N (abbreviated 1ooN): code is labelled as

vulnerable as long as any one of N SATs has labelled it as
vulnerable;

- Majority voting: code is labelled as vulnerable as long as
the majority of SATs in a given configuration of N SATs
(e.g. 2 out of 3, 3 out of 4, 3 out of 5 etc.) have labelled it
as vulnerable;

- N-out-of-N (abbreviated NooN): code is labelled as
vulnerable only if all N SATs in a given configuration of
N SATs label the code as vulnerable.
Decision makers also frequently use the Receiver

Operating Characteristic (ROC) curves for each system of
interest when analyzing the decisions of a binary classifier.
ROC curves are used to determine how a threshold should be
set for a decision system to get an optimal configuration that
maximizes the TP and minimizes the FP rates (what is
“optimal” for a give system will inevitably depend on the
relative cost that the decision maker assigns to the FP and FN
failures). However, since the systems in our case are already
pre-configured, the ROC plots show only a point for each
system. By showing all the points for the single and diverse
systems in the same plot, we can visualize which systems are
configured most optimally for a given application.

In summary, in our analysis we performed the following
steps for each application in the workload:

- We calculated the FP, FN, TP, and TN counts for each
diverse configuration;

- We calculated the measures of interest (see Table III) for
each diverse configuration;

- We generated the ROC plots showing all the diverse
configurations and the individual SATs; and

- We calculated the differences in the measures of interest
between diverse configurations and individual systems to
measure the possible improvements or deteriorations from
switching to a diverse system.

V. RESULTS

In this section, we present the results of our analysis of the
diversity in the SAT tools.

A. Visualising Diversity

We begin our analysis with a simple visualization that
shows the commonality and diversity of the tools on the
vulnerable and non-vulnerable code. Figure 4 contains these
plots for the two classes of vulnerabilities. We will use figure
1(a) to illustrate what each plot shows:

- The x-axis lists the five SAT tools;
- The y-axis lists the VLOCs (647 in total for SQLi);
- A green cell in the plot shows for each SAT whether they

detected the vulnerable code as such (i.e. the green cells
represent true alarms (TPs); the white cells represent no
alarms (in this case, FNs)).

5

 Vulnerability detected by SAT

(a) SQLi (VLOC: 647) (b) XSS (VLOC: 4349)

 False alarm for non-vulnerabilities

(c) SQLi (NVLOC: 6179, of which 200 in the y-axis below for
NVLOCs with FPs for at least one of the SATs. The rest had no

FPs on any SAT)

(d) XSS (NV: 19, 895, of which 700 in the y-axis below for
NVLOCs with FPs for at least one of the SATs. The rest had no

FPs on any SAT)

Figure 4 - Diversity between SATs for SQL Injection and Cross Site Scripting (XSS)

Figure 4(b) is the same but for the XSS vulnerabilities.
Figures 4(c) and 4(d) are similar but in these plots we visualize
the responses from SATs on code that was not vulnerable –
NVLOC (hence an alarm is a false positive (FP) represented by
a red colored cell; no alarms are again represented as white cells
(in this case they are TNs)) for the SQLi and XSS vulnerabilities,
respectively. In 4(c) and 4(d) we show only the NVLOCs on
which at least one of the SATs reports an FP.

From these plots, we can observe that there is noticeable
diversity between some of the SATs (e.g. considerable diversity
for both SQLi and XSS between phpSAFE and RIPS, as is
evident by the limited overlap in their alarms in the graphs).

B. Sensitivity, Specificity and ROCs for Diverse SATs

We then proceeded to calculate the sensitivity and specificity
for each of the diverse combinations with the five SATs, for the
three types of adjudication setups considered (namely 1ooN,
simple Majority vote (2oo3, 3oo4 and 3oo5) and NooN). Table
VI presents the results of this analysis for all the possible two-
version, three-version, four-version and five version
combinations for SQLi. Table VII shows the results for XSS.

From Tables VI and VII we can see some patterns emerging:
the 1ooN systems are better at finding vulnerabilities (better
sensitivity), compared with the best individual SATs; on the
other hand, NooN systems are better at correctly labelling non-
vulnerable code (higher specificity). This is to be expected since:

- 1ooN systems will in all cases perform:
- better or equal to the best single SAT in the diverse

combination N for vulnerable code, as any “alarm” from
any of the N SATs systems will lead to an alarm in a
1ooN system;

- equal or worse than the worst single SAT in the diverse
combination N for non-vulnerable code, as any “alarm”
from any single SAT will lead to this code being
incorrectly labelled as vulnerable.

- NooN systems will in all cases perform:
- better or equal to the best single SAT for non-vulnerable

code as the NooN system only raises an “alarm” for non-
vulnerable code if ALL the SATs in the diverse
configuration do so;

- equal or worse than the worst single SAT system in the
diverse configuration N for vulnerable code, as the NooN
system will only label code as vulnerable if ALL the
single SATs in the diverse configuration do so.

- Majority voting setups usually balance out these extremes,
as they are not as “trigger happy” as 1ooN setups in raising
alarms, but also not as conservative as NooN setups in
remaining silent.
What is important to understand is how much better, or how

much worse, would a diverse configuration perform in these
setups, and the results in Tables VI and VII provide us with some
interesting observations.

6

TABLE VI. SENSITIVITY (SENS.) AND SPECIFICITY (SPEC) FOR THE

1OON, MAJORITY VOTE AND NOON CONFIGURATIONS FOR

N BETWEEN 2 AND 5 FOR SQLI

SQLi
1ooN Majority NooN

Sens. Spec. Sens. Spec. Sens. Spec.

(a, b) 0.782 0.976 - - 0.085 0.996

 (a, c) 0.770 0.991 - - 0.056 1.000

 (a, d) 0.655 0.987 - - 0.029 0.999

 (a, e) 0.624 0.991 - - 0.022 1.000

 (b, c) 0.444 0.981 - - 0.077 1.000

 (b, d) 0.289 0.981 - - 0.091 0.995

 (b, e) 0.297 0.981 - - 0.045 0.999

 (c, d) 0.280 0.995 - - 0.059 1.000

 (c, e) 0.277 0.999 - - 0.023 1.000

 (d, e) 0.111 0.995 - - 0.048 0.999

(a, b, c) 0.901 0.976 0.193 0.999 0.012 1.000

(a, b, d) 0.787 0.976 0.153 0.998 0.026 0.999

(a, b, e) 0.796 0.976 0.111 0.994 0.020 1.000

(a, c, d) 0.784 0.987 0.138 0.999 0.003 1.000

(a, c, e) 0.787 0.991 0.097 0.999 0.002 1.000

(a, d, e) 0.668 0.987 0.056 0.998 0.022 1.000

(b, c, d) 0.447 0.981 0.119 0.998 0.045 1.000

(b, c, e) 0.457 0.981 0.102 0.994 0.022 1.000

(b, d, e) 0.301 0.981 0.094 0.994 0.045 0.999

(c, d, e) 0.292 0.995 0.083 0.998 0.023 1.000

(a, b, c, d) 0.901 0.976 0.087 1.000 0.003 1.000

(a, b, c, e) 0.913 0.976 0.051 1.000 0.002 1.000

(a, b, d, e) 0.799 0.976 0.053 0.998 0.020 1.000

(a, c, d, e) 0.796 0.987 0.045 1.000 0.002 1.000

(b, c, d, e) 0.459 0.981 0.079 0.998 0.020 1.000

(a, b, c, d, e) 0.913 0.976 0.094 0.998 0.000 1.000

Sensitivity: Combining SATs phpSAFE (A), RIPS (B) and
WAP (C) in a 1ooN setup (meaning we identify code as
vulnerable as soon as any one of these tools identifies it as such)
gives very large gains in sensitivity for both SQL Injection and
XSS. Sensitivity for the best of these tools for SQL injection is
0.56. 1oo3 configuration of these three tools (as listed in the row
(a,b,c)) is 0.9. Adding the remaining two SATs (Pixy and
WeVerca) improves sensitivity a little bit more (to 0.91) in a
1oo5 setup (row (a,b,c,d,e)). For XSS, phpSAFE (A) and RIPS
(B) in a 1oo2 setup have a sensitivity score of 0.96 (individually
RIPS (B) had the best sensitivity at 0.66). Combining all 5 tools
in a 1oo5 setup meant all the XSS vulnerabilities in the plugins
we considered were detected. As we would expect, we see large
deteriorations in sensitivity for NooN setups. We also observe
poor sensitivity results for majority voting setups.

Specificity: We see gains in specificity in NooN setups
(meaning we only label code as vulnerable if all N tools in the
setup agree that the code is vulnerable). Many configurations
never raise false alarms in these configurations. However, they
also have very poor sensitivity values. As expected, majority
voting setups do better for sensitivity compared with NooN, but
worse for specificity.

TABLE VII. SENSITIVITY (SENS.) AND SPECIFICITY (SPEC) FOR THE

1OON, MAJORITY VOTE AND NOON CONFIGURATIONS

FOR N BETWEEN 2 AND 5 FOR XSS

XSS
1ooN Majority NooN

Sens. Spec. Sens. Spec. Sens. Spec.

(a, b) 0.963 0.970 - - 0.172 0.9963

(a, c) 0.522 0.989 - - 0.040 0.9991

(a, d) 0.631 0.982 - - 0.080 0.9985

(a, e) 0.586 0.988 - - 0.084 0.9997

(b, c) 0.687 0.977 - - 0.064 0.9990

(b, d) 0.683 0.976 - - 0.218 0.9921

(b, e) 0.733 0.977 - - 0.127 0.9989

(c, d) 0.271 0.991 - - 0.056 0.9995

(c, e) 0.251 0.998 - - 0.035 0.9998

(d, e) 0.334 0.991 - - 0.102 0.9994

(a, b, c) 0.981 0.970 0.208 0.996 0.034 0.9992

(a, b, d) 0.967 0.970 0.342 0.989 0.064 0.9991

(a, b, e) 0.986 0.970 0.309 0.995 0.037 0.9998

(a, c, d) 0.655 0.982 0.113 0.998 0.032 0.9997

(a, c, e) 0.613 0.988 0.133 0.999 0.013 0.9999

(a, d, e) 0.681 0.982 0.189 0.998 0.039 0.9998

(b, c, d) 0.702 0.976 0.236 0.991 0.051 0.9996

(b, c, e) 0.751 0.977 0.169 0.998 0.029 0.9998

(b, d, e) 0.747 0.976 0.257 0.991 0.095 0.9995

(c, d, e) 0.357 0.990 0.143 0.999 0.025 0.9999

(a, b, c ,d) 0.981 0.970 0.088 0.998 0.031 0.9997

(a, b, c, e) 0.998 0.970 0.073 0.999 0.013 0.9999

(a, b, d, e) 0.990 0.970 0.139 0.998 0.032 0.9999

(a, c, d, e) 0.696 0.982 0.071 0.999 0.012 1.0000

(b, c, d, e) 0.759 0.976 0.125 0.999 0.025 0.9999

(a, b, c, d, e) 0.998 0.970 0.154 0.998 0.003 1.0000

ROC plots also help a decision maker to visualize these
results and compare the performance of the different systems.
Figure 5 shows the eight ROC plots, one for each vulnerability
(SQLi and XSS), and for each configuration of N, 2≤N≤5. In
addition to the 1ooN, simple majority (1oo3, 3oo4 and 3oo5),
and NooN setups that we showed in Tables VI and VII, we also
calculated the remaining voting setups (2oo4, 2oo5, 4oo5) not
shown in those tables.

The most optimal system in an ROC plot is one that appears
on the top right-hand corner (i.e. one that has both sensitivity and
specificity of 1, since it detects all vulnerabilities and never
raises an alarm for code that does not contain vulnerabilities).
We have no such system in the configurations in our examples.
As we have seen from the results in Tables VI and VII, most of
the results in our configurations have extremes of high
sensitivity (1ooN) or high specificity (NooN). The ROC plots
make it easier to identify configurations that lie between these
extremes.

C. Averages for Different Diverse Setups

We conclude our analysis with a summary table (Table VIII)
showing the average Sensitivity and Specificity for non-diverse
setups (abbreviated “1v” in the first row of the table) compared
with the averages for the different diverse configurations. These
results confirm the observations we have shown so far:

7

- For 1ooN systems: more than 70% improvements in
sensitivity on average in a 1oo2 setup compared with average
individual SATs. More than three times the improvements in
sensitivity on average on a 1oo5 setup compared with
individual SATs. However, this comes at a correspondingly
high deterioration in specificity.

- For NooN systems: almost perfect specificity can be
achieved when using NooN setups (especially for

configurations of N > 2). But this comes at a large
deterioration in sensitivity.

- Simple majority voting setups on average lead to a
deterioration in sensitivity (of between 30-65%) but with
some improvements in specificity.

 SAT phpSAFE RIPS WAP Pixy WeVerca

SAT Label A B C D E

N SQLi XSS

N=2,

5C2 = 10

N=3,

5C3= 10

N=4,

5C4 = 5

N=5,

5C5 = 1

Figure 5 - ROC plots for the different diverse combinations and the two classes of

vulnerabilities.

A,B

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPCIFICITY

A,B

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPECIFICITY

A,B,C

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPECIFICITY

A,B,C

A,B,D

A,B,E

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPECIFICITY

A,B,C,D

A,B,C,E

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPECIFICITY

A,B,C,E

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPECIFICITY

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPECIFICITY

0

0.2

0.4

0.6

0.8

1

0
.9

5

0
.9

6

0
.9

7

0
.9

8

0
.9

9 1

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

(S
E

N
S

IT
IV

IT
Y

)

SPECIFICITY

8

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we presented results of analyzing the
performance of diverse Static Analysis Tools (SATs)
configurations. The analysis is performed using a previously
published dataset, where five SATs were used for finding two
types of vulnerabilities, SQL Injections (SQLi) and Cross-Site
Scripting (XSS), in 134 WordPress plugins. From the five
individual SATs, we built 10 diverse pairs, 10 diverse triplets,
5 diverse quadruples and one diverse quintet SAT system.
When analyzing the results, we considered various
configurations of the adjudicator: 1ooN (raise an alarm for a
vulnerability when any of N SATs in the diverse configuration
do so); NooN (raise an alarm for a vulnerability only when all
N SATs in the diverse configuration do so); and simple
majority (raise an alarm for a vulnerability when the majority
of the N SATs in a diverse configuration do so). We presented
the results using the well-established measures for binary
classifiers: sensitivity and specificity. The main conclusions
from our analysis are:

- For 1ooN systems: improvements in sensitivity compared
with individual SAT are from 70% on average for 1oo2
systems, to more than 300% for 1oo5 systems, but come
with a corresponding specificity deterioration on average.
The largest improvements in sensitivity, with the least
deterioration in specificity are from combining phpSAFE
with WAP SATs in a diverse 1oo2 configuration.

- For NooN systems: specificity can be perfect in most
setups, but with severe deterioration in sensitivity on
average.

- For simple majority voting setups: average deterioration
in sensitivity (of between 30-65%) but with some
improvements in specificity.

For organizations primarily interested in detecting
vulnerabilities (improved sensitivity) and that are willing to
invest resources in sifting through alarms to separate out the
false alarms from true alarms, diverse setups in a 1ooN
adjudication setup can be very beneficial. In particular,
phpSAFE, RIPS and WAP SATs exhibit considerable
diversity in vulnerability detection.

We plan to investigate in more detail the types of
vulnerabilities that are detected by the different tools so that
we can provide more tailored advice to decision makers on

ways in which they can configure the tools. We also plan to
investigate optimal adjudication setups that allow us to
improve both the sensitivity and specificity depending on
types of code that is inspected by these tools. Optimal
adjudicators are known to perform much better than
conventional 1ooN, majority or NooN setups.

ACKNOWLEDGMENT

This work was supported in part by the EU H2020
framework projects DiSIEM and ATMOSPHERE (EU
Cooperation Programme) and the UK EPSRC project D3S.

REFERENCES

[1] https://w3techs.com/technologies/overview/content_management/all.
[2] https://developer.wordpress.org/plugins/.

[3] https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton

_Analyzing_Static_Analysis_Tools_WP.pdf.
[4] NIST SARD Project. http://samate.nist.gov/SRD.

[5] OWASP Top 10 - 2017: The ten most critical web application security

risks. Technical report, OWASP Foundation, 2017.
[6] WPScan Vulnerability Database. https://wpvulndb.com/, 2018-04-07.

[7] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian

Yamaguchi. Efficient and Flexible Discovery of PHP Application
Vulnerabilities. In 2017 IEEE EuroS&P, pages 334–349. IEEE, April

2017.

[8] Johannes Dahse, G Horst, and Thorsten Holz. Simulation of Built-in
PHP Features for Precise Static Code Analysis. (February):23–26, 2014.

[9] Sucuri Remediation Group, Incident Response Team, and Affected

Open-source Cms. Hacked Website Report 2017. 2017.
[10] M. K. Gupta, M. C. Govil, and G. Singh. Static analysis approaches to

detect sql injection and cross site scripting vulnerabilities in web
applications: A survey. In Int. Conf. on Recent Advances and

Innovations in Engineering (ICRAIE-2014), pages 1–5, May 2014.

[11] David Hauzar and Jan Kofron. Framework for Static Analysis of PHP
Applications. In 29th European Conf. on Object-Oriented

Programming (ECOOP 2015), volume 37 of Leibniz Int. Proc. in

Informatics (LIPIcs), pages 689–711, 2015.
[12] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for

detecting Web application vulnerabilities. In IEEE Symp on Security

and Privacy, pages 6 pp.–263, May 2006.
[13] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D.

Ernst. Automatic creation of SQL Injection and cross-site scripting

attacks. In 2009 IEEE 31st ICSE, pages 199–209. IEEE, 2009.
[14] Thought Leadership and White Paper. Managing security risks and

vulnerabilities. (January), 2014.

[15] Fort George Meade.
https://samate.nist.gov/docs/CAS%202012%20Static

%20Analysis%20Tool%20Study%20Methodology.pdf.

[16] Iberia Medeiros, Nuno F. Neves, and Miguel Correia. Automatic
Detection and Correction of Web Application Vulnerabilities Using

Data Mining to Predict False Positives. In Proc. of the 23rd Int. Conf.

on World Wide Web, WWW ’14, pages 63–74, NY, USA, 2014. ACM.
[17] N. Meng, Q. Wang, Q. Wu, and H. Mei. An approach to merge results

of multiple static analysis tools (short paper). In 2008 The Eighth Int.

Conf. on Quality Software, pages 169–174, Aug 2008.
[18] Paulo Nunes, José Fonseca, and Marco Vieira. phpSAFE: A Security

Analysis Tool for OOP Web Application Plugins. In 45th Annual

IEEE/IFIP Int. Conf. on Dependable Systems and Networks, DSN 2015,
Rio de Janeiro, Brazil, June 22-25, pages 299–306, 2015.

[19] Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel

Correia, and Marco Vieira. On combining diverse static analysis tools
for web security: An empirical study. In IEEE 13th EDCC, pages 121–

128, Sept 2017.

[20] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison
of bug finding tools for java. In IEEE Proceedings of the 15th Int. Symp.

on Software Reliability Engineering (ISSRE ’04), pages 245–256,

Washington, DC, USA, 2004.
[21] J. Walden, M. Doyle, G. A. Welch, and M. Whelan. Security of open

source web applications. In 2009 3rd Int. Symp. on Empirical Software

Engineering and Measurement, pages 545–553, Oct 2009.
[22] Q. Wang, N. Meng, Z. Zhou, J. Li, and H. Mei. Towards soa-based

code defect analysis. In IEEE Int. Symp. on Service-Oriented System

Engineering, 2008. SOSE ’08, pages 269–274, Dec 2008.

TABLE VIII. AVERAGE SENSITIVITY AND SPECIFICITY

FOR EACH DIVERSE VERSION AND EACH

CLASS OF VULNERABILITIES

 SQLi XSS

 Sens. Spec. Sens. Spec.

1v 0.25 0.99 0.33 0.99

1oo2 0.45 0.99 0.57 0.98

1oo3 0.62 0.98 0.74 0.98

1oo4 0.77 0.98 0.89 0.97

1oo5 0.91 0.98 0.99 0.97

2oo2 0.05 0.99 0.10 0.99

3oo3 0.02 0.99 0.04 0.99

4oo4 0.01 1.00 0.02 0.99

5oo5 0.00 1.00 0.003 0.99

2oo3 0.11 0.99 0.21 0.99

2oo4 0.17 0.99 0.32 0.99

2oo5 0.21 0.99 0.43 0.99

3oo5 0.09 0.99 0.15 0.99

4oo5 0.04 1.00 0.06 0.99

