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Abstract. Future automotive systems will be highly automated and
they will cooperate to optimize important system qualities and perfor-
mance. Established safety assurance approaches and standards have been
designed with manually controlled stand-alone systems in mind and are
thus not fit to ensure safety of this next generation of systems. We argue
that, given frequent dynamic changes and unknown contexts, systems
need to be enabled to dynamically assess and manage their risks. In do-
ing so, systems become resilient from a safety perspective, i.e. they are
able to maintain a state of acceptable risk even when facing changes.
This work presents a Dynamic Risk Assessment architecture that im-
plements the concepts of context-awareness, confidence-disclosure and
fail-operational. In particular, we demonstrate the utilization of these
concepts for the calculation of automotive collision risk metrics, which
are at the heart of our architecture.

1 Introduction and Related Work

Coping with uncertainties is a major challenge of next generation automated
and cooperative systems. Uncertainties are induced by the system complexity
(e.g. size, complex behaviors or even utilizing behaviors based on artificial intel-
ligence, genetic algorithms and the likes) and by the complexity, dynamism and
unknowns of the environment (e.g. properties of cooperating systems but also
behaviors of non-cooperative systems, humans, etc.). It is the goal of a proper en-
gineering process to reduce the amount of such uncertainties during development
time. However, the complexity of systems of higher automation levels acting in
open environments is too high to remove all uncertainties during development
time. For example the behavior of an autonomous system cannot be completely
analyzed as it might not follow an explicit behavior specification [1] or for a
connected system it is not completely known which information is available at
which point in time. Traditionally, dependability engineering addresses those un-
certainties with worst-case assumptions. As this does not lead to systems that
perform sufficiently well, Laprie required in 2008 to transition from dependabil-
ity to resilience, defined as the persistence of dependability when facing changes
[9]. In parallel work to this paper, we introduce Dynamic Risk Management



(DRM) as the safety aspect of resilience. A technical system performing DRM is
maintaining autonomously a state of acceptable risk during operation. A crucial
function for achieving this is the self-localization of the system within the risk
state space. We refer to this activity as Dynamic Risk Assessment (DRA).

In the automotive domain, the safe state is the state in which a collision is
sufficiently unlikely to be caused by the considered vehicle. DRM can thus be
considered as Collision Avoidance (CA) for the automotive case. State-of-the-art
CA systems work with risk metrics as Time-To-Collision (TTC) to decide when
to become active and which risk reduction strategy to perform [6]. The used risk
metrics have evolved over the last years to very mature concepts for Dynamic
Risk Assessment. The original version of the TTC metric (distance divided by rel-
ative speed) can only be used for the scenario in which two vehicles with the same
speed drive behind each other [16]. This is due to the simple constant turn and
constant velocity assumption and due to the fact that only the vehicle in front is
considered for the calculation. Dijkstra and Drolenga [3] have then generalized
the metric to consider more than two vehicles, still using very simple prediction
models. How more complex probabilistic prediction models can be integrated in
the TTC calculation was presented in [2]. Schreier et al. then performed this
step and used a Bayesian, maneuver-based, long-term trajectory prediction for
the calculation of TTC, which they call Time-To-Critical-Collision-Probability
[12]. This risk assessment method was used in the PRORETA 3 system [17].

As impressive as this development is, there is still an important link missing
for the usage of risk metrics for a genuine Dynamic Risk Assessment: For the cal-
culation if a state is of acceptable risk it is required to know the probability of an
accident and the severity of an accident. The relationship between the value of a
risk metric and these two fundamental risk parameters is unclear [13]. The most
popular metrics address only the likelihood of an accident by estimating the re-
maining time till a collision using simple assumptions about the evolution of the
current situation. These assumptions do not take into account vehicle-specific
properties like the maximum deceleration capabilities, passive safety measures
and many other aspects that affect the risk of a collision in a certain driving
situation. Consequently, the actual relationship between the value of a collision
risk metric and the probability and potential severity of a collision is unclear.
However, improving risk metrics is a topic on its own and the existing metrics
are at least good enough to build effective CA systems by formalizing the notion
of how close the current driving situation is to an accident. We will therefore
use existing collision risk metrics for the conduction of DRA in the automotive
domain.

Already the very simple version of Time-To-Collision depends on information
from the environment (distance and relative speed). Environmental perception
is in general a big challenge for vehicles of higher automation levels. If the in-
formation from the perception component is used in the context of Advanced
Driver Assistance Systems (ADAS), the using ADAS system needs to have great
confidence in the integrity of that information. This confidence is obviously also
required by our DRA, because a risk has to be detected with a confidence level



that fits to the level of risk. The higher the risk, the higher is the required
confidence in detection. To separate the generation of environmental percep-
tion information and its usage and thus divide the responsibility, Johansson and
Nilsson demand to instantiate each perception service multiple times with dif-
ferent confidence levels [7]. In the architecture that we present in Section 2 we
assume that the environment perception subsystem follows this paradigm. This
confidence-disclosure is the main novelty of our Dynamic Risk Assessment ar-
chitecture.

2 Dynamic Risk Assessment Architecture

This section introduces our novel architecture for Dynamic Risk Assessment
and highlights how this architecture utilizes the concepts of context-awareness,
confidence-disclosure and fail-operational. In order to attain all relevant infor-
mation (e.g. vehicle speed) in our architecture, we assume a perception com-
ponent that was realized to address multiple confidence levels simultaneously
as described in [7]. Following this concept, most of the input is now considered
to be confidence-disclosing by being explicit which confidence level each signal
and port provides. For example, there are three levels of confidence for the in-
formation of ego speed: ego speed high confidence, ego speed mid confidence
and ego speed low confidence. For each of these levels of confidence, there is
a dedicated signal and corresponding ports. All such perception input signals
are consumed by the actual Dynamic Risk Assessment components, which again
reflect different levels of confidence. I.e. we stipulate a High Confidence DRA, a
Mid Confidence DRA and a Low Confidence DRA component.

Figure 1 zooms into the Low Confidence DRA component which uses the low
confidence input signals. Unlike the higher-confidence DRA components, this
component contains a CNN-Based Risk Estimator. Convolutional Neural Net-
works (CNNs) have been used widely recently for image classification and scene
understanding. In some applications CNNs have been able to perform better than
humans on these tasks [8]. However, as CNNs are a lot different from source code
in higher programming languages, there is not yet a sufficient body of knowledge
on the verification of such Neural Networks. This hinders currently the applica-
tion of CNNs in the context of applications with high confidence requirements.
The confidence-disclosure of our architecture allows the integration of such ad-
vanced techniques, into the architecture of safety-critical systems nevertheless.
Certainly, the verification of Neural Networks to increase the achievable confi-
dence level requires future work and for now, they should only be used with a
disclosure of their low confidence.

The other two sub-components of the Low Confidence DRA component are the
TTC (Lane Keeping) Risk Estimator and the TTC (Arbitrary Driving Situation)
Risk Estimator. Those two components add the concept of context-awareness to
the architecture and are also part of the Mid Confidence DRA and High Con-
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fidence DRA components. In the current driving situation of lane keeping, the
simple version of the TTC metric described in [16] is sufficient for the dynamic
risk assessment. In more general situations a more complex calculation of TTC
is required as described in [3]. For robustness, and thus also fail-operational,
reasons it makes sense to require, at any point in time, as least information as
necessary to make a sufficiently valid risk assessment. As most of the time lane
keeping is the current driving situation, it does not make sense to always require
the larger set of information required for assessing arbitrary driving situations.
For additional fail-operational purposes inside the TTC (Arbitrary Driving Sit-
uation) Risk Estimator two components for TTC calculation are available: TTC
Intended Trajectory and TTC Reachable Area. The first one requires informa-
tion about the intended trajectory of all vehicles in the vicinity while the second
one only requires information about the current position of other vehicles and
then performs a sort of worst-case TTC calculation as described in [14]. This
TTC Reachable Area calculation obviously leads to an overestimation of the risk
but it requires less information and can thus serve as a fallback layer for the
more accurate TTC Intended Trajectory calculation. In Figure 1 the output of
all calculation components are connected to a single output port. In fact, which
calculation is used can be formulated by Boolean logic and depends on the cur-
rent driving situation and a static situation-dependent prioritization.

The outputs of the three Dynamic Risk Assessment components (High Confi-
dence, Mid Confidence, Low Confidence) are forwarded to a Dynamic Risk Con-
trol component. This component contains three different risk reduction strategies
in accordance to the ISO 22839 standard for forward vehicle collision mitigation
systems [6]: Driver Warning Risk Reduction, Speed Reduction Braking Risk Re-
duction and Mitigation Braking Risk Reduction. Each of these actions has a
different level of inherent risk. This level of inherent risk in turn dictates the
requirements with respect to the confidence level of the Dynamic Risk Assess-
ment: Mitigation Braking Risk Reduction only works with a high confidence risk
assessment, Speed Reduction Braking Risk Reduction can work with high and
mid confidence risk assessment while Driver Warning Risk Reduction can also
be employed based on low confidence risk assessment results. At this level, the
different confidence level do also add redundancy to the risk assessment and thus
allow a fail-operational behavior of the risk control. The Driver Warning Risk
Reduction has three redundant sources of information it can use for the risk
assessment. In case of multiple available sources, a prioritization or aggregation
needs to be defined. In case of a missing source, the risk reduction function can
compensate it with the remaining sources.

3 Summary and Future Work

In this paper we presented a novel architecture for Dynamic Risk Assessment
that utilizes the concepts of context-awareness, confidence-disclosure and fail-
operational. The introduced DRA architecture is specific to the automotive do-



main and uses automotive collision risk metrics for assessing the current risk.
As input for the DRA we assumed a perception architecture addressing multiple
confidence levels simultaneously as introduced in [7]. We transferred that concept
of confidence-disclosure also to the calculation of the risk metric giving it mul-
tiple outputs for different confidence levels. We demonstrated the possibility to
integrate low-confidence but high-performance DRA techniques, e.g. realized by
means of Machine Learning techniques, by following the concept of confidence-
disclosure. The output of the Dynamic Risk Assessment is used to trigger risk
reduction strategies of varying inherent risk. Strategies with a high inherent risk
require high confidence DRA results, while for such with a low inherent risk
also low confidence DRA results are sufficient. The aspect of context-awareness
is represented in the architecture by different ways of performing the risk met-
ric calculation specific to the current driving situation. The DRA architecture
enables fail-operational behavior in such a sense that varying availability of in-
formation and varying levels of confidence could trigger different configurations
for the calculation of metrics.

In future work we plan to implement a demonstrator utilizing this architec-
ture in CARLA, an open-source simulator for autonomous driving research [4].
Further, we plan to add the concepts of a mission-level scope and connectivity
to the Dynamic Risk Assessment architecture. Instead of performing the risk
assessment for a single vehicle, it will then be performed for an intersection sce-
nario (i.e. traffic light assistant) as a mission that involves multiple vehicles. For
such a DRA with mission-level scope, information needs to be shared among
the mission participants, thus adding the aspect of cooperation into the mix.
For the functionally safe sharing of corresponding information we will instan-
tiate in a first step the Conditional Safety Certificates (ConSerts) concept [10]
for the use case of mission-level Dynamic Risk Assessment. With ConSerts, a
provided signal may have several guarantees with different levels of confidence,
which in turn depend on the dynamic fulfillment of assumptions regarding the
environment (e.g. other cooperating systems). In this way, ConSerts are a means
to enhance the confidence consideration that we described in the architecture
above. The level of confidence will still be represented by single values so that
the sender and the receiver need to have a standardized agreed basis about
what creates how much confidence. In order to avoid misunderstandings in this
respect and to allow greater flexibility, we are currently working on a concept
called Digital Dependability Identities, which augments ConSerts and the way
levels of confidence are specified in the sense of a dynamic assurance case [11].
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